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1 Catalog Description

MAT_SCI 315 covers, broadly, two topics: phase equilibra and diffusion in
materials.

In the first half of this course, we concentrate on foundational thermodynam-
ics. Namely, the application of thermodynamics to the prediction and inter-
pretation of phase diagrams. The level of presentation assumes that students
have a background in the laws of thermodynamics - especially in the area of
solution thermodynamics (MAT_SCI 314). We’ll build from these foundations
so that students can apply thermodymics to Type I, II, and III phase diagrams.

In the second half of the course we’ll concentrate on the foundations of diffu-
sion in solids. We’ll introduce the atomistic descriptions of diffusion and in-
troduce the physical laws (Fick’s laws) that govern how atoms are transported
in solids. We’ll apply these behaviors in engineering scenarios.

Prerequisite: MAT_SCI 314-0 or equivalent.

2 Course Outcomes

3 315: Phase Equilibria and Diffusion in Materials

At the conclusion of the course students will be able to:

1. Classify, interpret, and analyze Type I, II, and III phase diagrams.

2. Construct schematic phase diagrams from elementary thermodynamics.
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4 INTRODUCTION

3. Navigate binary and ternary phase diagrams to assess phase equilibrium
of mixtures.

4. Utilize ternary phase diagrams to follow crystallization paths and pre-
dict microstructure evolution. Utilize an understanding of the role of
point defects in diffusion and atomistic behavior of solids.

5. Describe the equilibrium thermodynamics of point defects in both crys-
talline solids.

6. Use thermodynamics and computational tools to predict and interpret
phase equilibria in simple unary and binary systems. Examine the role
of phase equilibria and diffusion in the context of relevant applications
--- alloys, batteries, fuel cells, etc.

7. Prepare alloy specimens for microstructural observation and measure-
ment of hardness profile. Assess experimental results within the context
of phase equilibria/diagrams and diffusion.

4 Introduction

“Thermodynamics” and “kinetics” are fundamental skill sets/tool boxes re-
quired of all materials scientists/engineers. Thermodynamics tells us which
phase - or assemblage of phases - has the absolute lowest free energy,
and therefore represents the equilibrium state. (Note: there may be other
metastable states at higher energies.) Kinetics tells us much more: how fast
those phases will form, and the paths they will take along the way. Together,
thermodynamics and kinetics determine the phase assemblages/microstruc-
tures that can be obtained, and how to obtain them. In the materials science
and engineering paradigm of Fig. 4.1, thermodynamics and kinetics come pri-
marily into play in the first “chain link” between “Processing” and “Structure.”

Figure 4.1: The Materials Science and Engineering Paradigm

The interplay between thermodynamics and kinetics can be illustrated with
two case studies. The first involves the Fe-C phase diagram, which is intro-
duced in virtually all introductory Materials Science and Engineering courses.
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4 INTRODUCTION

A schematic of the Fe-rich end (small concentrations of carbon: XC <2%) of
this diagram is given in Fig. 4.2.

Figure 4.2: Schematic of the Fe-rich end of the Fe-C phase diagram

If we solutionize the eutectoid composition austenite (γ-phase) at the point
indicated in Fig. 4.2, and then cool it (follow the arrow) below the eutectoid
temperature Te(thermodynamics), various microstructures can result, depend-
ing upon the rate of cooling (kinetics). For example, slow cooling can result in
discrete coarse-grained phases (α-phase ferrite and cementite, or Fe3C). This
assemblage of phases is not very strong or hard. On the other hand, by cooling
more rapidly, we can produce a layered structure of ferrite and cementite, re-
ferred to as pearlite for its “mother of pearl” appearance under the microscope.
This microstructure is found to be quite strong and hard. This is a prime ex-
ample of how the processing-structure “chain link” can influence the resulting
structure⇔ properties “chain-link” in the Materials Science and Engineering
paradigm (Fig. 4.1).

The second example involves the oxidation of silicon to silicon dioxide
through the reaction of equation 4.1.

Si(s) + O2(g)
 SiO2(s) (4.1)

Later in this course we will learn about Richardson-Ellingham diagrams (for
simplicity, these will be referred to as Ellingham diagrams). An Ellingham di-
agram is just a superposition of lines representing the free energy of oxidation
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4 INTRODUCTION

for a large number of metals. A schematic of the Ellingham diagram for silicon
alone is given in Fig. 4.3 (later graphs, like Fig. 6.2 show much more data).

Figure 4.3: Schematic Ellingham diagram for the oxidation of silicon using O2

The top left of the diagram is at zero T = 0oC and at ∆Go = 0. (Note that
the letter “M” and “ M ” refer to the melting points of the metal (Si) and oxide
(SiO2), respectively.) As we will see, the free energies of formation of most ox-
ides, including silica, are strongly negative. This means that reactions like that
in Eq. 4.1 have a strong tendency to go to the right, that is, to produce their
oxide at the expense of the corresponding metal. For example, if we throw an
iron bar out in the “elements”, we know that it rusts (forms the oxide1) quite
readily. However, an aluminum object, in spite of having an even larger neg-
ative free energy of oxidation than either iron or silicon, will hardly corrode
under the same conditions. That is due to the formation of a coherent “pas-
sive” oxide film on the surface, through which diffusion is extremely slow.

The same phenomenon takes place on silicon, as illustrated in Fig. 4.4.

The passive SiO2 film that forms is extremely important to the microelectronics
at work in many computers. (Note: silica has been largely replaced [ca. 2007]
by oxides with larger dielectric constants [such as hafnia], to ensure that the
miniaturization necessary to keep extending Moore’s Law, i.e., the observation

1To be more accurate, rust is a complex mixture of hydrated iron oxides and oxide-hydroxides,
but you get the point.
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5 GIBBS-DUHEM EQ.

 

Figure 4.4: Passive oxide film formation on silicon, which can be removed via
etching in certain areas, making the underlaying silicon available for dopant in-
corporation.

that the number of transistors on a processor chip doubles every 18 months,
can continue.) On the right side of Fig. 4.4 part of the film has been intention-
ally removed (in a process known as photolithography) so that dopants can
be introduced to induce a local change in the semiconductor’s electronic prop-
erties. Doping may be achevied by ion implantation or by diffusion from a
gaseous source. Again, this is a good illustration of the interplay of thermody-
namics and kinetics in both processing⇔ structure and structure⇔ properties
links in Fig. 4.1.

In the first half of this text, we concentrate on the thermodynamics, namely, the
application of thermodynamics to the prediction and interpretation of phase
diagrams. The level of presentation assumes two things:

1. You have had an introductory course in materials science and engineer-
ing, one that introduced simple phase diagrams, the phase rule, and the
lever rule.

2. You have a background in the laws of thermodynamics, and especially
in the area of solution thermodynamics. If you know the difference be-
tween Raoultian and Henrian solution behavior and have been intro-
duced to the Regular Solution Model, you will be in a good position to
follow along. If not, it is suggested that you spend some time reading
about basic solution thermodynamics in DeHoff or Gaskell.

5 A Most Useful Equation: The Generalized
Gibbs-Duhem Equation

From our knowledge of thermodynamics, most of us are familiar with the
standard form of the Gibbs-Duhem equation 5.1 at constant temperature and
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pressure. This expression arises for binary solutions and relates the total moles
Ni and infinitessimal increase in chemical potential µi, for chemical species i.

0 = X1dµ1 + X2dµ2 (5.1)

which is used extensively to describe the behavior of solutions, namely, it plays
a big role in “solution thermodynamics.” This equation only holds true for
binary systems at fixed temperature and pressure, the X terms represent mole
fractions, and the µ terms represent chemical potentials. A more general form
of the Gibbs-Duhem equation can be derived as follows. Let’s start with a
binary system. The total internal energy (U) is given by equation 5.2.

U = TS− PV + n1µ1 + n2µ2 (5.2)

where T is absolute temperature, P is pressure, the n terms represent the num-
ber of moles of each component, and the µ terms are chemical potentials, as
in equation 5.1. However, from the First law of thermodynamics (equation
5.3) we know that the change of internal energy is a balance between heat in
(δq) and work done by (or out of) our system (δw)2. For now and for the sake
of simplicity, δw will be limited to PV-work only (at constant pressure δw be-
comes PdV).

dU = δq− δw = δq− PdV (5.3)

The second law of thermodynamics (equation 5.4) tells us that the change of
the entropy (S) of the system is always greater than the actual heat in (δq)
divided by absolute temperature.

dS ≥ δq/T (5.4)

In fact, the entropy change is equal to the reversible heat in (δqrev) divided by
absolute temperature, as expressed in equation 5.5.

dS = δqrev/T (5.5)

2The minus sign precedingδw is the convension of Claussius. We’ll use this convension here,
although you probably saw −δw in DeHoff.
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If we now combine the first law (equation 5.3) and the second law (equation
5.4) for a closed system (no matter in or out, i.e., no ndµ terms), we obtain
equation 5.6.

dU ≤ TdS− PdV (5.6)

or at equilibrium, using δqrev, and equation 5.5 instead of equation 5.4, we get
equation 5.7.

dU = TdS− PdV (5.7)

Now let’s consider an open system that can exchange matter with the environ-
ment. We will keep it a binary system for now (and for the sake of simplicity).
With the µidni terms added, the combined first and second law equation 5.7
becomes equation 5.8.

dU = TdS− PdV + µ1dn1 + µ2dn2 (5.8)

On the other hand, the total differential of total internal energy, equation 5.2,
gives us equation 5.9.

dU = TdS + SdT − PdV −VdP + n1dµ1 + µ1dn1 + n2dµ2 + µ2dn2 (5.9)

If we now subtract equation 5.8 from equation 5.9, we obtain a more complete
form of the Gibbs-Duhem equation, at least for binary systems, given in equa-
tion 5.10.

0 = SdT −VdP + n1dµ1 + n2dµ2 (5.10)

Although we will “generalize” this equation still further, this equation is pow-
erful! The author refers to this equation as the “Swiss army knife” for under-
standing degrees of freedom and the phase rule, and also for classifying and
interpreting phase diagrams of all kinds.
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5.1 Degrees of Freedom 5 GIBBS-DUHEM EQ.

5.1 The Gibbs-Duhem Eq. and Degrees of Freedom

For example, as we look at equation 5.10, how many total variables do we
have? The answer is “four,” including T (temperature), P (pressure), and two
chemical potentials (µ1, µ2). But if we ask (for the case of a single phase) how
many variables we need to control to establish thermodynamic equilibrium,
the answer is “three.” For example, if we fix temperature (dT = 0), pressure
(dP = 0), and the chemical potential of component 1 (dµ1 = 0), then accord-
ing to equation 5.10 the other chemical potential must also be fixed (dµ2 = 0).
In other words, there are three degrees of freedom, which we refer to by the
variable F. Later we will understand degrees of freedom to be the number of
thermodynamic variables that need to be fixed to establish equilibrium, or al-
ternatively, the number of thermodynamic variables that can be independently
varied without a change in the number of phases present in our system. We
should also note in passing that we get a hint of the (C + 2) term in the familiar
Gibbs phase rule, equation 5.11.

F = (C + 2)− P (5.11)

In the (C + 2) term, C stands for the number of components (dµ1, dµ2) and the
2 represents the contributions due to temperature (dT) and pressure (dP). In
other words, (C+ 2) is the total number of thermodynamic variables. Note that
we have employed a different symbol to represent the number of phases (P) to
differentiate this from pressure (P). If we add another component (component
3), then we would have to add a n3µ3 term to equation 5.10. Now let’s see what
happens when we have more than one phase, which means adding a second
Gibbs-Duhem equation.

5.2 Using the Gibbs-Duhem Eq. to Derive the Phase Rule

Let keep it simple by limiting ourselves to a single-component system (C = 1).
The relevant version of the Gibbs-Duhem equation in equation 5.10 would
become equation 5.12,

0 = SdT −VdP + ndµ (5.12)

where we have dropped the subscripts for component 1, i.e., n1dµ1 = ndµ. But
now let’s imagine that we have two phases, α and β, in equilibrium along the
phase boundary in Fig. 5.1.
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5.2 Phase Rule 5 GIBBS-DUHEM EQ.

Figure 5.1: A two-phase boundary in a P-T phase diagram

Since the moles are distributed between the two phases, it is not necessar-
ily true that nα = nβ, where the superscripts refer to the two phases. The
same can be said of entropy or volume. Imagine ice floating in water. The
two phases (solid, liquid) are in equilibrium, which we know by the fact that
the temperature remains constant as long as there is any significant amount
(moles, volume) of ice. But once all the ice melts, the water is free to rise in
temperature. So what we need to do is to write two Gibbs-Duhem equations,
one for the alpha phase (equation 5.13) and one for the beta phase (equation
5.14).

0 = SαdT −VαdP + nαdµ (5.13)

0 = SβdT −VβdP + nβdµ (5.14)

Now let’s combine these two equations to eliminate one thermodynamic vari-
able, e.g., the chemical potential (dµ), to arrive at equation 5.15:

(
S
n

)α

dT −
(

V
n

)α

dP = −dµ =

(
S
n

)β

dT −
(

V
n

)β

dP (5.15)

Reorganizing, equation 5.15 becomes equation 5.16:

[(
V
n

)β

−
(

V
n

)α
]

dP =

[(
S
n

)β

−
(

S
n

)α
]

dT (5.16)
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Think for a minute about what equation 5.16 means. For a single-phase in a
single-component system, equation 5.12 tells us that two thermodynamic po-
tentials must be fixed in order to establish the equilibrium state. As pointed
out above, in order to fix the chemical potential (dµ = 0), we have to fix both
temperature (dT = 0) and pressure (dP = 0). But now that we have two
phases in equilibrium (µα = µβ), we only need fix one variable. In equation
5.16 if pressure is fixed (dP = 0), then temperature must also be fixed (dT = 0),
or vice versa; so we have decreased the “degrees of freedom” by one by adding
the second Gibbs-Duhem equation (the second phase in equilibrium with the
first). (Note: It is assumed that the molar volumes and molar entropies of the
two phases are constant.) In other words, the coexistence of two phases in ther-
modynamic equilibrium requires the writing of two Gibbs-Duhem equations-
-one for each phase (equations 5.13 and 5.14). This clearly demonstrates that
“degrees of freedom” (F) equals the total number of thermodynamic vari-
ables, which equals the number of components plus 2 (for temperature and
pressure) or (C + 2) minus the number of Gibbs-Duhem equations, which is
equal to the number of phases in equilibrium (P). We have thereby derived
the Gibbs Phase Rule in equation 5.11. Note that if we have three phases in
thermodynamic equilibrium in a single-component system (µα = µβ = µγ),
we would have to add an additional Gibbs-Duhem equation 5.17:

0 = SγdT −Vγdp + nγdµ (5.17)

From this equation and equations 5.13 and 5.14 we could write equations like
equation 5.16 for each of the three phase boundaries meeting at what is known
as a “triple point,” as in the P-T diagram for water in Fig. 5.2. We could then
eliminate one of the two remaining thermodynamic variables, e.g., tempera-
ture (dT), giving us equation 5.18:

[(
V
n

)β
−
(

V
n

)α]
[(

S
n

)β
−
(

S
n

)α
] dP = dT =

[(
V
n

)γ
−
(

V
n

)α]
[(

S
n

)γ
−
(

S
n

)α] dP (5.18)

Assuming that all molar volumes and molar entropies are constants and non-
zero, there is only one possible solution to equation 5.18, namely that dP must
be zero. By adding the third Gibbs-Duhem equation for the third phase (γ),
we end up with zero degrees of freedom. In fact, the “triple point” of water
is something you can look up in a handbook, 273.16K (0.01oC) and 0.00604
atm, and can only be changed by increasing the number of components (for
example, by doping water with salt, as is done to lower its freezing point at
constant pressure, which we describe later).
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Figure 5.2: Schematic pressure-temperature phase diagram for H2O.

You probably saw equation 5.16 in prior courses (e.g., chemical or materials
thermodynamics), but in a slightly different form, as in equation 5.19:

(
dP
dT

)
eq

=

[(
S
n

)β
−
(

S
n

)α
]

[(
V
n

)β
−
(

V
n

)α
] (5.19)

If we let S stand for molar entropy and V stand for molar volume, this equation
becomes the well-known Clausius-Claypeyron equation 5.20:

(
dP
dT

)
eq

=
∆Sα→β

∆Vα→β
=

∆Hα→β

Teq∆Vα→β
(5.20)

since in equilibrium the free energy difference is zero, ∆Gα→β = 0, which
means that ∆Hα→β = Teq∆Sα→β. As you already know, this is a powerful
equation for P-T diagrams. Given the molar volume difference between alpha
and beta phases, from the slope of their P-T equilibrium phase boundary at a
chosen Teq we can calculate the enthalpy (and entropy) of the phase transfor-
mation, or vice versa.

Before moving on, we must make one clarification regarding the number of
components. It would seem that the number of components should be 2 for
the H2O system, one each for hydrogen and oxygen. However, if the ratio
of hydrogen-to-oxygen remains constant for all phases in the system, namely
H:O remains 2:1, then we can consider this as a one-component system.
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5.3 Using the Generalized Gibbs-Duhem Equation to Classify
All Phase Diagrams

In Section 2.1 we spoke of the Gibbs-Duhem equation as the “Swiss army
knife” of phase equilibrium thermodynamics. We have used it thus far to
determine the degrees of freedom in a single-phase, one-component system.
We have added second and then third phases in equilibrium (and therefore
second and third Gibbs-Duhem equations) to derive Gibbs’ Phase Rule. And
we have used it to derive the Clausius-Clapeyron equation. Now we will use
it to derive an overarching classification scheme for all phase diagrams. We
acknowledge Professor Arthur Pelton of École Polytechnique Montreal as the
originator of this powerful classification scheme [1].

First of all, let’s generalize the Gibbs-Duhem equation to equation 5.21:

0 = SdT −VdP + Σnidµi = ΣQidφi (5.21)

in which φi stands for the various thermodynamic “potentials” and Qi stands
for the corresponding “conjugate extensive variables.” In Table 5.1 the ther-
modynamic potentials, whether thermal (T), mechanical (P) or chemical (µi),
are “intensive,” meaning that they do not depend upon the size of the “sys-
tem” under consideration. For example, take copper at standard temperature
and pressure (STP). A cube of copper 1 cm on a side has the same tempera-
ture, pressure and chemical potential as a cube of copper 1 m on a side. On the
other hand, the conjugate variables are definitely “extensive,” meaning that
they clearly depend upon the size of the system. On going from the 1 cm cube
of copper to the 1 m cube of copper all of these variables increase: volume,
number of moles, and entropy (although the last is not as obvious).

φi (intensive thermodynamic potential) Qi (conjugate, extensive variable)
T (thermal) S (entropy)

P (mechanical) V (volume)
µ (chemical) n (moles)

Table 5.1: Thermodynamic “potentials” vs. “conjugate extensive variables.”

We are now in a position to understand Pelton’s classification scheme for all
phase diagrams. Schematic representations of the three types are given in Fig.
5.3. Type I diagrams are plots of one thermodynamic potential vs. another,
in other words φi vs. φj. Type II diagrams are plots of a thermodynamic po-
tential (φi) vs. a ratio of conjugate extensive variables (Qj/Qk). (Later we will
prove that fixing a ratio of conjugate extensive variables is tantamount to fix-
ing their thermodynamic potentials.) Type III diagrams are plots of one ratio
of thermodynamic potentials vs. another, in other words Qi/Ql . vs Qj/Qk.
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Figure 5.3: Pelton’s classification scheme for phase diagrams.

Schematic representations of “real” phase diagrams for each case are given in
the second row of diagrams. For example, a conventional P-T diagram like that
of water is a good example of a Type I diagram. However, you may have no-
ticed a couple of anomalies in the other “representative” diagrams. For exam-
ple, the schematic (and easy to recognize) Type II binary eutectic diagram does
not have nB/nA as its x-axis. There is a good reason for this. Think of what
happens if we let nA go to zero. This would result in an infinite value of nB/nA.
Instead, we use mole fraction (XB = nB/(nA + nB)), which is zero for nB = 0
and unity for nA = 0. Note in Fig. 5.3 that mole fraction can be easily related
to the ratio of nA/nB, which is just the inverse of nB/nA. The other anomaly
is that we seldom, if ever, see Type III ternary diagrams in rectilinear form,
namely nC/nA vs. nB/nA. The reason is pretty obvious. Pure “end-member”
A, using phase diagram terminology to be discussed later (nB = nC = 0), is
at the origin of this plot, but pure end-members B and C are at infinity on the
x- and y-axes, respectively. We can thank J. Willard Gibbs for introducing the
now universally employed “Gibbs phase triangle” diagram, where the mole
fraction of each component goes to unity in its respective corner. The Gibbs
triangle diagram at the bottom right of Fig. 5.3 is a representative isothermal
section of a “real” ternary phase diagram in the “subsolidus,” meaning well
below temperatures that would result in the formation of any liquid. Further-
more, this system exhibits negligible solid solubility, so the “end-member”
and intermediate compounds (AC and BC2) are the vertices of “tie-triangles.”
Such triangles are the hallmark of ternary phase diagrams, which we discuss
in detail later.
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6 Type I (Single Component) Phase Diagrams

Given the well-known phase diagram of water (see Fig. 5.2), Type I phase
diagrams are mistakenly thought of as “unary” or single-component phase di-
agrams, but this is incorrect. Type I diagrams can be unary, binary or even
higher. But they all have in common the plotting of one thermodynamic po-
tential vs. another. They are also interpreted in the same way, as we will show.
In fact, this is true for each category of diagrams; the rules of interpretation are
identical within each type.

Fig. 6.1 shows schematics of four different Type I diagrams. The first (a) is
a repeat of the single-component H2O P− T phase diagram. The second (b)
is a T − µO2 diagram of the two-component Ni−O system. The third dia-
gram (c) is a slighty different version of the Ni−O binary system. This is
actually a µO2 − T diagram in disguise, as we later show. The top lines on
this diagram are actually taken from a very special Type I diagram, known as
the Richardson-Ellingham diagram (shown later). We will refer to this as the
“Ellingham” diagram, and will spend quite a bit of time with it shortly. The fi-
nal Type I phase diagram (d) is a µS2 − µO2 diagram for the Cu− S−O ternary
system. Such diagrams are referred to as “stability area” diagrams or “pre-
dominance area” diagrams. The descriptor, “stability area,” is quite informa-
tive. It speaks to the fact that interpretation is identical for all Type I phase di-
agrams: areas represent single-phase regimes (or the “area”/range of thermo-
dynamic potentials over which a given phase is solely “stable”); lines represent
the combination of the thermodynamic potentials required for co-equilibrium
of two phases; “triple points” (where three lines meet) indicate the thermo-
dynamic conditions (potentials) where co-equilibrium of three phases occurs.
Note that in going from a one-component system (H2O) to a two component
system (Ni−O), one of the thermodynamic potentials, in this case pressure
(P =1 atm), must be held constant to arrive at a Type I diagram (equilibrium
being determined by the two potentials on the axes). And in going further to a
three-component system (Cu− S−O) two thermodynamic potentials, in this
case pressure (P =1 atm) and temperature (T =1000 K), must be held con-
stant to arrive at a Type I diagram (equilibrium being determined by the two
potentials on the axes.

6.1 The Ellingham-Richardson Diagram

In 1944, it was observed (by Ellingham) that plots of standard free energy of
oxidation of metals to oxides had essentially the same slope (∆G ◦ ≈ A +
BT; B ≈ const) as long as the reaction was written per mole of oxygen gas
O2(g) as in equation 6.1:
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Figure 6.1: Schematic Type I Phase Diagrams for C = 1, 2 and 3.

2
x
y

M(s) + O2(g)

2
y

MxOy (6.1)

where M in this equation represents a metal. For example, if we are dealing
with the oxide MO (x = y = 1), equation 6.1 simplifies to equation 6.2:

2M(s) + O2(g)
 2MO(s) (6.2)

But we might be dealing with a different metal, N, which forms the N2O3
(x = 2, y = 3), for which equation 6.1 becomes equation 6.3:

4
3

N(s) + O2(g)

2
3

N2O3 (6.3)

Note that if we subtract equation 6.3 from equation 6.2, the oxygen term can-
cels out and we obtain equation 6.4:

2M (s) +
2
3

N2O3 
 2MO (s) +
4
3

N (s) (6.4)
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This is a powerful capability to determine whether, thermodynamically speak-
ing, a given metal will reduce another’s oxide or vice versa, as we show later.
There is a simple rationale for all oxidation reactions having nearly the same
slope on an Ellingham diagram. Let’s consider the reaction of calcium to cal-
cium oxide as in equation 6.5:

2Ca(s) + O2 (g)
 2CaO(s) (6.5)

The overall standard free energy of reaction can be determined by equation
6.6:

∆G ◦ = ∆H ◦ − T∆S ◦ ≈ A + BT (6.6)

What we are interested in is the Ellingham slope (B) in equation 6.6, which
amounts to the change in standard entropy as given by equation 6.7:

∆S ◦ = 2S ◦CaO(s) − 2S ◦Ca(s) − S ◦O2(g)
(6.7)

If we consult thermodynamic data for the three terms on the right side of equa-
tion, we obtain equation 6.8:

∆S ◦ = 2 (38.1− 41.6)− 205.1 = −212.1 J ·mol−1 ·K−1 (6.8)

It can be seen that the first two terms, the standard entropy terms of the two
solids (calcium oxide, calcium), roughly cancel and that the overall value is
dominated by the standard entropy of the oxygen gas (the third term). Hence,
the slopes of all oxidation reactions on Ellingham diagrams involving solid
metals and oxides will be very similar, owing to the fact that B = −∆S ◦ ≈
S ◦O2(g)in equation 6.6. An actual Ellingham diagram is shown in Fig. 6.2.
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Metal Oxide

Melting Point
Boiling Point

Figure 6.2: The Ellingham diagram (adapted from [2]).
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At first, this may seem like a complicated diagram. However, the following
discussion and “case studies” should help to simplify it and demonstrate its
usefulness. As can be seen there are three different nomographic scales on the
sides of the diagram. These were added by Richardson; hence, the diagram is
often referred to as the Richardson-Ellingham diagram. We will highlight each
of these scales as we come to them. First let’s consider three ways to arrive at
a specific x, y or ∆G ◦, T coordinate on the diagram. Consider the reaction of Ti
with O2(g) to yield TiO2 at 1000 ◦C. From the line and the diagram legend we
know that both the metal and the oxide are solids at this temperature, because
we do not encounter an “M” symbol (where the metal melts) until a much
higher temperature (T ∼ 1650oC), and there is no boxed “M” symbol, which
stands for the melting point of the oxide. This means that the oxide melts at a
temperature above the melting point of the metal, however no thermodynamic
data are provided for higher temperatures. Note: a “B” symbol is fairly rare
and corresponds to the boiling point of the metal, as in the case of Mg and
Ca, the bottommost lines on the diagram. The large increase in slope at such a
“B” point is due to the fact that both reactants on the left side of the Ellingham
equation 6.1 are in gaseous form (oxygen gas plus metal vapor) and therefore
contribute to the entropy or slope of the line.

 

Figure 6.3: Three paths to reach a given coordinate on an Ellingham diagram.

The three ways to reach a specific coordinate are illustrated in Fig. 6.3. The first
way or path (1) to reach the coordinates in question is by what I call “direct
read.” The topmost horizontal line of the Ellingham diagram, directly below
the pH2 /pH2O or pCO/pCO2 nomographic scales, is the line of zero ∆G . At
1000 C we draw an arrow down from this line until we hit the line representing
the Ti/TiO2 equilibrium at a value of ∆G ∼ −690 kJ/mol. The second path (2)
to reach the same coordinates is to use the Ellingham relation in equation 6.6.
It is important to realize where the coordinates (0, 0) occur on the diagram. On
the very left of the Ellingham diagram in Fig. 6.2 is a vertical line with “0 K”
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indicated. Since the x-axis is in degrees C, the absolute zero in degrees Kelvin
is to the left another −273.15 ◦C. So the actual (0, 0) point of the Ellingham
diagram is at the top left corner where the line which passes through the “C”
and “H” points makes an angle with the horizontal line of zero ∆G ◦. This is a
very important point on the Ellingham diagram, which I tend to call the “O”
point (O for oxygen) and later the O-fulcrum. Starting at the O-point, we can
draw the A + BT line from the origin as shown in Fig. 6.3. One can crudely
think of this in terms of ∆H ◦ − T∆S ◦ for the Ti/TiO2 equilibrium.

By the way, there is a perfectly good thermodynamic reason why Ellingham
did not extend the lines on the diagram below 0 ◦C. You may recall from your
basic thermodynamics background that the heat capacity of a solid begins to
vary dramatically below its “Debye” temperature approaching absolute zero.
This would make for large deviations from linearity of the lines on the Elling-
ham diagram below 0 ◦C approaching 0 K; hence, the lines terminate at 0 ◦C.

The third way or path to reach the same coordinates of ∆G ◦ ∼ −690 kJ/mol
at 1000 ◦C requires some explanation. As found in basic chemistry textbooks
we know from equation 6.9:

∆G = ∆G ◦ + RT ln Q (6.9)

that the ∆G of a reaction is related to the standard free energy of that reaction
plus a second term that depends upon the so-called “activity quotient” or Q.
In the case of Ti/TiO2 this becomes equation 6.10:

∆G = ∆G ◦ + RT ln
aTiO2

aTi pO2

(6.10)

where the activities of the solid phases can be assumed to be unity (assum-
ing pure metal and oxide) and the activity of oxygen is given by its partial
pressure. However, if the metal and oxide are in equilibrium we know that
∆G = 0, yielding the following equation 6.11:

∆G ◦ = −RT ln Keq = −RT ln
1

peq
O2

= RT ln peq
O2

(6.11)

where peq
O2

is the oxygen partial pressure where Ti(s) and TiO2(s) are in equi-
librium. In effect, path (3) is a line with zero intercept and a slope of R ln peq

O2

vs. temperature, as shown in Fig. 6.3. We can solve mathematically for peq
O2

by plugging −690kJ/mol for ∆G ◦ and 1000 ◦C or rather 1273 K into equation
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6.11 to arrive at a value of 4.9× 10−29 atm, for which the log peq
O2

(base 10) is
−28.3. This is where the nomographic scale comes in handy. If we draw a line
from the origin or “O-point” through the coordinates in question (the Ti/TiO2
line at 1000 ◦C) to the pO2 nomographic scale, we get approximately the same
value. Keep in mind that this is really a log scale, so we must interpolate the
“logs,” for example one quarter of the way from 10−28 to 10−30 is 10−28.5 and
definitely not 5 × 10−29 or 5 × 10−28. So we have a short cut or “easy but-
ton” for finding the log pO2 value for any set of coordinates on the Ellingham
diagram. Simply take a ruler and connect it from the O-point through the
coordinates in question and read the log pO2 value off the nomographic scale.
Since all lines radiate from the “O-point,” I tend to refer to this point as the “O-
fulcrum”. You will note on the Ellingham diagram that all the “tick” marks on
the O-nomographic scale point back to the O-fulcrum.

Of course, achieving such a low oxygen partial pressure is impossible with
even the best available vacuum systems. That is where the outer two nomo-
graphic scales come in. These involve so-called “buffer gas systems.” Consider
the reaction of equation 6.12:

2CO(g) + O2(g)
 2CO2(g) (6.12)

Let’s flow an arbitrary mixture of CO(g) and CO2(g) through a furnace at 1
atm total pressure. The equilibrium constant would be given by equation 6.13:

Keq = exp
(
−∆G ◦

RT

)
=

p2
CO2

p2
CO pO2

=
X2

CO2
P2

X2
COP2XO2 P

(6.13)

where partial pressures are now expressed in terms of mole fractions and total
pressure. If we let the total pressure be 1 atm and assume that the amount of
oxygen produced is negligible compared to the moles of CO and CO2 and let
rc = XCO/XCO2

we arrive at a simplified equation 6.14:

Keq =
1

r2
c pO2

(6.14)

Let’s go back to the situation we considered above, namely the Ti/TiO2 equi-
librium at 1000 ◦C with an equilibrium pO2 of 4.9× 10−29. Given the ∆G ◦ for
reaction 6.12 is −564, 800 + 173.62T J/mol and plugging this into equations
6.13 and 6.14, we can solve for an rc value of 1.26× 107. On a base 10 log scale
this corresponds to 7.1. Now let’s use the second nomographic scale and its
corresponding C-fulcrum (this is the letter “C” on the line to the left side of the
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Ellingham diagram 6.2) to solve the same problem. Note that all the tick marks
on the pCO/pCO2 radiate from the C-fulcrum. As illustrated in Fig. 6.4, using
a ruler to draw a line from the C-fulcrum through the Ti/TiO2 line where it
crosses 1000 ◦C all the way to the second nomographic scale obtains 107.1, in
excellent agreement with the calculations. Even though the pCO2 would be
quite small (on the order of 10−7 atm) this is still way larger than the value of
pO2

, so our assumption that the amount of oxygen can be neglected is mathe-
matically justified. In reality, however, just as with aqueous buffers, there are
limits to buffer reliability. For example, buffer gases become unreliable if the
R value is too large or too small, owing to the potential for oxygen “leaks” in
the lines feeding gases into a commercial furnace. Therefore, buffer gases are
usually limited to values of 10−5 ≤ rc ≤ 105. Nevertheless, we have a valuable
short cut to obtain the rc value for any coordinates on the Ellingham diagram.

Figure 6.4: Illustrating the CO/CO2nomographic scale on the Ellingham diagram.

You will notice that there is still another nomographic scale on the Ellingham
diagram of Fig. 6.2. This nomographic scale involves a different buffer gas
system of reaction 6.15:

2H2(g) + O2(g) 
 2H2O(g) (6.15)

Here we are mixing hydrogen gas and water vapor, whose ratios are given
along the outermost nomographic scale. Again, note that all tick marks ra-
diate to the H-point or H-fulcrum on the line to the very left of the diagram.
If we want to know a mixture of hydrogen gas and water vapor that would
correspond to a set of coordinates on the Ellingham diagram, we would use a
ruler to draw a line between the H-fulcrum through those coordinates to the
nomographic scale, once again being careful to interpolate the log values.
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Another use of the Ellingham diagram is to find a driving force for a given
reaction. Consider the reaction of Mn metal with oxygen to form MnO by the
reaction 6.16:

2Mn(s) + O2(g)
 2MnO(s) (6.16)

If we subject a mixture of Mn/MnO to an “applied” oxygen pressure of papp
O2

=

10−20 atm (for example, by using a buffer gas mixture) at 1000 ◦C, what is the
driving force for the reaction to take place? There are several ways to solve for
this. They each derive from equation 6.9. In this case, assuming Mn and MnO
to be pure solids (activity=1) we would obtain equation 6.17:

∆G = ∆G ◦ + RT ln
1

papp
O2

(6.17)

From the Ellingham diagram of Fig. 6.2 we can find that the ∆G ◦ of the re-
action is approximately −580 kJ/mol at 1000 ◦C. Plugging 1273 K and papp

O2
=

10−20 into equation 6.17, we obtain ∆G = −92.6 kJ/mol. But we also know
from equation 6.11 that ∆G ◦ = RT ln peq

O2
. Plugging this into equation 6.17 we

obtain equation 6.18:

∆G = RT ln peq
O2

+ RT ln
1

papp
O2

= RT ln
peq

O2

papp
O2

(6.18)

Figure 6.5: Using the Ellingham equation to obtain driving forces.
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Using the O-nomographic scale on the Ellingham diagram of Fig. 6.2 we can
find the peq

O2
to be very close to 10−24 atm at 1000 ◦C. Plugging this into equa-

tion 6.18 we obtain ∆G = −97.5 kJ/mol. The third method is what I refer to
as “direct read.” This is illustrated on Fig. 6.5. We always draw the arrow at
constant temperature from the applied condition to the equilibrium condition,
which falls on the ∆G ◦ line for the reaction in question. What we obtain is ap-
proximately −90 kJ/mol. All three values are in agreement with one another,
with a relatively small error determined by our ability to accurately extract
values from the Ellingham diagram.

To summarize, Ellingham diagrams are characterized by the following fea-
tures:

1. Curves in Ellingham diagrams for the formation of metallic oxides are
basically straight lines with a positive slope. The slope is proportional to
∆S, which is fairly constant with temperature.

2. The lower position of a metal’s line in the Ellingham diagram, the greater
the stability of its oxide. For example, the line for Al (oxidation of alu-
minum) is found to be below that for Fe (formation of Fe2O3).

3. Stability of metallic oxides decreases with increasing temperature.
Highly unstable oxides like Ag2O and HgO easily undergo thermal de-
composition.

4. A reduced substance (such as a metal), whose Gibbs free energy of for-
mation is lower on the diagram at a given temperature, will reduce an
oxide whose free energy of formation is higher on the diagram. For ex-
ample, metallic aluminum can reduce iron oxide to metallic iron, with
the aluminum itself being oxidized to aluminum oxide.

5. The greater the gap between any two lines, the greater the effectiveness
of the reducing agent corresponding to the lower line.

6.2 Two More Type I Phase Diagrams

So regardless of the method used to obtain the driving force, it is obvious that
that driving force is negative; reaction 6.16 will proceed to the right and Mn
metal will be oxidized to its oxide. This also allows us to see that we can
make a Type I phase diagram out of each "line" (or metal/oxide pair) on the
Ellingham diagram. If we consider the Mn/MnO "line" in Fig. 6.6, it follows
that a “direct read” arrow from any set of coordinates above the line (corre-
sponding oxygen pressures larger than peq

O2
) to the equilibrium Mn/MnO line

will be negative, i.e., the ∆G will be negative so the oxide will be favored. On
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the other hand, a “direct read” arrow from any set of coordinates below the
line (corresponding to oxygen pressures smaller than peq

O2
) to the equilibrium

Mn/MnO line will be positive, i.e., ∆G will be positive so the reaction of does
not proceed; the metal will be stable. Therefore manganese oxide exists ev-
erywhere above the "line" and manganese metal exists everywhere below the
"line." But there are two different forms of manganese metal and therefore two
Type I phase boundaries: one between the solid oxide and the solid metal, be-
low Tm(Mn), and another between the solid oxide and the liquid metal, above
Tm(Mn). So at Tm(Mn) we get a Type I triple point. The vertical phase bound-
ary at Tm(Mn) corresponds to the melting of Mn; solid Mn is stable to the left
and liquid Mn is stable to the right. This vertical line intersects the other two
at the triple point, where both solid and liquid Mn exist in equilibrium with
solid MnO.

Figure 6.6: An Ellingham line turned into a phase diagram. (Note: P=1 atm.)

A more useful Type I phase diagram for the laboratory, however, is a plot of
T vs. log pO2 . For example, we can convert the Ellingham-type phase dia-
gram of Fig. 6.6 into such a diagram for the Mn−MnO system by either 1)
using the O-nomographic scale over and over to estimate the values of log peq

O2

for Mn/MnO equilibrium each temperature, or 2) solving ∆G ◦ = RT ln peq
O2

for each temperature, given the thermodynamic data for reaction 6.16. A
schematic of this diagram is shown in Fig. 6.7. There are many applications
of such diagrams. For example, in Mn metal heat treating, we want to keep
the papp

O2
below the pressure of the phase boundary with MnO. For ceramists

dealing with MnO the opposite would hold true: we would want to maintain
the papp

O2
above that of the oxygen partial pressure of the phase boundary with

either solid or liquid Mn.

We can apply Gibbs’ phase rule to both kinds of phase diagrams. We know
that F = C + 2− P, however, the overall pressure is understood to be 1 atm
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Figure 6.7: Schematic T vs. log pO2 Type I phase diagram for the Mn-O system.
(Note: P = 1 atm.)

for both diagrams, so the phase rule reduces to F = C + 1− P. As opposed
to the water P− T phase diagram where the H : O ratio was everywhere 2 on
the diagram, here the O : Mn ratio differs from phase field to phase field (e.g.,
it is 1:1 for MnO but 0:1 for Mn); hence, C = 2(for Mn and O). This yields a
phase rule of F = 3− P, which means that in both the Ellingham-like Type I
phase diagram of Fig. 6.6 and in the T vs. log pO2 phase diagram of Fig. 6.7,
we have the same features as we had for the H2O P− T diagram: single-phase
areas have 2 degrees of freedom, i.e., both T and log pO2 must be specified,
two-phase situations are phase boundaries/lines of F = 1, i.e., if we fix one
variable (say T), we immediately know the other (log pO2 ) or vice versa, and
three-phase situations have zero degrees of freedom at three-line junctions or
“triple points.” As with the triple point of water, we have no control over the
Mn(s)/Mn(`)/MnO(s)triple point (unless we increase or decrease the total
pressure from 1 atm).

7 Type II (Binary) Phase Diagrams

As illustrated in Fig. 5.3 Type II phase diagrams are really quite different from
Type I phase diagrams. Instead of two thermodynamic potential axes, one
of the axes is a ratio of conjugate extensive variables. Later, when dealing
with free energy vs. composition diagrams, we will return to answering the
question of how a potential axis can be replaced by a “ratio” axis to establish
thermodynamic equilibrium. For now, suffice it to say that if we eliminate the
-VdP term in the Gibbs-Duhem equation (by holding pressure fixed) we obtain
for a two-component system:

0 = SdT + nAdµA + nBdµB (7.1)
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One can chose to fix T and one of the chemical potentials (µAorµB), which is
relatively difficult to do, or one can chose to fix T and the ratio of the moles
of B to the moles of A. Fixing nB/nA is inconvenient, however, since at one
extreme (nA → 0) the ratio goes to infinity. Instead, as you well know, we
fix the mole fraction of B, as seen in the x-axis of the common binary eutectic
phase diagram sketched schematically in Fig. 7.1. The following sections deal
with how we can estimate each type of phase boundary (liquidus, solidus,
solvus) in Type II phase diagrams from the simple solution thermodynamic
models you already know (Raoultian, Henrian, Regular), as long as we make
some simplifying assumptions. More complicated situations are better han-
dled by software dedicated to predicting phase diagrams, taking into account
more sophisticated models and behavior of individual solutions. Such soft-
ware programs are discussed briefly at the end of this text. But for now, the
following sections will build confidence in linking phase diagrams with their
underlying solution thermodynamic origins, and will hopefully cause you to
think about and question the specific models that lie behind the "black boxes"
of modern phase diagram algorithms.

0 1

solidus

so
lvu

s

liquid
us

liquidus

solvus

sol
idu
s

T

= liquid
  solution

Figure 7.1: Binary eutectic with lines labeled.

7.1 Estimating Liquidus Lines on a Binary Eutectic with Neg-
ligible Solid Solution

To simplify our prediction of liquidus behavior, let’s assume there to be negli-
gible solid solubility and that the liquid is ideal or Raoultian. The former as-
sumption is reflected in Fig. 7.2 by the notations, “A” and “B,” denoting nearly
pure solid A and B, and `s denoting a liquid solution. Of course, we know from
solution thermodynamics that there is no such thing as a perfectly pure solid.
The assumption of liquid ideality just means that the activity of each compo-
nent in the liquid is approximately equal to its mole fraction (ai = Xi). Given
these two assumptions, it is fairly straightforward to estimate the liquidus line
for a "negligible solid solubility" system. Consider the situation in Fig. 7.2:
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``A" +``B"

``A" + 

 

 T

XB

Figure 7.2: An ideal liquid in equilibrium with “pure” solid A.

Thermodynamically, the equilibrium of essentially pure solid A and the ideal
liquid solution at the temperature shown in Fig. 7.2 can be expressed by the
equality of their chemical potentials, as shown in equation 7.2:

µ◦A(s) = µA(`) (7.2)

where µo
A(s) is the standard state chemical potential of pure solid A. From

solution thermodynamics we know that the chemical potential in a solution
(in this case, the liquid solution) is related to the chemical potential in the pure
state by equation 7.3:

µi = µo
i + RT ln ai (7.3)

We also know that the activity of the liquid can be replaced by its mole fraction
(ideal solution). This leads to equation 7.4:

µ◦A(s) ' µ◦A(`) + RT ln XA(`) (7.4)

Rearranging, we obtain equation :

− RT ln XA(`) ' µ◦A(`)− µ◦A(s) (7.5)

But the right side of equation 7.5 is simply the ∆Gm of melting of component
A per mole, which we know to be ∆Hm − T∆Sm. At the melting point (Tm)
we know that ∆Gm = 0, such that ∆Hm = Tm∆Sm or ∆Sm = ∆Hm/Tm.
However, the temperature of equilibrium in Fig. 7.2 is not the melting tem-
perature. Modern software packages can account for changes in enthalpy and
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entropy for pure liquid and solid A at different temperatures. But we can at
least make an estimate of what might happen by employing a further simpli-
fication, and assume that the enthalpy of melting is approximately constant
and does not change significantly with temperature. This is often referred to
as the “∆cp ≈ 0” approximation, namely that the difference in heat capacities
between pure solid A and pure liquid A is negligible such that the enthalpy of
melting is approximately temperature-independent. This gives the following
equation 7.6:

∆Gm = ∆Hm − T∆Sm ' ∆Hm − T
(

∆Hm

Tm

)
' ∆Hm

[
1− T

Tm

]
(7.6)

By plugging this into equation 7.5 we arrive at equation 7.7:

− RT ln XA(`) ' ∆Hm(A)

[
1− T

Tm(A)

]
(7.7)

which is a rough estimate of the point on the liquidus curve in Fig. 7.2. In
fact, we can solve the same equation for any temperature, starting with the
melting temperature Tm(A), for which the right side of equation 7.7 is zero.
This requires that the mole fraction of A in the liquid be unity, i.e., XA(`) = 1
or pure A, corresponding to the top of the liquidus in diagram 7.2. As we de-
crease the input temperature, the right side of the equation becomes increas-
ingly positive, corresponding to smaller and smaller fractional values of X(`)
decreasing from unity to go along with the steady reduction in the liquidus
temperature, as shown schematically in Fig. 7.2. By writing the corresponding
equation for the B-liquidus at the other side of the phase diagram, again as-
suming negligible solid solution and ideal liquid behavior, we obtain equation
7.8:

− RT ln XB(`) ' ∆Hm(B)
[

1− T
Tm(B)

]
(7.8)

Both liquidus lines (actually curves) are captured schematically in Fig. 7.3.
They fall away from the pure end-members, A and B, and can be extended far
beyond the horizontal line shown on the figure. The horizontal line is where
the two liquidus curves intersect. At this point, the same liquid solution is in
equilibrium with both solids A and B, and equations 7.7 and 7.8 are simulta-
neously satisfied. According to the phase rule, there are three phases in equi-
librium and there are no degrees of freedom. We have arrived at an “invariant
point,” which you know well as a binary eutectic.
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Figure 7.3: Negligible solid solubility binary eutectic diagram.

Let’s pause for a moment to consider a couple of things about the behavior
we have just described. First of all, the falling liquidus lines are examples
of “freezing point lowering.” This important phenomenon is used to advan-
tage on icy streets by applying salt, which lowers the freezing point of ice. Of
course, this requires that the ice melt and the liquid dissolve some salt as com-
ponent “B” in Fig. 7.2. Upon refreezing, however, the liquidus (first occurrence
of solid water) is not reached until a significantly lower temperature. Further-
more, when we drop the temperature still lower, we enter a two-phase region
where ice is in equilibrium with liquid salt solution, a mixture we commonly
refer to as “slush.”

Another good example of “freezing point lowering” is in the manufacture
of Portland cement by the process of “klinkering.” There are two com-
pounds produced by this process, (CaO)2SiO2 or “C2S” in “cement speak”
and (CaO)3SiO2 or “C3S”. These compounds, when pulverized to powders
and mixed with water, react to form the so-called C− S−H gel (“H” for H2O
or OH), the “glue” that upon “hardening” holds everything together in mor-
tar (Portland cement plus sand) and concrete (Portland cement plus sand plus
“aggregate”/crushed rock).

What does this have to do with “freezing point lowering”? Well, with a rare ex-
ception in the dessicated regions of Israel, C2S and C3S do not occur in nature.
If they did, they would spontaneously react with any water to form C− S−H
gel. By the way, if you ever have a concrete sidewalk or driveway poured,
don’t let it “dry,” which is a common (and disastrous!) misconception. Ce-
ment “hydration”/hardening actually consumes water, so once initial “set”
has taken place, gently hose is down (or cover it with plastic) to keep it from
drying out, which can lead to ruinous surface cracking.

The point here is that C2S and C3S are man-made compounds, and their manu-
facture depends upon “freezing point lowering.” Both compounds have melt-
ing points in excess of 2000 ◦C, higher than just about any low-cost “refrac-
tories” (the high-melting ceramics used to line furnaces and kilns). But with
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certain “fluxing agents,” for example, Fe2O3 and Al2O3, the liquidus drops
dramatically to the 1350 ◦C to 1450 ◦C range. Since this is now at least a ternary
system (CaO, SiO2, Al2O3), we will come back to the phase diagram when con-
sidering Type III phase diagrams. For now it is enough to know that in enor-
mous, gradually-sloped rotary kilns (pronounced “kills”) the length of football
fields, C2S and C3S “balls” (referred to by the German word, “klinker”) tum-
ble in their quasi-equilibrium liquid. Imagine an overall composition midway
between “A” (C2S/C3S) and the eutectic composition in Fig. 7.2, but at the
temperature indicated by the horizontal dashed line (a roughly 50:50 com-
bination of solid and liquid would result). The klinker “balls” that emerge
from the lower end of a cement kiln (both in terms of height and temperature),
when cooled, pulverized, and ground to the consistency of fine flour become
what we refer to as “Portland cement.” This process is only possible owing to
“freezing point lowering.” By the way, Portland cement is a very important
man-made material. Every year, approximately one ton of concrete is poured
per capita in the developed and developing countries of the world!

One last point can be made regarding the the origin of the name “eutectic,”
whose Greek origins refer to “easy melting.” In the binary eutectic diagram
of Fig. 7.3, the liquidus lines fall away from the A and B end-members to the
eutectic point, which is therefore the lowest-melting composition in the entire
A-B system. We refer to the composition as the “eutectic” or easy-melting
composition.

7.2 Estimating Liquidus and Solidus Lines for a Binary Iso-
morphous System

In the previous example we were dealing with a continuous liquid solution,
but negligible solid solution. But what happens if both liquid and solid so-
lutions are continuous across the A-B phase diagram? An example of such a
phase diagram is shown schematically in Fig. 7.4, where the upper line is the
liquidus and the lower line is the solidus. This is a very unique situation that
only happens if the end-member solids obey certain requirements, as put forth
in the well-known Hume-Rothery rules: 1) the two solids must have the same
crystal structure, 2) the two species should have similar electronegativities,
and 3) their atomic radii must not differ by more than 15 percent. Thermody-
namically speaking, the enthalpies of mixing should be nearly the same for the
liquid solution as for the solid solution, or ∆HM

ls ' ∆HM
ss . For our estimation

of liquidus and solidus lines we will assume both enthalpies of solution to be
zero, or that both solutions are ideal or Raoultian.

Let’s start with the two-phase equilibrium between liquid solution and solid
solution as shown in Fig. 7.4 and as expressed by equation 7.9:
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Figure 7.4: Binary isomorphous phase diagram.

µA(`) = µA(s) (7.9)

However, as per equation 7.3 we can replace each side of equation 7.9 with the
appropriate µ◦A + RT ln aA term, giving us equation :

µ◦A(`) + RT ln aA(`) = µ◦A(s) + RT ln aA(s) (7.10)

Rearranging this equation and substituting mole fractions in place of activities
(we are assuming both solutions to be ideal), we obtain equation 7.11:

RT ln
XA(s)
XA(`)

= µ◦A(`)− µ◦A(s) (7.11)

The right side of this equation is the free energy of melting per mole of pure
A, which we previously approximated by equation 7.6. Making the same sim-
plifying approximation and rearranging, we obtain equation 7.12:

RT ln
XA(s)
XA(`)

' ∆Hm(A)

[
1− T

Tm(A)

]
(7.12)

This equation only gives us the ratio of mole fractions of component A at a
given equilibrium temperature. Fortunately, an analogous equation can be
derived for component B:
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RT ln
XB(s)
XB(`)

' ∆Hm(B)
[

1− T
Tm(B)

]
(7.13)

For each given temperature, we can solve for each ratio in equations 7.12 and
7.13. If we let the two ratios be γ = XA(s)/XA(`) and δ = XB(s)/XB(`), and
remind ourselves of the fact that the mole fractions must sum to unity for each
solution (XA(s) + XB(s) = 1; XA(`) + XB(`) = 1), we can show that:

δ =
XB(s)
XB(`)

=
1− XA(s)
1− XA(`)

=
1− γXA(`)

1− XA(`)
(7.14)

from which the mole fraction of A on the liquidus can be obtained, namely
XA(`) = (1− δ) / (γ− δ). The mole fraction of A on the solidus can then be
obtained from the ratio γ . Of course, to plot rather in terms of the mole frac-
tion of B, one need only employ the XA + XB = 1 relations for each solution.

This example shows how the binary isomorphous diagram can be estimated
for an A-B system, given only the two melting points and the enthalpies of
melting. The process above need only be repeated systematically between
the melting points of the two end-members to arrive at a diagram like the
schematic in Fig. 7.4.

Before the development of chemical vapor deposition, currently employed
to purify silicon to transistor-grade levels (impurities at parts per billion!), a
method called "zone-refining" was used to clean up crystalline ingots of sil-
icon. The idea can be understood from the binary isomorphous diagram of
Fig. 7.4. Let component "B" be silicon. If we melt silicon with an impurity
content at the left end of the equilibrium line in the figure, it can be seen that
the solid crystallizing from the melt is significantly cleaner. Suppose we could
isolate this cleaner solid. If we could repeat the process with this solid, melting
it and crystallizing it, the composition of the solid would move progressively
to the right, toward higher purity silicon. In fact, this was accomplished by
repeated passes of a localized heater along the length of a cylindrical silicon
crystal held at nearly its melting point. The "molten zone" was held in place
by surface tension and it concentrated impurities and took them along for the
ride. This happened to impurities with a positive "distribution coefficient," or
k = X(s)/X(`) > 1 as in Fig. 7.4. Impurities with a negative distribution coef-
ficient went the opposite direction and were left behind. Either way, with each
pass of the "molten zone" the central portion of the crystalline ingot became
more and more pure, as the impurities were dragged/left behind at the ends,
which were cut off and discarded.
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7.3 Estimating Solvus Lines

It is rare when a system satisfies the conditions for a continuous solid solu-
tion. Instead, we see phase separation into two solids at low temperatures as
on the schematic binary eutectic diagram of Fig. 7.1. These can be entirely
different crystal structures as in Fig. 7.1, described as phase α and phase β.
Or they can be the same crystal structure, but phase-separation into phases
α1 and α2 occurs at low temperature. The latter behavior can be described by
the regular solution model you learned about in solution thermodynamics. In
the following development, let’s assume that the entropy of mixing is solely
“configurational,” namely that it consists of only the ideal entropy of mixing
in equation 7.15:

∆SM = ∆SM,id = −R [XA ln XA + XB ln XB] (7.15)

Now, for the excess free energy of mixing, let’s assume the symmetrical en-
thalpy of mixing for a Regular solution as in equation 7.16:

Gxs = ∆HM = ΩXAXB (7.16)

where Ω is known as the “interaction parameter.” It describes how A and
B interact upon dissolving in one another. For example, the type of phase
separation we will describe requires significantly large positive values of Ω,
which raises the free energy of mixing, especially in the middle of the solution
(XA ≈ XB). The overall free energy of mixing is the sum of equation 7.15 and
7.16:

∆GM = ∆HM − T∆SM,id = ΩXAXB + RT [XA ln XA + XB ln XB] (7.17)

Let’s take the first derivative of this equation with respect to XB:

(
∂∆GM

∂XB

)
= Ω(XA − XB) + RT (ln XB − ln XA) (7.18)

Remember that dXA = −dXB when differentiating. It turns out that this is the
equation describing the phase boundaries of the dome-shaped solvus at any
temperature in Fig. 7.5. We can find additional useful information by taking
the second and third derivatives of equation 7.17. The second derivative is:
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(
∂2∆GM

∂X2
B

)
= −2Ω + RT

[
1

XA
+

1
XB

]
(7.19)

Figure 7.5: Simple solvus and free energy of mixing curve for the Regular solution
model.

This equation also has special significance, namely the second derivative
marks the inflection points in the ∆GM vs composition curve of Fig. 7.5. Out-
side of each inflection point, marked with a square, the second derivative is
positive (the curve is concave up) whereas in the middle the second derivative
is negative (the curve is concave down). You will discuss in later materials
science and engineering coursework the importance of these "spinodes," espe-
cially with respect to a process known as “spinodal decomposition.”

To arrive at useful forms of both derivative functions, we need to take yet
another derivative. It turns out that at the very top of the solvus in Fig. 7.5 all
three derivatives are zero. The third derivative of equation 7.17 is:

(
∂3∆GM

∂X3
B

)
= RT

[
1

X2
A
− 1

X2
B

]
(7.20)

Now we can begin to put all the derivatives to good use. For the third deriva-
tive to be zero requires that XA = XB = 0.5. This tells us that the top of the
solvus is at the equimolar composition as shown in Fig. 7.5. But the second
derivative is also zero at the top of the solvus. For equation 7.19 to be zero
requires that 2Ω/RT = 1/XA + 1/XB = 1/0.5 + 1/0.5 = 4 or Ω = 2RT. We
refer to this as the "critical" temperature, Tcr, such that Tcr = Ω/2R. This is an
important relationship. Given the critical temperature or top of the solvus in
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Fig. 7.5, we can estimate the interaction parameter. Or given the interaction
parameter, we can estimate the top of the solvus. Now let’s plug these results
into the first derivative equation 7.18, also setting it equal to zero:

− ln XA + ln XB = ln
XB

XA
=

Ω
RT

(XB − XA) =
2RTcr

RT
(XB − XA) (7.21)

or more simply:

ln
XB

XA
=

2Tcr

T
(XB − XA) (7.22)

There are two solutions (phase boundaries) to this equation. For example, if
we chose a temperature 80% of the critical temperature or T/Tcr = 0.8 the two
solutions are at XB = 0.145 and XB = 0.855, the latter being the symmetrical
solution (XA = 0.145). In the lower diagram of Fig. 7.5 the lowest free energy
situation between the two phase boundaries is to strike out along the dashed
line, meaning an assemblage of two separate phases rather than a continuous
solid solution, which is at higher free energies. It is actually easier to isolate
T in equation 7.22 and solve for it by plugging in a composition. To obtain
the following equation, remember that XA = 1 − XB such that XB − XA =
XB − (1− XB) = 2XB − 1.

T =
2Tcr(2XB − 1)

ln
(

XB
1−XB

) (7.23)

Again, don’t forget the two solutions at each temperature; the second XB so-
lution is the value of XA for the first solution. To find the "spinodes," we need
to set the second derivative equal to zero. The quantity (1/XA + 1/XB) on
the right side of equation 7.19 can be replaced by (XB + XA) /XAXB, which
is simply (1/XAXB). For the second derivative to be zero requires that
2Ω/RT = (1/XA + 1/XB) or:

2
Ω
RT

= 2
2RTcr

RT
=

4Tcr

T
=

1
XAXB

(7.24)

Inverting both sides of this equation yields:

T
4Tcr

= XAXB = (1− XB)XB = XB − X2
B (7.25)
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This turns out to be a simple quadratic function, which can be readily solved
for composition:

XB =
1±

√
1− 4( T

4Tcr
)

2
=

1±
√

1−
(

T
Tcr

)
2

(7.26)

Again, there are two solutions at every temperature. For example, at 0.8Tcr the
two solutions are XB =0.276 and XB =0.724. There is much more to spinodes
and spinodal decomposition than these very simplified equations, as you will
discover in higher level materials coursework.

7.4 Activity vs. Composition Plots

Although computer programs are able to do a far better job predicting the liq-
uidus, solidus and solvus lines on Type II or “binary” phase diagrams, the
previous three sections illustrate how far we can get with some very simple
models and assumptions. In that same vein, we now turn to how thermody-
namic activity varies with composition in the very phase diagrams considered
thus far.

7.4.1 Binary Isomorphous Systems

Consider the binary isomorphous phase diagram in Fig. 7.6. As above, we
will consider both liquid and solid solutions to behave “ideally,” meaning that
they each follow Raoult’s Law (ai = Xi). At the melting point of B, Tm(B), the
activity vs. composition plot is very simple, as shown to the right. The line
follows Raoult’s Law, hence the “RL” label. Since pure liquid B and pure solid
B are in equilibrium at Tm(B), the plot will be the same regardless of which we
chose to be the “standard state” at that temperature.

However, consider a temperature midway between the two melting temper-
atures (T*), as depicted in Fig. 7.6. It makes sense to choose pure solid B as
the standard state, since we are well below the melting point of B. The plot
immediately below the phase diagram shows how the activity changes with
composition. We always start with the phase that is in the same state as the
standard state. In this case we begin at the a◦B(s) = 1 point (top right) and be-
gin working backwards down the dashed Raoult’s Law line until we reach the
two-phase equilibrium between liquid solution and solid solution. In a two-
component system at fixed temperature and pressure the degrees of freedom
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Figure 7.6: Activity vs. composition plots for an ideal binary isomorphous system.

are 2- P, or zero in the two-phase region. This requires that both chemical po-
tential and thermodynamic activity be constant in this region, marked “EQ”
for equilibrium. The leftmost regime is seemingly straightforward, since we
know that thermodynamic activity must go to zero at zero composition. But
this region is also labeled “RL,” yet the line drawn is far from the dashed line
for Raoult’s Law. The reason is that we are now dealing with a liquid solution
on a plot for which the standard state is pure B solid. In fact, if we extrapolate
Raoult’s Law in the liquid solution all the way to the right side of the activity
plot, we obtain the activity of pure liquid B (if it could be obtained at this tem-
perature) with respect to (“WRT”) pure solid B being the standard state and
having unit activity.

In the bottommost activity plot, we have chosen pure liquid B to be the stan-
dard state, having unit activity. But here we must start our activity plot in the
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regime where liquid exists, which is on the left side of the phase diagram in
Fig. 7.6. We know that the activity must be zero at XB = 0, so (0,0) is our
starting point. Since we have assumed a Raoultian liquid, the activity follows
Raoult’s Law (“RL”) until the two-phase equilibrium (“EQ”) between liquid
and solid solutions, where the activity is constant. The rightmost region is also
labeled “RL” for Raoult’s Law, but is again far from the dashed Raoult’s Law
line. Again, the reason is that we are now dealing with a solid solution on a
plot for which the standard state is pure B liquid (if it could be obtained at
this temperature). By fitting a line from the (0,0) point through the rightmost
circled point of the two-phase equilibrium and continuing it to the right side
of the diagram, we obtain the activity of pure solid B with respect to (“WRT”)
pure liquid B being the standard state at T*. It can be shown that the ratio of
a◦B(`)/a◦B(s) is the same for the two diagrams. Furthermore, it is determined
by the free energy of melting or fusion of component B, as we will now show.

At the two-phase equilibrium between liquid solution and solid solution, we
can write the following relationships between chemical potential and activity.
For the solid we get equation 7.27:

µB(s) = µ◦B(s) + RT ln
aB(s)
a◦B(s)

(7.27)

and for the liquid we get equation 7.28:

µB(`) = µ◦B(`) + RT ln
aB(`)

a◦B(`)
(7.28)

Until now, we have always assumed the standard state activity to be unity,
namely a◦i = 1 such that ai/a◦i = ai. However, now we can make a choice as to
which standard state we set equal to unity. If we consider the two-phase equi-
librium in Fig. 7.6, where µB(s) = µB(`) and aB(s) = aB(`), we can subtract
equation 7.28 from equation 7.27 to obtain equation 7.29:

0 = µ◦B(s)− µ◦B(`) + RT ln
a◦B(`)
a◦B(s)

(7.29)

Recognizing that µ◦B(`)− µ◦B(s) is the free energy of melting per mole of pure
B or ∆Gm(B), we can use the same approximation as in Eq. 7.6, namely that
∆cp ≈ 0 or ∆Hm(B) is not a function of temperature to obtain equation 7.30:

RT ln
a◦B(`)
a◦B(s)

' ∆Hm(B)
[

1− T
Tm(B)

]
(7.30)
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This provides the explanation for how the activity vs. composition plots be-
have in Fig. 7.6. At T = Tm(B) the right side of equation 7.30 is zero; the two
standard state activities are the same (a◦B(s) = a◦B(`) = 1). However, at other
temperatures, we have the choice of which standard state activity we set equal
to unity, hence the two diagrams for the temperature T*. If we divide both
sides of equation 7.30 by RT and exponentiate, we find that at a fixed temper-
ature less than Tm(B) (e.g., T*) the activity ratio a◦B(`)/a◦B(s) is a constant and
is greater than unity, given that the right side of equation 7.30 is now positive.
If we set a◦B(s) = 1, it follows that the projected activity of pure liquid B (if
it could exist at T*) would have an activity greater than unity. On the other
hand, if we set a◦B(`) = 1 it follows that the projected activity of pure solid B
will have a value less than unity, as on the lower diagram of Fig. 7.6. It should
be stressed, however, that Raoult’s Law is really aB = XBa◦B. When dealing
with the same “phase” (liquid or solid solution) as the standard state, it is un-
derstood that a◦B = 1 and the “RL” line will fall on the dashed line in Fig. 7.6.
However, when dealing with the opposite “phase” (liquid or solid solution)
from the standard state, Raoult’s Law will still be a line, but its slope will be
governed by the activity ratio a◦B(`)/a◦B(s). In the lower two activity plots of
Fig. 7.6, we draw a line from the origin to or through the point at which we
know the activity relative to the opposing standard state scale. In the bottom
diagram, this linear projection ends at the activity of pure B solid with respect
to pure B liquid having unit activity.

7.4.2 Binary Eutectic Systems with Dilute Solid Solutions

We can also draw schematic activity vs. composition diagrams for many bi-
nary eutectic systems by making the simplifying assumption that the solid
solutions are "dilute" solutions. A dilute solution is one for which the solute
(the minor component) behaves in a Henry’s Law fashion and the solvent (the
majority or "host" component) behaves in a Raoult’s Law fashion. In fact, it
can be proven that if the solute is Henrian, the solvent must be Raoultian. In a
dilute solution, the solute (B) atoms are only surrounded by A atoms. It makes
sense that the activity coefficient (γB) in the general equation 7.31:

aB = γBXB (7.31)

will not vary with composition over the "dilute" regime until it begins to en-
counter other B atoms in its surroundings, giving us Henry’s Law (equation
7.32):

aB = γBXB; γB 6= f (XB) (7.32)
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Let’s find out what this requires of the solvent, component A. Since γ
′
B is a

constant, it follows that d ln aB = d ln XB. But consider a version of the Gibbs-
Duhem equation 7.33:

XAdµA + XBdµB = XARTd ln aA + XBRTd ln aB = 0 (7.33)

Dividing out the "RT" term and rearranging gives us equation 7.34, where we
employ our knowledge of the solute behavior (d ln aB = d ln XB) to replace
d ln aB on the right by d ln XB:

d ln aA = − XB

XA
d ln aB = − XB

XA
d ln XB (7.34)

But, of course, d ln XB = dXB/XB, dXB = −dXA and dXA/XA = d ln XA such
that equation 7.34 becomes equation 7.35:

d ln aA = d ln XA (7.35)

If we integrate both sides of this equation, we obtain equation 7.36:

aA = constXA (7.36)

However, by definition, the activity of A must be unity when XA = 1, requir-
ing that the integration constant be unity, or aA = XA, which is Raoult’s Law.
This means that over the composition range that the solute behaves in a Hen-
rian fashion, the solvent behaves in a Raoultian fashion. This will greatly aid
us in sketching activity vs. composition plots. For the sake of simplicity, we
will also make the simplifying assumption that the liquid is an ideal solution.

Fig. 7.7 is a binary eutectic system with limited solid solubility; we will as-
sume "dilute" behavior. As with the binary isomorphous phase diagram, at the
melting point of B it follows that both standard state activities are unity so the
activity-composition plot on the right is quite straightforward. The activity of
B follows Raoult’s Law across the diagram. Similarly, at the temperature T1 the
behavior is quite similar to what we saw with the binary isomorphous phase
diagram. We have the choice of B two standard states: solid and liquid. In each
diagram we have a two-phase equilibrium ("EQ") separating two Raoult’s Law
lines (one for the liquid and one for the solvent of the "dilute" solution on the
right) and the ratio of a◦B(`)/a◦B(s) is a constant. If we assume further that the

42



7.4 Activity vs. Composition Plots 7 TYPE II PHASE DIAGRAMS

enthalpy of melting of pure B is roughly temperature-independent, we can in-
voke equation 7.30 to estimate the ratio, given the melting temperature and
melting enthalpy of B.

0 1

0 1

0 1

T

Tm(B) @Tm(B)

RL

RL

RL
RL

RL

EQ

EQ

Figure 7.7: Binary eutectic with limited solid solution. Activity vs. composition
plots.

At temperature T2 the situation is a bit more complicated, as depicted in Fig.
7.8. If we chose solid B as the standard state, we would begin on the right of
the diagram and follow the dashed line for Raoult’s Law (B being the ideal sol-
vent) down to the phase boundary of the two-phase regime, where the activity
would be constant owing to equilibrium "EQ" between liquid solution and the
β solid solution. The third line is marked "RL" for Raoult’s Law, since we have
assumed that the liquid solution behaves this way. The reason that this "RL"
line lies above the dashed line is that this is Raoult’s Law in the liquid solution
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with respect to pure solid B having unit activity. To obtain this line, simply
draw a line from the origin through the leftmost point of the previous "EQ"
situation. The extrapolation of this line to the right side of the diagram would
give the activity of pure liquid B (if it could be obtained at this temperature)
with respect to pure solid B. Continuing to the left on the plot, we have yet
another two-phase equilibrium (between liquid solution and the α solid solu-
tion) and a horizontal "EQ" situation. The final regime is strictly in the α phase,
for which the B-component is the dilute solute, hence Henry’s Law ("HL") is
obeyed.
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Figure 7.8: Binary eutectic with limited solid solution. More activity vs. composi-
tion plots.

But we have another choice of standard state that can be made, namely pure
B liquid, shown in the bottom diagram of Fig. 7.8. As before, we must begin
where the phase in question is in the same state as the standard state (liquid).
So we start in the very middle of the diagram where liquid solution exists
by itself. The activity of B must fall on the standard Raoult’s law aB = XB
dashed line as shown. At each end of this “RL” line segment we encounter
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two-phase equilibria between liquid solution and α solid solution on the left,
and between liquid solution and β solid solution on the right. These are the
two horizontal segments marked “EQ” on the plot. The final segment on the
left brings the activity to zero at the origin of the plot. This segment is marked
“HL” for Henry’s Law, since B is the “dilute” solute in the α solid solution.
For the final segment on the right, we know that B is the solvent in the β solid
solution, and should behave according to Raoult’s Law as marked on the dia-
gram. However, this is Raoult’s law in the solid solution with respect to pure
liquid B being the standard state. Therefore the segment falls on a lower line
extrapolated from the origin through the activity at the rightmost point of the
two-phase liquid solution-β equilibrium (“EQ”). Where it strikes the right axis
of the plot corresponds to the activity of pure solid B with respect to pure liq-
uid B having unit activity. As with the binary isomorphous example, the ratio
of a◦B(`)/a◦B(s) in the two lower plots must be the same. Again, if we assume
that the enthalpy of melting of pure B is roughly temperature-independent, we
can invoke equation 7.30 to estimate the ratio, given the melting temperature
and melting enthalpy of component B.

Below the eutectic temperature we are only dealing with solid solutions, so the
situation is quite straightforward. The aB − XB plot to the right of the phase
diagram in Fig. 7.8 shows how the activity of B varies with composition. We
start by defining pure solid B as the standard state. Since B is the solvent in the
β solid solution, the plot follows Raoult’s Law until the two-phase equilibrium
between the α and β solutions, the long horizontal segment marked “EQ” in
the diagram. The third and final segment takes the activity of B to zero at the
origin. Since B is the “dilute” solute in the α phase, this segment is marked
“HL” for Henry’s Law.

7.5 Schematic Free Energy vs. Composition Diagrams

In order to compare the free energies of two or more phases in Type II phase
diagrams, we need to plot absolute free energies rather than the free energy
change upon mixing (∆GM) as in Fig. 7.5. Before working with such diagrams,
however, we need to have two more thermodynamic “tools” in our toolbox.
The first deals with determining the chemical potentials at a given composition
from free energy vs. composition curves, and the second has to do with how
free energy curves approach the y-axes (G-axes) at either end of such diagrams.

7.5.1 Method of Tangential Intercepts

In Fig. 7.9 is a schematic diagram of absolute free energy vs. composition of
a continuous solution in the A-B system. This could be a liquid solution or a
solid solution. The total free energy is given by equation 7.37:

46



7.5 Free Energy vs. Comp. 7 TYPE II PHASE DIAGRAMS

G

(RUN)

Figure 7.9: Schematic diagram of free energy vs. composition of a continuous
solution.

G′ = nAµA + nBµB (7.37)

If we divide both sides by (nA + nB) we arrive at the free energy per mole of
solution or equation 7.38:

G = XAµA + XBµB (7.38)

Taking the total differential, we obtain equation 7.39:

dG = XAdµA + µAdXA + XBdµB + µBdXB (7.39)

However, from the Gibbs-Duhem equation (per mole of solution) at constant
temperature and pressure in equation 7.33 we have equation 7.40:

0 = XAdµA + XBdµB (7.40)

Now let’s subtract equation 7.40 from equation 7.39 to obtain equation 7.41:

dG = µAdXA + µBdXB = (µA − µB)dXA (7.41)

since dXB = −dXA. If we multiply both sides of equation 7.41 by XB/dXA we
obtain equation 7.42:
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XB
dG

dXA
= XBµA − XBµB (7.42)

Now let’s add equations 7.38 and 7.42 to obtain equation 7.43:

G + XB
dG

dXA
= µA(XA + XB) = µA (7.43)

By analogy, we can derive a similar equation for the chemical potential of B as
equation 7.44:

G + XA
dG
dXB

= µB(XA + XB) = µB (7.44)

These are very important equations. For example, equation 7.44 tells us that if
we take the slope of the G vs. XB curve at any point (e.g., X

′
Ain Fig. 7.9) and

place the corresponding line on the diagram, the right intercept will be the
chemical potential of B at that particular composition (µB at X

′
A). This follows

from the left side of equation 7.44. The sum of the absolute value of G at that
composition plus the product of the mole fraction of A (marked as "run" on the
diagram) and the slope dG/dXB (marked "rise/run" on the diagram) yields µB
at that composition. Similarly, at the left end of this tangent line will be the
chemical potential of component A at that same composition.

This procedure is often referred to as the “method of tangential intercepts.” It
is important for several reasons: 1) It conclusively proves that we can fix two
chemical potentials by fixing the ratio of two conjugate extensive variables,
in this case the ratio of nB/nA or rather the mole fraction, nB/(nA + nB). 2)
Given a specific G vs. XB curve, we can determine the chemical potentials at
any composition. 3) Since we know the chemical potential of the pure end-
members A (µ◦A) and B (µ◦B), namely the extreme ends of each G vs. XB curve,
we can also know the activity at any composition using the µi = µ◦i + RT ln ai
relationship. 4) Finally, if we have two phases in equilibrium, they must share
the same common tangent and intercepts so that the chemical potentials and
activities are the same in both phases. We will illustrate this when we draw
schematic free energy vs. composition curves for actual phase diagrams (be-
low).
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7.5.2 Terminal Slopes on Free Energy vs. Composition Plots

It can be shown that the terminal slopes on a free energy vs. composition plot
should be infinitely negative as XB → 0 and infinitely positive as XB → 1.
Let’s begin with the regular solution model of equation 7.17:

∆GM = ∆HM − T∆SM,id = ΩXAXB + RT [XA ln XA + XB ln XB] (7.45)

The first derivative of this equation with respect to XB gives us equation 7.46:

∂GM

∂XB
= Ω(XA − XB) + RT [− ln XA + ln XB] (7.46)

In the limit that XB → 0 (XA → 1 ) the derivative becomes negative infinity
and in the opposite limit where XB → 1 (XA → 0 ) the derivative becomes
positive infinity. These hold true regardless of the size of the interaction pa-
rameter Ω. What this means is that in any free energy vs. composition plots
we sketch, the terminal slopes must be −∞ at the left and +∞ at the right.

7.5.3 Schematic Free Energy vs. Composition Curves for a Binary Isomor-
phous System

Given these tools, we can sketch schematic free energy vs. composition curves
for specific phase diagrams. In Fig. 7.10 are three such plots for three different
temperatures in the A-B binary isomorphous system. Temperature T1 is above
the melting point of component B and the liquid solution has the lowest free
energy at all compositions compared to the solid solution. The situation at the
melting point of B would be essentially the same, with the curve for the liquid
solution being everywhere below that of the solid solution with the exception
of the composition, XB = 1, where the two curves would meet. The situation
is reversed at temperature T3. This temperature is below the melting point
of component A and the solid solution now has the lowest free energy at all
compositions compared to the liquid solution. The situation at the melting
point of A would be essentially the same, with the curve for the solid solution
being everywhere below that of the liquid solution with the exception of the
composition, XB = 0, where the two curves would meet.

At temperature T2, however, the two curves overlap in such a way that the
liquid solution has the lowest free energy on the left side of the phase diagram

49



7.5 Free Energy vs. Comp. 7 TYPE II PHASE DIAGRAMS
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Figure 7.10: Schematic free energy vs. composition curves for a binary isomor-
phous system.

and the solid solution has the lowest free energy on the right side of the phase
diagram. Between the two phase boundaries, however, the lowest free energy
situation can be found on the “common tangent” or dashed line between the
two curves. In other words, the equilibrium situation is an assemblage of the
two solutions, liquid and solid. In fact, any combination of composition and
temperature inside the “lens” of the phase diagram will have a microstruc-
ture consisting of a combination of liquid solution and solid solution, whose
compositions are determined by the ends of the horizontal “tie line” for the
temperature in question, as shown for T2 in the phase diagram.
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7.5.4 Schematic Free Energy vs. Composition Plots for Binary Eutectic Di-
agrams

When dealing with a binary eutectic phase diagram, we have to consider the
thermodynamic interaction of three phases: the liquid solution (ls) and two
solid solutions. When the α solid solution on the A side of the diagram and the
β solid solution on the B side of the diagram have different crystal structures,
as in Fig. 7.11, there will be three distinct free energy vs. composition curves
at each temperature.

T

G

G

Figure 7.11: Schematic free energy vs. composition curves for a binary eutectic
system with distinct phases α and β.

The temperature T1 is above the eutectic temperature. In the middle of the
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phase diagram the liquid solution (ls) has the lowest free energy. But beyond
the liquidus curves to left and right we have two-phase equilibria between
liquid solution and one of the solid solutions: α solid solution on the left and
β solid solution on the right. The lowest free energy situation in each case is
along the respective line of common tangency, as shown. In these two-phase
regions, the chemical potentials can be found at the extremes of the associated
common tangent line. Beyond the solidus lines to the left and right, we have
either α solid solution by itself (XA → 1) or β solid solution by itself (XB → 1).
In each case, the lowest free energy situation is the curve for that phase by
itself (α or β).

On the other hand, the temperature T2 is below the eutectic temperature. The
free energy vs. compostion curve for the liquid solution lies everywhere above
those of the two solid solutions. The lowest free energy situation is either a sin-
gle solid solution by itself, namely α solid solution or β solid solution on the
left and right ends of the phase diagram, respectively, or a microstructure in-
corporating both α and β solid solutions in the middle of the phase diagram.
Their equilibrium is reflected in the common tangent line between their free
energy vs. composition curves in the diagram to the right of the phase dia-
gram.

At the eutectic temperature all three phases (ls, α, β) are in equilibrium. This
is reflected in the free energy vs. composition curves for all three phases shar-
ing the same common tangent line at Teut, hence the chemical potentials and
thermodynamic activities are the same in all three phases. Only at the left
and right extremes of the phase diagram do we have α solid solution by it-
self (XA → 1) or β solid solution by itself (XB → 1). The solidus and solvus
lines intersect the horizontal eutectic line at the maximum solubilities (of B in α
and of A in β), at least for this phase diagram. Any composition between these
points will exhibit a three-phase microstructure involving differing amounts of
α solid solution, liquid solution, and β solid solution, depending upon overall
composition.

There is another way, however, to realize a binary eutectic phase diagram sim-
ilar to that in Fig. 7.11. Such a diagram and its associated free energy vs.
composition curves are shown in Fig. 7.12.

In this case, the solid solution on either side of the phase diagram is essentially
the same solid solution with the same crystal structure. However, owing to
interaction between the A and B atoms, the solid solution is prone to phase-
separation. We described this previously, making use of the Regular solution
model with a positive interaction parameter Ω. Temperature T2 is below the
eutectic temperature. As shown in the diagram to the right, the free energy
vs. composition curve for the liquid solution lies everywhere above that of
the solid solution. However, the free energy vs. composition curve for the
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solid solution is consistent with phase separation into two solid solutions, ss1
and ss2. At the eutectic temperature, all three "phases" share the same com-
mon tangent line. The solidus and solvus lines intersect the horizontal eutectic
line at the maximum solubilities (of B in ss1 and of A in ss2). Any composi-
tion between these points will exhibit a three-phase microstructure involving
differing amounts of ss1 solid soution, liquid solution, and ss2 solid solution,
depending upon overall composition. The temperature T1 lies above the eu-
tectic temperature. In the middle of the phase diagram the liquid solution (ls)
has the lowest free energy. But beyond the liquidus curves to left and right we
have two-phase equilibria between liquid solution and either ss1 or ss2. The
lowest free energy situation in each case is along the respective line of common
tangency, as shown. In these two-phase regions, the chemical potentials can
be found at the extremes of the associated common tangent line. Beyond the
solidus lines to the left and right, the lowest energy situation is the curve for
solid solution by itself, either ss1 on the left or ss2 on the right.

7.6 Regular Solution Predictions

Pelton and Thompson showed what could be done by just employing the Reg-
ular solution model for both liquid and solid solutions [1]. The resulting set of
diagrams is given in Fig. 7.13.

The phase diagram toward the middle of Fig. 7.13 (row 3, column 3) can be eas-
ily recognized as corresponding to a binary isomorphous system, for which the
interaction parameters for both solutions (liquid, solid) are equal. In this case,
it is assumed that the interaction parameters are both zero, Ωls = Ωss = 0. In
other words, both solutions are taken to be ideal or Raoultian. Note what hap-
pens as we stay in the same column (Ωls = 0) but moving upward, the value
of the interaction parameter for the solid solution is made progressively more
and more positive. We obtain the conventional binary eutectic phase diagram,
first with limited solid solubility (Ωss = 15 kJ·mol−1) and then with negligi-
ble solid solubility (Ωss = 30 kJ·mol−1). The behavior at the top-right of Fig.
7.13 is particularly distinctive. This is referred to as “monotectic” behavior. If
we dramatically increase the interaction parameter of the liquid solution (to
+20 or +30 kJ·mole−1), we can produce phase-separation in the liquid, i.e., the
coexistence of two liquid solutions. Such behavior is employed in the manu-
facture of a low-cost, high-silica glass called Vycor (by the Corning Company).
Glass bodies are made out of borosilicate glass, which then phase-separates
into two interconnected phases. The one with lower silica content is leached
out by acid at room temperature, leaving the silica-rich phase, which is then
densified at elevated temperature into an essentially dense silica body.
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7.7 Another Category of Type II Phase Diagrams: Oxygen Par-
tial Pressure vs. Composition

Just as we saw with Type I phase diagrams, there is more than one kind of
phase diagram within the Type II category. In the case of Type I diagrams
we became aware of several kinds, namely P vs. T, chemical potential vs. T
(both Ellingham-type and log pO2 vs. T), and chemical potential vs. chemical
potential (stability or predominance area diagrams). For Type II diagrams we
have thus far only treated T vs. mole fraction diagrams, but there are definitely
other kinds. Fig. 7.14 shows a schematic log pO2 vs. mole fraction diagram.
Note that both the total pressure (1 atm) and temperature (1000 K) had to be
fixed (C+2 becomes C+0 in the phase rule) in order to result in a 2-dimensional
phase diagram for this three-component A-B-O system, namely, F=C+0-P or
F=3-P.

At first glance, this would seem to be a T vs. mole fraction phase diagram
for a binary isomorphous system as in Fig. 7.4, which it closely resembles.
However, this is not the case. In a T-X binary isomorphous phase diagram the
two phases in equilibrium at the “lens” are liquid solution (prevails at higher
temperature) and solid solution (prevails at lower temperature). In Fig. 7.14
the two phases in equilibrium are an oxide AO-BO solid solution (prevails at
higher pO2 ) and an alloy A-B solid solution (prevails at lower pO2 ). The x-axis
is the mole fraction of B in either phase, namely XB/(XA + XB), which trans-
lates into XBO/(XAO + XBO) in the oxide solid solution (see the dual x-axis in
Fig. 7.14). Both solutions are 1) solid and 2) continuous. So this is an oxidation
phase diagram. The peq

O2
values at either end of the “lens” correspond the point

of oxidation of pure metal to pure oxide, either A to AO (on the left) or B to
BO (on the right). Since the interpretation of all phase diagrams within a given
Type is the same, the “lens” corresponds to two-phase equilibrium between an
oxide solid solution (ceramists never refer to solid solutions as “alloys!”) and
an alloy solid solution, as at the ends of the tie-line at the selected pO2 in the
phase diagram.

In fact, we can actually simulate the phase diagram in Fig. 7.14. Of course, this
is an extremely unique situation, involving continuous solid solutions of both
phases. This would mean that Hume-Rothery rules would need to be satisfied
for both solid solutions. For our simulation, we will assume that both solid
solutions behave ideally, i.e., they behave according to Raoult’s law such that
aA = XA and aB = XB in the alloy and aAO = XAO and aBO = XBO in the oxide
solid solution. We begin by writing the oxidation reaction for component A as
equation 7.47:

2A(s) + O2(g)
 2AO(s) (7.47)
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We can write the equilibrium relationship for this reaction as follows in equa-
tion 7.48:

K1 = exp(−∆G◦1 /RT) =
a2

AO
a2

A pO2

(7.48)

We can evaluate the equilibrium constant K1 in one of two ways. First, we
can find the value of ∆G◦1 at 1000 K from the Ellingham diagram in Fig. 6.2.
Second, we can use the pO2 nomographic scale on the Ellingham diagram to
solve the following equilibrium equation :

K1 =
a2

AO
a2

A pO2

=
12

12 peq(A/AO)
O2

(7.49)

We are dealing here exclusively with the point at the leftmost end of the “lens”
in Fig. 7.14, where essentially pure A metal is in equilibrium with pure AO

oxide. The value of peq(A/AO)
O2

can be established by drawing a line from
the O-fulcrum through the 1000 K intersection of the A/AO line to the O-
nomographic scale on the Ellingham diagram of Fig. 6.2. A similar process
can be carried out at the right side of the “lens” in Fig. 7.14 involving the
oxidation reaction for component B as per equation 7.50:

2B(s) + O2(g)
 2BO(s) (7.50)

yielding an analogous equilibrium relationship as described by equation 7.51:

K2 = exp(−∆G◦2 /RT) =
a2

BO
a2

B pO2

=
12

12 peq(B/BO)
O2

(7.51)

As for the A/AO equilibrium, we can establish the value of K2 from either the
∆G◦2 value at 1000K from the Ellingham diagram, or alternatively the value of

peq(B/BO)
O2

by drawing a line from the O-fulcrum through the 1000 K intersec-
tion of the B/BO line to the O-nomographic scale on the Ellingham diagram
of Fig. 6.2.

This gives us the two endpoints of the “lens,” but how can we establish the
phase boundaries of the “lens” for, say, a given pO2 value as illustrated by
the tie line in Fig. 7.14? This can be accomplished by recognizing that both
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equilibrium relationships of equations 7.49 and 7.51 must also hold for every

pO2 value between the extrema (peq(A/AO)
O2

and peq(B/BO)
O2

). Furthermore, the
situation is simplified by our assumption of Raoultian behavior for each solid
solution. We can therefore write two equilibrium expressions 7.52 and 7.53:

K1 =
a2

AO
a2

A pO2

=
X2

AO
X2

A pO2

(7.52)

K2 =
a2

BO
a2

B pO2

=
X2

BO
X2

B pO2

(7.53)

Taking into account that XA +XB = 1 and XAO +XBO = 1,we can divide equa-
tion 7.53 by equation 7.52 to eliminate the unknown pO2 to arrive at equation
7.54:

K2

K1
=

X2
BOX2

A

X2
BX2

AO
=

(1− XAO)
2X2

A
(1− XA)2X2

AO
(7.54)

Taking the square root of both sides and rearranging, we obtain equation 7.55:

(1− XAO)

XAO
=

(
K2

K1

)1/2 (1− XA)

XA
(7.55)

Since at each temperature, including 1000 K, the ratio K2/K1 is a constant, we
can solve equation 7.55 for a unique value of XAO for each inputted value
of XA. We can then plug the values of XA and XAO into equation 7.52 to
solve for the corresponding value of pO2 . By varying the value of XA, we
can solve for individual tie-lines (log pO2,XA, XAO). Once again, XB = 1− XA
and XBO = 1−XAO. Intrepreting the phase diagram in Fig. 7.14 is straightfor-
ward. In each of the single-phase regions there are two degrees of freedom, i.e.,
to establish thermodynamic equilibrium (in addition to fixing overall pressure
(1 atm) and temperature (1000 K), one would have to fix the overall composi-
tion (B/A ratio) and the oxygen partial pressure). Inside the "lens" however,
there is a single degree of freedom. If we fix the oxygen partial pressure, both
phases’ compositions are fixed. Alternatively, we need only fix one composi-
tion of the two phases in equilibrium, say XB, and the composition of the other
phase, XBO, plus the oxygen partial pressure are thereby also fixed.
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G

G

Figure 7.12: Schematic free energy vs. composition curves for a binary eutectic
system with two solid solutions of the same crystal structure.
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Figure 7.13: Predicted phase diagrams vs. regular solution interaction parameters
(after Pelton and Thompson).
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Figure 7.14: Schematic log pO2 vs. mole fraction Type II phase diagram for the
A-B-O system at fixed temperature and pressure.
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8 Type III (Ternary) Phase Diagrams

As we begin to introduce Type III phase diagrams, it is useful to compare and
contrast their appearance with that of Type I and Type II phase diagrams as
schematically represented in Fig. 8.1.

Figure 8.1: Schematic comparison of Type I, Type II and Type III phase diagrams.

Type I diagrams are distinctive in their absence of tie-lines. Areas are always
single-phase regions, and lines are always phase boundaries between two ad-
jacent phases. Type II diagrams are distinctive because of their having tie-lines
perpendicular to the “thermodynamic potential” (φi) axis. The dashed lines
are usually not drawn as in the Type II diagram of Fig. 8.1; but they are un-
derstood. In fact, since we can always draw another tie-line between any ad-
jacent pair of tie-lines, there is an infinite array of tie-lines within the three
two-phase regions on the diagram. However, when these tie-lines converge
to unique three-phase (F=O) invariancies, these are represented as solid lines
perpendicular to the φi-axis. For example, we are quite familiar with the hori-
zontal invariant lines in T vs. mole fraction eutectic (as in Fig. 7.1) or eutectoid
diagrams (see Fig. 4.2). So there are two different “areas” in Type II diagrams:
single-phase regions (α, β, γ) and two-phase regions consisting of an infinite
array of parallel tie-lines perpendicular to the φ-axis (α+ β, α+ γ, γ+ β). Type
III diagrams are distinctive owing to the presence of tie-triangles involving
three phases in equilibrium (α, β, and γ in Fig. 8.1). They are also distinc-
tive in that tie-lines need neither be parallel nor perpendicular to any axis, as
shown in Fig. 8.1. In contrast with Type II diagrams, tie-lines for two-phase
equilibria are typically drawn. However, once again since we can always find
another tie-line between any adjacent pair of tie-lines, there is an infinite ar-
ray of tie-lines within the two-phase regions on the diagram. Furthermore, as
these converge to the sides of unique three-phase equilibrium triangles, these
solid lines become very important, representing the terminal compositions of
the two phases in equilibrium with that of the third. So lines are either phase
boundaries of single-phase regions (can be curved) or the straight line sides of
tie-triangles. As can be seen, open “areas” can either be single-phase regions
(α, β, γ) or tie-triangles. These tie-triangles are usually referred to as “compat-
ibility” triangles, meaning that the terminal compositions of the three phases
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are “compatible” and do not react with one another.

Various axis schemes have been employed for Type III phase diagrams, as il-
lustrated in Fig. 8.2.

A B

C

20%

40%

60%

80%

A  

 

A
B

C1

1

Dilute
Solutions

Figure 8.2: Axis schemes for Type III phase diagrams.

The strictly Qi/Qk vs. Qj/Qk scheme at the top-left finds limited use in the lit-
erature, but can be useful for representing phase equilibria in dilute solutions.
The reason that this representation is not practicable for full-scale diagrams
has to do with the loci of the end-members B and C on the diagram. Com-
ponent A lies at the origin, however pure B and pure C exist at nB/nA and
nC/nA values of inifinity on their respective axes. The mole fraction C vs.
mole fraction B diagram at the top-right corrects this problem. Solutions to
the overall mole fraction equation, XA + XB + XC = 1, exist only within the
dashed region. Again, this axis scheme has found limited use in the literature.
The near-universal axis scheme used by materials scientists and engineers in-
volves collapsing the diagram at the upper right of Fig. 8.2 into an equilateral
triangle as shown in the bottom diagram of the Fig.. Since this axis scheme
was developed by J. Willard Gibbs of Gibbs free energy fame, it is usually re-
ferred to as a Gibbs phase triangle. The mole fraction of a given component is
read from equally-spaced lines drawn parallel to the opposing side of the dia-
gram, as shown for component C in Fig. 8.2. Comparable lines can be drawn
parallel to the other two sides of the diagram, to establish the mole fractions
of components A and B for a specific composition.

8.1 The Ternary Lever Rule

The Gibbs phase triangle axis scheme actually is a specific case of the ternary
lever rule. This is represented for a more general three-phase (α, β, γ) equilib-
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rium in Fig. 8.3.

X

A

B

C

Figure 8.3: The ternary lever rule.

The ternary lever rule is applicable to all tie-triangles, and not just equilateral
ones. The best approach is to employ a ruler to measure the length of line
segments in the specific triangle. For example, take the composition marked
by the “X” in Fig. 8.3. The fraction of the α phase, f α is the length of the
line segment marked AX divided by the entire length of the line drawn from
the β− γ side of the tie triangle through the overall composition “X” to the α
vertex. Similarly, the fractions of the β and γ phases can be determined from
their relative line lengths, so we have:

f α = AX
Aα

f β = BX
Bβ

f γ = CX
Cγ

(8.1)

The three fractions sum to unity. It can be readily seen that when this scheme
is applied to an equilateral triangle, we obtain the axis scheme associated
with Gibbs’ phase triangle. We will employ the ternary lever rule quite fre-
quently when dealing with so-called “horizontal sections” and crystallization
sequences in so-called “liquidus projection” diagrams.

8.2 Dealing with an Additional Degree of Freedom

It can be easily demonstrated that we need 3-dimensions to do justice to Type
III or “ternary” phase diagrams. Fig. 8.4 shows such a schematic three-
dimensional phase diagram for the system A-B-C with negligible solid sol-
ubility.
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A

B

C

A

B

C

E

A C

B

E
 

Figure 8.4: Schematic 3-D phase diagram for the A-B-C system with negligible
solid solution.

Since there are three components (C=3), even if pressure is fixed at 1 atm such
that (C+2) becomes (C+1), the phase rule will be F=4-P. This means that we
need three axes to fully represent the phase equilibria: temperature (T), and
two of the three mole fractions in the equation, XA + XB + XC = 1, e.g., the
mole fraction of component A (XA) plus the mole fraction of B (XB), hence the
3-D diagram in Fig. 8.4 with temperature (T) as the vertical axis.

The major features of this diagram are the three “mountain peaks” known as
“primary phase fields” in phase diagram parlance, which meet at three “val-
leys” or liquidus phase boundaries that descend from the “passes” (think of
“Donner Pass”) at the binary eutectics on the bounding binary eutectic phase
diagrams into the interior of the ternary diagram until all three valleys con-
verge at the ternary eutectic (think of “Jackson Hole”).

8.3 Liquidus Projection Diagrams

This is all very visual, but we tend to be “flat-landers,” preferring 2-
dimensional representations. One way to achieve 3-D perspective on a 2-D
diagram is by projection, as in the bottom of Fig. 8.4. This is referred to as a
"liquidus projection diagram." To capture all the 3-D information, however, the
projection needs to include liquidus "isotherms" or lines of constant liquidus
temperature, as shown in Fig. 8.5 for the NaCl-NaF-NaI system. One can
think of such diagrams as being like topographic maps, which contain "con-
tour lines" of constant altitude. We will return to the “mountain/valley/hole”
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analogy and use these isotherms to advantage when we discuss "isothermal
sections" (below). Note that C=3 (NaCl, NaF, NaI) rather than C=4, owing to
the fact that, as with the H2O Type I phase diagram (C=1), the ratios of Na:Cl,
NaF, and Na:I remain fixed.

Figure 8.5: Liquidus projection diagram for the NaCl-NaF-NaI system (diagram
5908 from Phase Diagrams for Ceramists).

We can actually produce a schematic liquidus projection diagram based upon
some thermodynamic data (melting points and enthalpies of melting for the
end members) and some simple assumptions, namely that there is negligi-
ble solid solubility and that the liquid solution behaves in a Raoultian fash-
ion. These assumptions are not far from reality for many ceramic systems,
for which fulfillment of the Hume Rothery rules (same crystal structure, same
cation valence, similar electronegativities, similar cation radii) is fairly rare.
We previously found an equation for the liquidus line in a binary system with
negligible solid solubility and an ideal liquid (equation 7.7). We employed two
such equations to establish the two liquidus curves and their intersection (the
binary eutectic) in Fig. 7.3. By combining each of the three possible pairs of
equations, we can produce the bounding binary eutectic phase diagrams in
Fig. 8.4. However, if we assume the ternary liquid solution to be Raoultian,
namely ai = Xi for each component, there is no reason that the same proce-
dure cannot be extended into the ternary diagram. First, we write the three
equations for each of the three components:

− RT ln XA(`) ' ∆Hm(A)

[
1− T

Tm(A)

]
(8.2)
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− RT ln XB(`) ' ∆Hm(B)
[

1− T
Tm(B)

]
(8.3)

− RT ln XC(`) ' ∆Hm(C)
[

1− T
Tm(C)

]
(8.4)

The procedure for predicting the liquidus projection diagram using these three
equations is outlined in Fig. 8.6.

A B

C

A B

C

900

800

700
650
600

80
0 70
0

65
0

60
0

Figure 8.6: Procedure for calculating a liquidus projection diagram for a negligible
solid solution ternary.

Solutions for each equation are lines parallel to the opposite boundary of the
phase diagram, i.e., at constant mole fraction of that particular component. For
example, at 900K the solution to equation 8.4 is a constant mole fraction of C
as shown (XC = const). Similarly, at 800K the solution to equation 8.2 is a con-
stant mole fraction of A as shown (XA = const). Note that if we keep ramping
down the temperature the two solutions meet at the temperature of 700K, the
binary eutectic temperature for the A-C system. But the solutions can extend
to smaller mole fractions as well. This is the genesis of the solid line extending
into the interior of the phase diagram from the binary eutectic (see solutions
for 650K and 600K). This would require smaller value of XA and XC than at
the binary eutectic, where XA + XC = 1. However, this is not a problem since
we are now dealing with ternary compositions, such that XA + XB + XC = 1.
We are now following the A plus C plus liquid phase boundary (“valley”) de-
scending from the “pass” of the A-C binary eutectic into the interior of the
phase diagram as in Fig. 8.6. If we do the same procedure for the A plus B
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plus liquid phase boundary and the B plus C plus liquid phase boundary, the
three valleys will meet at the ternary eutectic point (“E” in Fig. 8.4).

The resulting “liquidus projection diagram” should look something like the
bottom diagram in Fig. 8.6. There are obvious differences between our pre-
dicted phase diagram (Fig. 8.6) and an actual liquidus projection diagram (see
Fig. 8.5). The main difference is that predicted isotherms are straight and par-
allel to one another and parallel to the opposing side of the triangle. This is an
automatic result of the ideal liquid solution assumption underlyling equations
8.2 through 8.4. In the real phase diagram, although the isotherms are approx-
imately parallel, they are curved and deviate substantially from being parallel
to the opposing side of the triangle. This simply makes us challenge our as-
sumptions underlying our predictions. First, the liquid solution may be far
from Raoultian and second, there may actually be appreciable solid solubility.

8.4 Hummel’s Rules for Ternary Systems with Negligible
Solid Solubility

We can relax the Raoultian liquid specification in our considerations, but if
a given ternary phase diagram involves negligible solid solubility it can be
shown that very specific rules hold for the interpretation of liquidus projection
diagrams. Once we have laid the foundation for interpretation of such Type III
phase diagrams, we can turn to more sophisticated simulation engines/algo-
rithms to help us interpret ternary diagrams with appreciable solid solubility.
For examples, many metal alloy ternaries fall into the latter category.

In order to introduce Hummel’s Rules (adapted from F. A. Hummel’s class
notes and his textbook, Phase Equilibria in Ceramic Systems, Marcel Dekker,
1984), we need to develop a binary analogy. We need to think carefully about
how to generate both eutectic and peritectic behavior in the absence of solid
solubility. Conventional binary eutectic and peritectic phase diagrams are dis-
played in Fig. 8.7. We have already described the “easy melting” character of
eutectic systems, but the melting/heating reactions are quite different between
eutectic and peritectic diagrams. We can describe them as follows in equations
8.5 and 8.6:

α + β
 liquid solution (8.5)

α
 β + liquid solution (8.6)
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In these reactions, the forward arrow stands for heating and the reverse arrow
stands for cooling. From the Greek, “peritectic” means “covered melting.”
This can be seen in that the “primary phase field” of β (the two-phase area
where only β is in equilibrium with liquid) overhangs or covers the α phase.
Another way to describe peritectic melting is that the α phase melts to a liquid
of a different composition and another solid (β). This is referred to as “incon-
gruent melting,” as described below.

A B

?
"A" + "B"

T

A B

T

A B

T

"A"+ +"B"

+

Figure 8.7: Schematic binary eutectic and peritectic phase diagrams, and what
happens as solid solubility goes to zero.

But now let’s imagine what happens on both diagrams as the solid solubili-
ties, namely the solubility of B in α and the solubility of A in β, go to zero.
This works for the eutectic system (as in Fig. 7.3), where the quotation marks
around “A” and “B” remind us that thermodynamically speaking, there is no
such thing as an absolutely “pure” solid. In contrast, note that it is impossible
to preserve peritectic behavior when solid solubilities go to zero in a simple
binary peritectic diagram of Fig. 8.7. However, we can introduce peritectic
behavior in a negligible solid solubility system by introducing an intermediate
compound (AB), as shown in Fig. 8.8. The diagram on the left has an interme-
diate compound (AB), which melts “congruently,” namely it melts to a liquid
of identical composition, AB. In fact, we can recognize that this diagram can
be thought of as consisting of two side-by-side eutectic diagrams: A-AB and
AB-B. However, this cannot be said of the diagram on the right. It similarly
has an intermediate compound (AB), however in this case the compound (AB)
melts “incongruently” to a liquid of a quite different composition (the “peri-
tectic” composition at p1) and a different solid (“B”). It obeys the peritectic
melting behavior described by equation 8.6. The apparatus beneath the two
phase diagrams will be discussed shortly.

As we introduce each of Hummel’s Rules we will, 1) make reference to the
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A AB B A AB B

T

A + AB AB + B A + AB AB + B

A AB B A AB B

A AB B A AB B
PPFs

I-D YIEW

COMPATS

Figure 8.8: Binary analogues for eutectic and peritectic melting involving a
congruetly-melting (left) and incongruently-melting (right) intermediate com-
pound AB.

binary analogues in Fig. 8.8, and 2) try to place each rule on a firm solution
thermodynamic footing. Before we proceed, however, we need to introduce
and define common phase diagram terminology. The first term is “primary
phase,” referring to the first phase to crystallize from the melt on cooling, thus
the major or “primary” solid phase in the developing microstructure. For ex-
ample, in the dual-eutectic diagram on the left side of Fig. 8.8 between the
pure A end-member and the binary eutectic, e1, A is the “primary phase.” The
second term is closely related. A “primary phase field” is the area in a liquidus
projection diagram where a single (primary) phase is in equilibrium with liq-
uid. For example, in the dual-eutectic diagram on the left side of Fig. 8.8
between the two eutectic points, e1 and e2, exists a quite large “primary phase
field” for compound AB. In contrast, the primary phase field of AB is signif-
icantly compressed in the eutectic-peritectic diagram on the right side of Fig.
8.8, existing only between the eutectic (e1) and peritectic (p1) points. The third
term, “subsolidus compatibility,” requires additional explanation. First of all,
we need to understand what “subsolidus” means. On the left side of Fig. 8.9
we see a conventional binary eutectic phase diagram with limited solid sol-
ubility. The “solidus” lines are circled on the left and right and correspond
to the first appearance of liquid upon heating, or the last occurrence of liquid
upon cooling; hence “subsolidus,” meaning “below the solidus.” However,
you will see that the horizontal eutectic line is also circled. For all composi-
tions between the ends of this line (the extrema of solid solubility) the first
liquid appears on heating upon crossing this line. Conversely, upon cooling
the last liquid disappears upon cooling through this line. Therefore, the hori-
zontal eutectic line can be thought of as part of the “solidus.” If we shrink the
solid solubilities to essentially zero, we obtain the phase diagram on the right
side of Fig. 8.9. Here, “subsolidus” applies to all compositions when below
the eutectic temperature. We can now introduce two additional terms that are
valid for negligible solid solubility systems: “subsolidus compatibility join”
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and “subsolidus compatibility triangle.” A “subsolidus compatibility join” is
any line connecting two phases that are compatible, meaning that they do not
react to form other phases in the subsolidus. In Type III ternary phase dia-
grams we have both “subsolidus compatibility joins” and “subsolidus com-
patibility triangles,” the latter referring to composition triangles connecting
three compatible solid phases in equilibrium in the subsolidus. As mentioned
previously with regard to the distinctive characteristics of the various phase
diagram Types in Fig. 8.1, compatibility triangles are the hallmark of Type III
diagrams.

subsolidus

"A" + "B"

A B

T

A B

subsolidus

T

Figure 8.9: Identifying subsolidus regimes in binary eutectics with and without
appreciable solid solubility.

We can now put the analogues and the apparatus at the bottom of Fig. 8.8
to good use. Hummel’s first rule states that “liquidus surfaces always fall
away (in temperature) from the corresponding primary phase.” Thermody-
namically, we can understand this from the familiar equation 8.7, developed
for situations where the “primary phase” exhibits negligible solid solubility
and the liquid solution behaves in a Raoultian fashion.

− RT ln Xi(`) ' ∆Hm(i)
[

1− T
Tm(i)

]
(8.7)

where “i” stands for the Raoultian liquid host (A, B, AB). Starting with the
melting temperature (Tm(i)), for which the right side of equation 8.7 is zero,
requiring the mole fraction of component “i” in the liquid to be 100%, we can
see that as the temperature decreases the right side of this equation becomes
increasingly positive, requiring increasingly fractional mole fractions of “i.” In
other words, the liquidus falls away (in temperature and in composition) from
the corresponding primary phase. This can be readily seen in Fig. 8.8; in both
diagrams the liquidus in a given primary phase field always falls away from
the corresponding primary phase. This holds true even for the incongruently
melting intermediate compound, AB, in the eutectic-peritectic diagram of Fig.
8.8. Even though the primary phase field is at some distance from the AB
composition, it can be seen that the liquidus still falls away from the primary
phase (AB).
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Hummel’s second rule state that “there are as many primary phase fields as
there are primary phases that melt.” To understand this rule, let’s take an
imaginary helicopter trip up above “mount A,” “mount B” and “mount AB”
in each of the diagrams in Fig. 8.8. Looking down on each diagram, it is easy
to identify three “mountains” or primary phase fields, one for A, one for B,
and one for AB. It is true that we only see a “shoulder” of mount AB in the
eutectic-peritectic diagram on the right of Fig. 8.8. Nevertheless, the primary
phase field is visible for the AB primary phase. In each diagram, there are
three primary phase fields (PPFs) and three primary phases (A, AB, B). This
may seem overly obvious on these binary diagrams, but this rule will be a big
help when dealing with ternary liquidus projection diagrams, where primary
phase fields are areas rather than lines. The rule refers to “primary phases
that melt” for good reason. Fig. 8.10 shows an intermediate compound with
“an upper temperature limit of stability,” namely the compound AB decom-
poses into solid A and solid B well before it has the chance to melt. Above
the decomposition temperature, it is as if the system is a straightforward A-B
eutectic system. Believe it or not, it is possible for the compound AB to have a
primary phase field in a ternary A-B-C system, but this complication is beyond
the scope of the present treatment; hence the disclaimer referring to “primary
phases that melt.”

A AB B

A + AB AB + B

A + B
T

Figure 8.10: Binary system with an intermediate compound having an upper tem-
perature limit of stability.

Hummel’s third rule states that “there is a one-to-one correspondence between
liquidus invariant points and the corresponding subsolidus compatibilities.”
If we go down in temperature into the subsolidus, there are two subsolidus
compatibilities in each diagram of Fig. 8.8, namely A-AB and AB-B. In other
words, for any composition between A and the intermediate compound, AB,
in the subsolidus there will be two phases in equilibrium: A and AB. Similarly,
for any composition between AB and B in the subsolidus, there will be two
solid phases in equilibrium: AB and B. Since there are precisely two subsolidus
compatibilities in each diagram, from Hummel’s third rule we can anticipate
two invariant points. On the dual-eutectic diagram on the left side of Fig. 8.8,
there is an invariant point where the primary phase fields of A and AB meet
(e1) and one where the primary phase fields of AB and B meet (e2). On the
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eutectic-peritectic diagram to the right side of Fig. 8.8, there is an invariant
point where the primary phase fields of A and AB meet (e1) and one where
the primary phase fields of AB and B meet (p1). This rule may seem simplistic
when dealing with the uncomplicated binary diagrams in Fig. 8.8, but will be
quite powerful when dealing with a complicated ternary liquidus projection
diagram. If there are 10 subsolidus compatibility triangles, there will be pre-
cisely 10 ternary invariant points, with a one-to-one correspondence between
them.

Hummel’s fourth rule states that “invariant points inside their respective sub-
solidus compatibilities are eutectics, whereas those outside their respective
subsolidus compatibilities are peritectics.” Looking in 2-D at the two phase
diagrams in Fig. 8.8, it is quite obvious which points are eutectics and which
are peritectics. But now imagine that we are back in the helicopter hovering
above the 1-D phase diagrams (see the lines labeled “1-D view” in the appara-
tus beneath each diagram). It is clear on the left diagram that the point where
the primary phase fields of A and AB (PPFs) come together lies within the cor-
responding A-AB subsolidus compatibility (see “compats” in the apparatus).
This is therefore a eutectic. The same is true for the eutectic-peritectic diagram
on the right side of Fig. 8.8. In the case of the invariant point involving AB
and B, the situation is different between the two phase diagrams. From the
helicopter, we can see in the apparatus for the diagram on the left side of Fig.
8.8 that the point where the primary phase fields of AB and B come together
lies within the corresponding AB-B subsolidus compatibility; hence, this is a
eutectic. In contrast, the point where the primary phase fields of AB and B
come together in the diagram on the right side of Fig. 8.8 lies outside the cor-
responding AB-B subsolidus compatibility; hence, this is a peritectic. Again,
these relationships may seem quite simplistic when dealing with binary phase
diagrams, but rule no. 4 will be quite powerful when dealing with complex liq-
uidus projection diagrams. Ternary invariant points inside their correspond-
ing subsolidus compatibility triangles will be eutectics; those falling outside
their subsolidus compatibility triangles with be peritectics.

Let’s begin to illustrate the first four Hummel’s rules with regard to the liq-
uidus projection diagram in Fig. 8.11.

It may seem that this diagram is useless in the absence of primary phase field
labels and liquidus projection isotherms, but application of Hummel’s rules
will show this not to be the case. First, let’s apply rules no. 2 and 3: “there
are as many primary phase fields as there are primary phases that melt” and
“there is a one-to-one correspondence between liquidus invariant points and
the corresponding subsolidus compatibilities.” If we go around the diagram
we can count four “primary phases that melt,” namely the end-members A, B,
C, and the binary compound AB. In ternary phase space, primary phase fields
are areas. We can identify four primary phase fields in ternary space. We

70



8.4 Hummel’s Rules 8 TYPE III PHASE DIAGRAMS

C

A BAB

Figure 8.11: Liquidus projection diagram for the A-B-C system with negligible
solid solubility and an intermediate compound AB.

can make assignments beginning from the vertices (end-members) and then
dealing with any binary and ternary compounds. This is done in Fig. 8.12.

C

A BAB

A AB B

C

Figure 8.12: A-B-C liquidus projection diagram with primary phase fields labeled.

Using the third rule (“there is a one-to-one correspondence between liquidus
invariant points and the corresponding subsolidus compatibilities”) we can
now sketch in the subsolidus compatibilities. There are two ternary invariant
points (intersections of three phase boundaries or “valleys” as well as intersec-
tions of three primary phase fields or “mountains,” namely where the primary
phase fields of A, C, and AB come together and where the primary phase fields
of AB, C, and B come together). The one-to-one correspondence of Hummel’s
third rule requires that there be two subsolidus compatibility triangles: A-C-
AB and AB-C-B, as shown in Fig. 8.13.

Furthermore, Hummel’s rule no. 4 allows us to identify the nature of the
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C

A BAB

A AB B

C

Figure 8.13: A-B-C liquidus projection diagram with subsolidus compatibility tri-
angles.

ternary invariant points: “invariant points inside their respective subsolidus
compatibilities are eutectics, whereas those outside their respective subsolidus
compatibilities are peritectics.” In this case, both invariant points are in-
side their respective subsolidus compatibility triangles; hence, they are both
ternary eutectics, as labeled in Fig. 8.13. In other words, the point where the
primary phase fields of A, C, and AB converge is inside the corresponding
A-C-AB compatibility triangle, and similarly for the PPFs of AB, C, and B.

However, there is much more that can be done with a schematic liquidus pro-
jection diagram, as captured in Hummel’s fifth and sixth rules. The fifth rule,
in combination with rule no. 1, allows us to draw in “directions of falling
temperature” on all the liquidus phase boundaries or “valleys.” It states, “the
direction of falling temperature on a liquid-solid(1)-solid(2) phase boundary
is always away from the corresponding solid(1)-solid(2) join.” This follows
from what we did in predicting liquidus phase boundaries (“valleys”) in the
simple ternary eutectic phase diagram of Fig. 8.6 (assuming ideal liquid solu-
tion and negligible solid solubility). By the governing equations for two of the
components, e.g., A and C:

− RT ln XA(`) ' ∆Hm(A)

[
1− T

Tm(A)

]
(8.8)

− RT ln XC(`) ' ∆Hm(C)
[

1− T
Tm(C)

]
(8.9)

we found the phase boundary or “valley” descending from the “pass” or bi-
nary eutectic on the A-C binary into the interior of the ternary diagram and
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headed for the ternary eutectic. Fig. 8.14 shows most of the directions of
falling temperature (DFTs) for the current ternary phase diagram. For exam-
ple, beginning at the A-C binary eutectic (e1) the liquid-solid(A)-solid(C) phase
boundary “falls away” from the A-C join, which happens to be the bounding
binary. The same argument goes for all the “valleys” descending into the inte-
rior of the phase diagram from the bounding binaries. In the middle of the dia-
gram we find a special case, but rule 5 still holds: the liquid-solid(C)-solid(AB)
phase boundary falls to the left of the AB-C join toward one ternary eutectic
(E1), just as the liquid-solid(C)-solid(AB) phase boundary falls to the right of
the AB-C join toward the other ternary eutectic (E2).

C

A BAB

A AB B

C

Figure 8.14: A-B-C liquidus projection diagram with most of the directions of
falling temperature.

We are nearly finished with the phase diagram but we need to introduce the
final Hummel’s rule: No. 6. This may seem complicated at first, but it is
nicely illustrated in Fig. 8.15. Rule no. 6, also referred to as “the Alkemade
Theorem” (pronounced “awl-keh-mah-deh”) states that “a compatibility join
solid(1)-solid(2) intersected solely by its own liquid-solid(1)-solid(2) boundary
is a true binary eutectic in its own right; temperature falls to this point (a true
binary eutectic) along this join, but falls away to either side in the ternary di-
agram.” Hence, the crossing point labeled as e5 in the diagram is a “saddle
point,” with DFTs descending to it from the end points (pure A, pure AB) but
descending into the ternary on either side (also fulfilling rule no. 5).

You will note that directions of falling temperature on all the bounding bina-
ries have also been drawn in. This is in accordance with Hummel rule no.
1, “liquidus surfaces always fall away (in temperature) from the correspond-
ing primary phase.” This completes the ternary liquidus projection diagram,
but we can also sketch all the binary phase diagrams, at least schematically.
As long as we are provided no isotherms or melting temperatures of the end
members (A,B,C) or the intermediate compound (AB), only schematic dia-
grams can be sketched. So if you sketch a diagram with the melting point
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C

A BAB

A AB B

C

Figure 8.15: Completed A-B-C liquidus projection diagram and demonstration of
the Alkemade Theorem.

of C lower that that of AB, I cannot argue with you. The resulting schematics
are shown in Fig. 8.16. Note that the AB-C eutectic diagram, determined by
the Alkemade Theorem, is also represented in schematic fashion.

Since we are dealing with schematic phase diagrams, just as with the choice
of relative melting temperatures for the end-members (and compounds) the
choice of relative eutectic temperatures is also arbitrary. For example, in Fig.
8.16 the A-AB eutectic temperature is shown as being higher than for the AB-B
eutectic. Were you to sketch it in the reverse fashion I could not argue with
you, given the absence of more precise input information. However, there is
one situation that is forbidden. This is shown in Fig. 8.17, where both A-AB
and AB-B eutectics seem to have the same temperature. This is a violation
of Gibbs phase rule. For any 2-D phase diagram, Gibbs phase rule is F=3-P.
In Fig. 8.17 there are actually five phases in equilibrium: three solid phases
(A,AB,B) and two liquid solutions (the A-AB eutectic liquid and the AB-B eu-
tectic liquid). Therefore, such a representation is to be avoided.

A slightly more complicated liquidus projection diagram is given in Fig. 8.18,
which involves an incongruently melting binary compound, C2B. You are
more than welcome to take a crack at the diagram, using Hummel’s rules to
1) label all primary phase fields, 2) determine the four subsolidus compati-
bility triangles (there are four ternary invariant points), 3) label all invariant
points, both ternary and binary, 4) label directions of falling temperature on all
ternary liquid-solid(1)-solid(2) boundaries and on the bounding binaries, and
5) sketch schematics of the bounding binary phase diagrams and any other
true binary diagrams (satisfying the Alkemade Theorem) within the ternary.
There are some “quirks” to this phase diagram, whose solution is given in Fig.
8.19.
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C

A BAB

A AB B
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C + B

C
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A AB B
A + AB AB + B

T

Figure 8.16: Completed A-B-C liquidus projection diagram with schematic bound-
ing binaries and Alkemade eutectic AB-C.

The AC-AB binary is a clear solution to Hummel’s rule no. 6 (the Alkemade
Theorem). Only the liquid-solid(AC)-solid(AB) liquidus boundary crosses the
AC-AB join. Hence, the intersection point is a true binary eutectic (e6), which
is a saddle-point in the liquidus; temperature falls to this point along the AC-
AB binary (see the figure in the upper right), but falls to either side toward the
ternary eutectics (E1, E2). But what about the seemingly corresponding point
on the AB − C2B join? According to Hummel’s rule no. 1, temperature falls
away from the end members on this join, as shown. Furthermore, according
to Hummel’s rule no. 5, temperature on the liquid-solid(AB)-solid(C2B) phase
phase boundary falls away from the AB-C2B join, as shown. However, the
AB-C2B join is NOT a true binary eutectic, owing to the fact that the primary
phase field of C overlaps the AB-C2B join at the upper right. There is no way
on an AB-C2B binary eutectic to combine AB and C2B and arrive at pure C. So
the AB-C2B join is NOT a true binary eutectic phase diagram.

All this results from the peritectic behavior in the C-B binary. As shown in
the C-B phase diagram, the primary phase field of solid C overhangs the C2B
composition, requiring that C2B melt incongruently to a different solid (C) and
a liquid of a different composition (p1). This behavior persists into the ternary,
with the primary phase field of C overhanging the liquid-solid(C)-solid(C2B)
phase boundary. The two circled arrows in Fig. 8.20 showing temperature
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Figure 8.17: Dual-eutectic A-B system with a violation of Gibbs phase rule.

C

A BAB

AC

Figure 8.18: Raw A-B-C liquidus projection diagram involving incongruently
melting C2B compound.

descending from the C-B binary peritectic (p1) to the ternary peritectic (P1)
follow from Hummel’s rule no. 5: “the direction of falling temperature on a
liquid-solid(1)-solid(2) phase boundary is always away from the correspond-
ing solid(1)-solid(2) join.” In this case we have to extend the C-C2B subsolidus
compatibility join, as shown by the dotted line in Fig. 8.20, away from which
the liquid-solid(C)-solid(C2B) boundary descends from the binary peritectic to
the ternary peritectic. A final clarification has to do with the single arrow along
the liquid-solid(AC)-solid(C2B) liquidus phase boundary, between the ternary
peritectic (P1) and the ternary eutectic (E3). This satisfies Hummel’s fifth rule,
with the direction of falling temperature being away from the corresponding
AC-C2B join, which is well above it on the diagram.

8.5 Isothermal Sections

Believe it or not, the ternary phase diagrams considered thus far are actually
NOT valid Type III phase diagrams. This is owing to their 3-D character, or
at least the projection of 3-D character onto liquidus projection diagrams. We
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Figure 8.19: Completed A-B-C liquidus projection diagram of Fig. 8.18.

now turn to so-called “isothermal sections,” which are true Type III phase di-
agrams. In Fig. 8.21 we have reproduced the limited solid solubility liquidus
projection diagram for the NaCl-NaF-NaI system.

We will now derive a series of isothermal sections from this phase diagram. It
should be emphasized that 1) these are NOT schematic, but rather real phase
diagrams which, 2) are true Type III phase diagrams. The first diagram at
991oC is particularly straightforward in Fig. 8.22, being one degree C above
the melting point of the most refractory end-member (refractory is from the
French, meaning “high-melting;” NaF melts at 990◦C). The entire isothermal
section consists of a continuous liquid solution. We can return to the “moun-
tain/valley/hole” analogies and the great Noahic flood; water is above the
tops of all the mountains.

But now let’s begin to drain the water from “Jackson Hole,” bringing its level
down to 850 meters, or rather the temperature to 850oC as in Fig. 8.23. In
doing such isothermal sections, it is helpful to overlay tracing or other “see-
through” paper to trace the boundaries of the ternary and the specific “con-
tours” (isotherms). At 850 meters the water is still above the tops of “mount
NaCl” and “mount NaI.” But the top of “mount NaF is exposed. Actually,
for the diagram in Fig. 8.23 a “strip mining” analogy is probably more ap-
propriate. Imagine removing the top of the mountain down to the 850 meter
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Figure 8.20: Specifics of the A-B-C liquidus projection diagram.
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Figure 8.21: The liquidus projection diagram for the NaCl-NaF-NaI system show-
ing isotherms (diagram 5908 from Phase Diagrams for Ceramists).

(or 850oC) level (plus one centimeter as a “levee” to keep the water out). Wa-
ter would be everywhere to the south on the diagram; to the north would be
the flattened top of mount NaF. In the diagram you see dashed tie lines con-
necting various liquidus compositions around the perimeter back to the NaF
vertex. This is a result of negligible solid solubility, namely that little NaCl or
NaI tends to dissolve in solid NaF. All tie-lines radiate from the vertex. Imag-
ine a friend standing and holding a rope at the composition of “pure” NaF,
with you holding the opposite end and walking the “perimeter” or the shore-
line of the water (the 850oC isotherm) all the while keeping the rope taut. I
refer to these constructions as “waffle cone” features. But we still don’t see the
tie-triangles characteristic of Type III diagrams. This happens at lower temper-
atures, however.

For example, at 650oC in Fig. 8.24 we are well below the melting points of NaF
and NaCl, and even the very top of “mount” NaI (melts at 659.3oC) is exposed.
More importantly, the dropping water has exposed the NaCl-NaF-liquid “val-
ley” descending from the NaCl-NaF eutectic at 680.4oC. The remaining liquid
solution portion is significantly smaller. There are now three “waffle cone”
features, involving each of the primary phases in equilibrium with a range of
liquid solutions. Again, tie-lines radiate from the “pure” end-members. Re-
member, we can always draw an intermediate tie-line between any two adja-
cent tie-lines; the “waffle cone” regions consist of an infinite array of tie-lines
connecting primary phases and liquidus. More significantly, we see our first
“tie-triangle” involving solid NaCl, solid NaF, and liquid solution. As pointed
out previously, such tie-triangles are the hallmark of Type III phase diagrams.
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NaCl NaI

NaF

Figure 8.22: Isothermal section of the NaCl-NaF-NaI system at 991oC.

NaCl NaI

NaF

Figure 8.23: Isothermal section of the NaCl-NaF-NaI system at 850oC.

Let’s go further down in altitude (or rather temperature). There are no con-
tour lines at 550 meters (550oC), but we can certainly envision/approximate
them as being roughly midway between 575 meters and the 529.4 meter al-
titude of “Jackson Hole” (529.4oC). The resulting phase diagram in Fig. 8.25
has a greatly shrunken liquid solution region. There are now three “waffle
cone,” or rather “ice cream cone,” constructions involving each of the primary
phases and different small ranges of liquid solution. Dominating the diagram,
around the perimeter are three tie-triangles involving two solid phases and
three unique compositions of liquid solution. Clockwise, these are solid NaCl
plus solid NaF plus liquid solution(1), solid NaF plus solid NaI plus liquid
solution(2), and finally solid NaCl plus solid NaI plus liquid solution(3).

Let’s pause and consider the nature of these isothermal sections. Later we re-
turn to the question of microstructure, however these series of diagrams give
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NaCl NaI

NaF

Figure 8.24: Isothermal section of the NaCl-NaF-NaI system at 650◦C.

NaCl NaI

NaF

Figure 8.25: Isothermal section of the NaCl-MaF-NaI system at ~550C.

a good representation of isothermal sections which, once again, are true Type
III phase diagrams. The phase rule for a C=3 system at fixed overall pressure
and temperature, where C+2 becomes C+0, is given as F=3-P. Applying this to
Fig. 8.25, we would find that F=2 in the small liquid solution region (P=1); we
would have to specify two of the three mole fractions to establish equilibrium.
In the “ice cream cone” features P=2, so we would have one degree of free-
dom. Specifying overall composition determines which tie line we are on, and
the particular liquid solution in equilibrium with the associated solid phase.
Or given the liquid solution composition, we would know on which tie-line
the overall composition falls. Finally, in each of the tie-triangles P=3 making
F=0; all of the compositions are fixed, including that of the associated liquid
solution.
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The situation is a bit different at the ternary eutectic temperature. As we con-
tinue to go down in temperature it is apparent that the liquid solution region
in Fig. 8.25 is shrinking and approaching the “drain” (“Jackson Hole” in our
mountain/valley/hole analogy). What happens at precisely the point where
the altitude of the “hole” is reached is displayed in Fig. 8.26. At first, this
would seem to be a violation of the phase rule (F=3-P), with four phases in
equilibrium: solid(NaCl), solid(NaF), solid(NaI), and ternary eutectic liquid.
However, we do not have the luxury of selecting the temperature, in the same
way that we have no control over the altitude of Jackson Hole. The eutectic
temperature is fixed for us, meaning that we can only look it up in a handbook
(or on the published phase diagram of Fig. 8.21). We have no ability to change
it. So (C+2) does not reduce to (C+0) as for the other isothermal sections, for
which both temperature and pressure is fixed. Instead, temperature remains
a free variable such that (C+2) becomes (C+1), the “1” standing for tempera-
ture, and the phase rule becomes F=4-P. So under the unique conditions of a
ternary invariant point, we can have four phases in equilibrium.

NaCl NaI

NaF

Figure 8.26: Isothermal section of the NaCl-NaF-NaI system at the ternary eutectic
temperature of 529.4oC.

Let’s complete our isothermal section “journey” by reducing the temperature
to below the “hole” or the ternary invariant point. We are now in the sub-
solidus, and the entire phase triangle becomes one big tie-triangle involving
the three “pure” end-members in equilibrium. The temperature of 529oC is
4/10ths of a degree below the ternary eutectic temperature. There is no re-
maining liquid solution; everything has solidified. So the resulting isothermal
section in Fig. 8.27 is nearly as straightforward as the one with which we
started.
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Figure 8.27: Isothermal section of the NaCl-NaF-NaI system at 529oC.

8.6 Crystallization Paths and Microstructure Evolution

Just as with binary phase diagrams, crystallization sequences/paths that take
place during cooling in Type III (ternary) liquidus-projection diagrams play a
major role in establishing the the ultimate microstructures obtained. This is a
prime example of the processing⇐⇒microstructure chain link in the materials
science and engineering paradigm in Fig 4.1. It must be stressed that we will
be considering so-called “equilibrium” cooling sequences/liquidus paths. In
reality, microstructural evolution also depends upon cooling rates, for exam-
ple, the occurrence of dendrites (dendritic growth) treated in later materials
science and engineering coursework. Let’s begin by considering some crys-
tallization sequences in the simple binary eutectic of Fig. 8.28. This will be a
quick review of what you should have already learned in your “Intro to Mate-
rials Science and Engineering” coursework.

The sequence is particularly simple for the eutectic composition (Xeut). Above
the liquidus/eutectic we have 100% liquid solution of eutectic composition
which, by binary lever rule is 46% B and 54% A. Upon cooling through the
eutectic reaction, all the eutectic liquid is converted to the lamellar eutectic
microstructural constituent indicated by the banded regions in the bottom di-
agram on the left of Fig. 8.28. This layered microstructural constituent results
from the growth of layers being the most efficient way to separate A and B (by
diffusion at the growth front) from a solution into separate phases, as shown
schematically in Fig. 8.29.

In contrast, the crystallization sequence and liquidus “path” for the compo-
sition X′ is quite different. Above the liquidus, we have 100% liquid of the
composition X′. As we cool below the liquidus the “primary phase” to crys-
tallize from solution is B. As B is removed from the liquid solution, the liquid
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Figure 8.28: Crystallization sequences/”paths” in a simply binary eutectic phase
diagram.

becomes progressively richer in A, following the liquidus line as shown, until
it reaches the eutectic point. Since the composition (X′) is approximately half
way between the end-member B and the eutectic composition, at just above
the eutectic temperature we would have a microstructure with 50% primary B
grains and 50% liquid of eutectic composition. Now, if we somehow sieved out
the primary crystals, what would remain would be a liquid of eutectic compo-
sition, which would go through the same crystallization to lamellar eutectic
microstructural constituent as happened for Xeut. The ultimate microstructure
would consist of 50% primary B grains suspended in 50% lamellar eutectic
microstructural constituent, as shown on the bottom-right of Fig. 8.28.

Before considering crystallization sequences/liquidus paths in ternary
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Figure 8.29: Schematic growth mechanism of binary eutectic microstructural con-
stituent.

liquidus-projection diagrams, we need to learn a framework for their interpre-
tation. I refer to these as the “Crystallization Path Dicta” or “CPD,” as spelled
out in Fig. 8.31. Note the reversal of “CPD” to “DPC” in the diagram. The
C stands for “compatibility” and gives us the “D” or “destination,” namely
the ending point of the liquidus path: the ternary invariant point where the
final liquid disappears in the crystallization sequence. Since there is a one-to-
one correspondence of subsolidus compatibilities and ternary invariant points,
the “destination” will always be the ternary eutectic or peritectic correspond-
ing to the subsolidus compatibility in which the overall composition lies. In
the simple ternary eutectic phase diagram of Fig. 8.30, there is only one sub-
solidus compatibility and therefore only one invariant point. “All paths lead
to Rome,” they say. In this system, for all compositions within the A-B-C com-
patibility triangle, all paths end up the the ternary eutectic. The path taken to
get there will differ according to the overall composition.

The second letter in CPD, “P” stands for “primary phase field” and tells us the
initial “P” for “path.” If we return to the “mountain/valley/hole” analogy, our
helicopter has just dropped a skier or snowboarder on the liquidus surface at
the point marked “X.” Since essentially pure C is crystallizing from the liquid
solution, our skier’s/snowboarder’s “path” (or rather the “path” of the liq-
uid) is directly down the mountainside away from the peak, namely directly
away from “mount C.” The composition “X” was chosen so that its crystal-
lization path would intersect the ternary eutectic. If we pause just at/above
the ternary eutectic, what would be the microstructure? We would employ the
binary lever rule, since there are only two phases. On the line from C through
the original composition “X” to the eutectic point, the length marked “ fPriC”
divided by the entire length of the line would give us the fraction of primary
C grains in the microstructure (~50%), with the remainder being eutectic liq-
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uid. Once again, if we somehow sieved out the primary crystals, what would
remain would be a liquid of eutectic composition, which would go through
crystallization to ~50% lamellar eutectic microstructural constituent, this time
consisting of three layers: A plus B plus C. If we wanted to know the fractions
of phases in the lamellar eutectic, we could do the triangular lever rule at the
eutectic composition, using the entire Gibbs triangle for the calculation.

Now let’s consider the composition marked X’ on the ternary liquidus-
projection diagram of Fig. 8.30. Again, “C” for “compatibility” tells us that
we have to end up somehow at the ternary eutectic (“D”=destination). “P” for
“primary phase field” gives us the initial “P” or path, namely directly away
from “mount C” as shown in the diagram. Again, our skier/snowboarder is
headed full-tilt down the mountain directly away from its peak. This time,
however, his/her path intersects the solid(C)-solid(A)-liquid phase boundary
or “valley.” Just at this point, labeled “T ≈ TA−C−liqboundary” in the second
microstructure on the right side of Fig. 8.30, we can use the binary lever rule
to establish the microstructure. The point X’ is roughly half way between end-
member C and the solid(C)-solid(A)-liquid boundary. This means we have
~50% primary C grains and ~50% liquid of the composition at the boundary.
Here we employ the final dictum of our “CPD” dicta. The letter “D” stands for
“directions of falling temperature” and informs us of “changes in path” or the
“C” in DPC. Quite naturally, the skier/snowboarder carves to the left to follow
the valley down to the hole. What this actually means is that both C and A are
crystallizing simultaneously from the liquid, the latter as a secondary crystal-
lization product; its grains will end up smaller in size than primary phase C
grains, owing to the fact that they have had less time to nucleate and grow.
Now let’s analyze the situation at a temperature just above the ternary eutec-
tic. Since we now have three phases in equilibrium, we need to employ the
ternary lever rule of Fig. 8.3. The analysis is shown in Fig. 8.32. A dashed
triangle is drawn from end-member C to end-member A and to the eutectic
composition, on which we carry out the ternary lever rule to establish phase
fractions. Lines from each vertex of this triangle are drawn through the over-
all composition X’. The relative line lengths (divided by the total line lengths)
give us the fractions of primary C (~65%), secondary A(~16.5%), and eutectic
liquid (~18.5%). As before, if we somehow sieved out both primary and sec-
ondary crystals, what would remain would be a liquid of eutectic composition,
which would go through crystallization to lamellar eutectic microstructural
constituent. The resulting microstructure (~65% primary C, ~16.5% secondary
A, ~18.5% lamellar eutectic) is shown at the bottom right of Fig. 8.30.

8.7 Isothermal Sections of “Real” A-B-C Systems

Of course, very few actual Type III/ternary systems satisfy the assumptions
we have made thus far (for simplification), namely that the liquid solution is
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everywhere ideal and that there are essentially no solid solutions. It should be
strongly emphasized that Hummel’s rules strictly apply only to such narrowly-
constrained systems. “All bets are off!” when dealing with “real” ternary
systems, in which non-ideality of the liquid solution and significant, even sub-
stantial, solid solutions can be present. However, as we will see, all of the same
characteristic features of Type III diagrams will be present, namely 1) the pres-
ence of tie-triangles, 2) the occurrence of tie-lines that are neither parallel nor
perpendicular to any axis, and 3) open areas that can either be tie-triangles or
single-phase solutions. There are, however, important differences. In “real”
Type III isothermal sections, open areas that are not tie-triangles can also be
solid solution regions in addition to liquid solution regions, as we will show.
More importantly, “waffle cone” and “ice cream cone” regions, in which solid-
liquid tie-lines radiate from a point (pure solid), will morph into quite a variety
of quadrilateral constructions, with tie-lines connecting compositions on one
side (solid solution) to compatible compositions on the other side (liquid solu-
tions).

As you can imagine, experimental determination of even one isothermal sec-
tion can be highly time-consuming. This has led to the development of and
usage of powerful phase diagram calculation programs. Two of these are Fact-
Sage (C.R.C.T., Ecole Polytechnique de Montreal) and Thermo-Calc (Thermo-
Calc Software, McMurray, PA; Thermo-Calc Software AB, Stockholm, Swe-
den), but there are many more. We will employ Thermo-Calc to calculate both
the liquidus and one isotherm for the Sn-Pb-Bi phase diagram. But the user
should be aware that there is a lot that does not “meet the eye” when using
such high-powered “black box” programs. Behind the scenes, each such pro-
gram employs a massive database of thermodynamic parameters, including
solution thermodynamic parameters which, in certain cases (not all!) can be
far more sophisticated than the dilute solution and regular solution models
employed in this text. Truly inquisitive scientists and engineers are encour-
aged to check what is “under the hood” rather than just “kick the tires.”

The liquidus-projection phase diagram calculated by Thermo-Calc for the Sn-
Pb-Bi system is shown in Fig. 8.33. On the “surface” (no pun intended!) this
would look like just any other liquidus-projection diagram for an A-B-C Type
III system involving ideal liquid solution and negligible solid solution. But
there are big problems, which may have already occurred to you. First of all,
there are four primary phase fields, but only three end-members. Second, there
are two ternary invariant points, but seemingly only one compatibility triangle
(involving the three end-members) in the subsolidus!

Things get even more interesting if we do an isothermal section. In Fig. 8.34 we
see the isothermal section predicted by Thermo-Calc at 423.15K (150oC). Note
that the low temperature has to do with the relatively low melting points (for
metals) of Sn (231.9oC), Pb (327.5oC), and Bi (271.4oC). Again, at first glance,
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things seem to be familiar. There is a “waffle cone” structure at the Bi-vertex,
where liquid solutions of a wide range of compositions are compatible with-
/have tie-lines connecting with essentially “pure” Bi. (But the “ice cream”
seems to have melted, i.e., the liquidus boundary is convex.) Also, there is
one tie-triangle involving Sn-solid solution, Pb-solid solution, and liquid so-
lution (ls). But elsewhere this isothermal section is quite different from what
we have seen thus far. There are significant solubilities in both solid Sn (Bi is
much more soluble than Pb) and in solid Pb (both Sn and Bi are quite soluble,
with Bi being roughly twice as soluble as Sn). We also see a small solid solubil-
ity range for an intermediate compound in the Pb-Bi system. If we look at the
Pb-Bi phase diagram (not shown) we find out that the intermediate compound
is called “ε-Pb.” It is apparent in the isothermal section of Fig. 8.34 that ε-Pb
dissolves a considerable amount of Sn, but to determine the amount of excess
Bi or Pb it dissolves, we would have to consult the binary diagram to ascertain
the 150oC values in comparison with its nominal Bi/Pb stoichiometry. Any-
way, this explains the four primary phase fields and the two ternary invariant
points in the liquidus diagram of Fig. 8.33. However, the biggest differences
in the isothermal section of Fig. 8.34 are the regions of tie-lines connecting var-
ious phases in equilibrium. These turn out to be strangely-shaped quadrilat-
eral constructions bearing no resemblance to the “waffle cone” and “ice cream
cone” constructions with which we are familiar.

The most important distinction between “real” Type III systems (non-ideal liq-
uid solution, non-negligible solid solutions) and the constrained Type III sys-
tems (ideal liquid solution, negligible solid solutions) we have studied thus
far has to do with crystallization sequences/liquidus paths and microstruc-
ture evolution. For example, in a two-phase equilibrium region, the composi-
tions of the solutions at the end of tie-lines through a fixed overall composition
change with temperature. Think of the overall composition as “anchoring”
all the tie-lines, but the end-points (solution compositions) change progres-
sively and in opposite directions as temperature is lowered. A schematic rep-
resentation of this phenomenon is given in Fig. 8.35. From above, the result-
ing two paths, e.g., of liquid solution and of solid solution, would trace out
a “butterfly-shaped” or “hour glass-shaped’ construction, as in the diagram
on the right. The important “take away” point is that crystallization becomes
much more complicated. For example, liquidus paths are seldom straight lines
in “real” Type III/ternary systems, but are rather curved trajectories.

Micro structurally speaking, since the solid solution ranges change with tem-
perature, the likelihood of a process called “coring” increases. A very simpli-
fied perspective on coring can be taken from the simple binary eutectic in Fig.
8.36. This A-B-system shows significant solid solution at both ends of the dia-
gram. The diagram on the right shows a blow-up of the liquidus and α-solidus.
When a liquid of composition “X” is cooled to the liquidus, the first solid α to
precipitate from solution has a fairly high A-content, as shown. However, at

88



8.8 Examples 8 TYPE III PHASE DIAGRAMS

a much lower temperature, the equilibrium solid α phase will have a signifi-
cantly smaller A-content, if equilibrium were maintained. The problem is that
alloys are seldom cooled at rates slow enough to maintain equilibrium. That is
because, once precipitated out, a solid phase “locks up” its constituents, since
diffusion in solids is so much slower than in liquids. So what happens is that
the new α′ precipitating out will do so at a more B-rich composition. In the
schematic microstructure beneath the two phase diagrams this is represented
as a distinct layer of α′ around a core of α. In reality, there will be a gradual
shift in composition from the center outward and, in fact, this will occur by
dendritic growth. You will learn about dendrites and dendritic growth in later
materials science and engineering coursework. For now, we need only point
out that the “average” solid composition (averaging the composition of α, α′,
α′ ′, etc.) deviates from the solidus line. Since less A is being removed from the
liquid, the liquidus trajectory must also therefore deviate from the equilibrium
liquidus, as shown. All this is beyond the scope of the present text, but gives
you a good idea of what you can look forward to in upcoming microstructure-
evolution coursework. The conclusion of this discussion is that crystallization
sequences/liquidus paths in “real” Type III/ternary systems can be quite com-
plicated, along with microstructure evolution, which will also be cooling rate-
dependent. This is a good place to close the present text, by pointing out once
again the synergistic influences of both thermodynamics and kinetics in the
processing ⇒ microstructure “chain link” of the materials science and engi-
neering processing⇒microstructure⇒ properties⇒ performance paradigm.
Students interested in pursuing further the topic of the interpretation of “real”
Type III/ternary diagrams are directed to old treatises like Georg Masing’s
Ternary Systems: Introduction to the Theory of Three Component Systems [3].

8.8 Some Technologically Important Type III Phase Diagrams

We mentioned “freezing point lowering” when discussing binary (Type II)
phase diagrams. There we mentioned the klinkering of cement as one exam-
ple of major technological importance. A portion of the CaO− SiO2 −Al2O3
liquidus projection diagram is reproduced in Fig. 8.37. On the CaO− SiO2
binary diagram to the left, the incongruent melting point of C3S is given as
∼ 2050oC and the congruent melting point of C2S is given as ∼ 2130oC, which
are way too high for economical manufacturing. The dashed circle shows the
composition ranges over which so-called “Portland cement” is made by klink-
ering. I will leave it to you to apply your ternary phase diagram prowess and
decipher the lower lying ternary invariant points involving the C3S and C2S
phases.

Another technologically important application is that of “solders.” A solder
is a fusible alloy of two or more metals used to join metal parts together and
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having a melting point lower than those of the constituents or of the parts be-
ing joined. Solders are commonly used in plumbing, sheet metal joining, and
electronics. The application in electronics is of particular importance, since
solder is employed for making permanent mechanical and electrical connec-
tion of parts to the printed circuit boards on which they are mounted. Eutectic
compositions are of special interest owing to the low melting points and ab-
sence of any primary phase that could disrupt electrical contact, for example if
the joint solidifies in the so-called “pasty” (eutectic liquid plus primary phase)
state. For decades, the alloy of choice for electrical soldering was 60/40 Sn/Pb.
This is because the eutectic composition in the Sn-Pb system is 63% Sn and 37%
Pb, which melts at the lowest possible (eutectic) temperature of 188oC. On the
other hand, the Sn/Pb ratio is closer to 50/50 in plumbing solder, so chosen
because this alloy solidifies more slowly and manageably.

In recent years, however, environmental safety concerns have motivated a
steady move away from Pb-based solders owing to the recognized toxicity
of Pb in both manufacturing and recycling. In the European Union, directives
issued in 2006 prohibited the inclusion of significant Pb contents in consumer
electronics. In the U.S., there are also tax incentives for the reduction of Pb
content in consumer electronics. There are many binary and ternary (largely
eutectic) systems that have been investigated and employed as Pb-free sol-
ders. One of the most commercially successful solders to date comes from the
Sn-Ag-Cu ternary system shown in Fig. 8.38. Unfortunately, the eutectic in
question is where the primary phase fields of Sn, Ag3Sn and Cu3Sn come to-
gether, which is very near the Sn-vertex and therefore extremely difficult to see
on the full ternary. Fig. 8.39 is a blow-up of the Sn-corner showing the low-
melting eutectic composition of approximately 4 mass% silver and 1 mass%
copper (~95 mass% Sn) at 218oC. It seems appropriate to conclude our discus-
sion of ternary phase diagrams with a true Type III or Qi/Qk vs. Qj/Qk phase
diagram, in this case the mass fraction of Ag/Sn plotted vs. the mass fraction
of Cu/Sn plotted in proper Type III rectilinear fashion.
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Figure 8.30: Crystallization sequences/liquidus paths in the A-B-C simple ternary
eutectic diagram.
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Figure 8.31: Crystallization Path Dicta (CPD) for ternary liquidus projection dia-
grams with negligible solid solubility.
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A B

C

Figure 8.32: Application of the ternary phase rule to a point in the crystallization
sequence/liquidus path of composition X′ in Fig. 8.30.

Figure 8.33: Calculated liquidus projection diagram for the Sn-Pb-Bi Type III
phase diagram (by Thermo-Calc).
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Figure 8.34: Calculated 150oC isothermal section for the Sn-Pb-Bi Type III system
(by Thermo-Calc.
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Figure 8.35: Schematic representations of crystallization “paths” in a two-phase
region of a “real” Type III ternary with solid and liquid solubilities that change
with temperature.
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Figure 8.36: Schematic representation of the phenomenon of “coring” in a binary
eutectic system.

Figure 8.37: Lower portion of the CaO− SiO2 −Al2O3 liquidus projection phase
diagram (from Phase Diagrams for Ceramists, The American Ceramic Society).

94



8.8 Examples 8 TYPE III PHASE DIAGRAMS

Figure 8.38: The calculated Sn-Ag-Cu liquidus projection phase diagram (from the
NIST database).

Figure 8.39: The Sn corner of the calculated Sn-Ag-Cu liquidus projection diagram
plotted in rectilinear fashion (from the NIST database).
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9 Fick’s Laws of Diffusion

Just as there are fundamental laws governing the thermodynamics of mate-
rials, so there are basic laws governing diffusion, or how atoms/ions move
around in materials. Consider the two adjacent planes in an isotropic solid as
shown in Fig. 9.1a:

1 2

Figure 9.1: Schematic of flux between adjacent planes in an isotropic solid.

By isotropic, we mean that the diffusion rate of an impurity atom is indepen-
dent of direction. The planes are separated by the distance, α, which we will
refer to as the jump distance. Each plane has a different areal density of im-
purity atoms (# per cm2), n1 on plane 1 and n2 on plane 2. Things are simpli-
fied by assuming an isotropic solid, since we can consider jumps from plane
1 to plane 2 (along the +x axis) to be only one of six possible jump directions
(±x,±y,±z). Therefore, the number of atoms jumping from plane 1 to plane 2
during a time period δt will be equation 9.1:

#1→2 =
1
6

Γn1δt (9.1)
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where Γ is the jump frequency of an atom (#/s). Similarly, the counter jumps
from plane 2 to plane 1 during the same time period is equation 9.2:

#2→1 =
1
6

Γn2δt (9.2)

The net flow to the right through an imaginary plane midway between the two
planes, as in Fig. 9.1b, is given by subtracting equation 9.2 from equation 9.1
for equation 9.3:

net#1→2 =
1
6

Γ(n1 − n2)δt (9.3)

If we define the net flux J as the number of atoms passing through a unit cm2

area per unit time (s), we arrive at equation 9.4:

net#1→2 =
1
6

Γ(n1 − n2)δt = Jδt (9.4)

such that (see Fig. 9.1b) the flux can be written as equation 9.5:

J =
1
6

Γ(n1 − n2) (9.5)

Two immediate observations can be made from Eq. 9.5. The units of flux
are (#/cm2)/s. Furthermore, if the area concentration of the impurity is the
same on the two planes, the net flux will be zero. However, this does not
indicate a static situation; it only means that the flux to the right (J1 = 1

6 Γn1)
is the same as the flux to the left (J2 = 1

6 Γn2). In fact, each of these fluxes can
be enormous. Net zero flux only requires that their magnitudes be the same,
namely J = J1 − J2 = 0.

9.1 Fick’s First Law

Until now we have only considered area concentrations of impurities (#/cm2);
however, Fick’s Laws are given in terms of volume concentrations (#/cm3).
We can convert to volume concentrations in Fig. 9.1 by shifting the frame of
reference by one-half a jump distance to the right, as shown in Fig. 9.2:
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1 2

Figure 9.2: Converting area concentration to volume concentration.

If we consider the jump distance in centimeters, it follows that the area inside
the dashed box will be cm2 · cm = cm3. The volume concentration in this block
(c2) is the area concentration of impurities, (n2 = #/cm2), divided by the jump
distance, α = cm , or #/cm3. The net flux from plane 1 to plane 2 can therefore
be written as equation 9.6:

J =
1
6

Γ(n1 − n2) =
1
6

Γα(c1 − c2) (9.6)

Of course, concentration is seldom treated as a perfectly atomistic, plane-by-
plane level. Rather it is treated as continuous, as displayed schematically by
the dashed line in Fig. 9.3.

1 2 3 4 5 6 7 8

Figure 9.3: Converting the concentration profile to a continuous function.

If we do a Taylor series expansion about c1 and ignore higher order terms, we
obtain equation 9.7:
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c2 = c1 + α
∂c
∂x

(9.7)

However, since the “gradient” between planes 1 and 2 is given by equation
9.8:

∂c
∂x

=

(
c2 − c1

α

)
= −

(
c1 − c2

α

)
(9.8)

the concentration difference between the two planes can be expressed as equa-
tion 9.9:

(c1 − c2) = −α
∂c
∂x

(9.9)

Substituting for (c1 − c2) in equation 9.6, we find that equation 9.10 holds:

J =
1
6

Γα(c1 − c2) = −
1
6

Γα2 ∂c
∂x

(9.10)

This important equation tells us that the flux is proportional to the negative of
the concentration gradient at time t, or∇c = (∂c/∂x)t, and the proportionality
coefficient is given by equation 9.11:

D =
1
6

Γα2 (9.11)

where D is the isotropic diffusion coefficient. Since the jump frequency (Γ)
has units of #/s and the jump distance (α) has units of cm, it follows that the
diffusion coefficient will have units of cm2/s. Many times we will see diffusion
coefficients in other units, such as m2/s. Regardless, we can rewrite equation
9.10 as equation 9.12, which is the most common form of Fick’s first law of
diffusion:

J = −D
∂c
∂x

(9.12)

It should be stressed that the diffusion coefficient of equation 9.11 holds strictly
true only for isotropic solids. These include amorphous solids (glasses) and
cubic crystal structures, such as face-centered cubic (fcc), body-centered cubic
(bcc), sodium chloride (NaCl), fluorite (CaF2), etc. More complex equations
describe diffusion in non-cubic systems, e.g., hexagonal close-packed (hcp),
which are beyond the scope of the present treatment.
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9.2 Random Walk Diffusion

Above we mentioned that lots of jumps are taking place in both directions
between planes 1 and 2 in Fig. 9.1, even under a condition of zero net-flux.
Consider the diffusion coefficient of interstitial carbon in fcc γ − Fe, which
has been found experimentally to be 2.5x10−11m2/s at 1000oC. Fig. 9.4 shows
the nearest-neighbor jump distance of an interstitial on a (100) plane in the fcc
structure.

Figure 9.4: Schematic showing one interstitial jump distance in the (100) plane of
fcc γ− Fe.

The lattice parameter of γ − Fe (ao) is known to be 0.37 nm, such that the
face-diagonal is

√
2ao. The jump distance shown is half of that distance, or√

2ao/2, which would be 0.26 nm. Rearranging equation 9.11 to yield the jump
frequency, we obtain equation 9.13:

Γ =
6D
α2 =

6(2.5x10−11m2)

(0.26x10−9m)2 = 2.2x109/s (9.13)

Wow! An average interstitial carbon atom makes approximately 2.2 billion
jumps in just one second at this temperature! Yet the lattice vibrational fre-
quency (recall the Debye frequency from your thermodynamics background,
νD) is on the order of 1013/s. We can look at this frequency as the “attempt”
frequency, or how many times per second the interstitial is attempting to jump
from the original position to the new one. So only approximately 2 out of
10,000 attempts is successful at this temperature.

It is also of interest to compare how far an average interstitial atom moves
from its initial position in one second vs. the total distance of back-and-forth
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motions it makes in that same second. Consider the sketch in Fig. 9.5, where
the sphere represents the initial carbon atom position, and arrows represent
individual jumps in each of the ±x, ±y, and ±z directions. The circle with the
dot represents a jump out of the plane of the diagram and then back.

r

Figure 9.5: Schematic of random walk distance after a series of individual jumps
in an isotropic solid.

It can be seen that many of the jumps are ineffective for long-range diffu-
sion, since they are simply reversed. Nevertheless, the interstitial atom makes
steady progress away from its initial position, and the dashed line connects the
initial position with the final position after all the jumps are considered. This is
referred to as the “random walk distance” (r). Computer simulations can keep
track of both the random walk distance and the “total” distance traveled by
the impurity, taking into account the sum of all back-and-forth motions. The
“total” distance traveled is given by equation 9.14:

xtot = αΓt = (0.26x10−9m)(2.2x109/s)(1s) = 0.57m (9.14)

On the other hand, the random walk distance is given by equation 9.15:

r = α
√

Γt = (0.26x10−9m)[(2.2x109/s)(1s)]1/2 = 1.2x10−5m (9.15)

This reinforces the facts 1) that lots of jumps are taking place each second, and
2) that lots of the jumps are ineffective insofar as long-distance diffusion is
concerned. An average interstitial finds itself 12 micrometers away from its
starting point, but having traveled a staggering half a meter plus to get there!

You may see another form of the random walk equation 9.15. Plugging√
6D/Γ for α (from equation 9.11) into equation 9.15, we obtain equation 9.16:
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r =
√

6Dt = [(6(2.5x10−11m2/s)1s)]1/2 = 1.2x10−5m (9.16)

in agreement with what we obtained previously.

9.3 Steady State Diffusion

A “steady state” situation is one in which the local concentration of impurities
does not change with time, such that (∂c/∂t)x = 0 at each value of x. A good
example involves the gradual diffusion of hydrogen through the steel wall of
a pressurized gas tank, as represented schematically in Fig. 9.6.

Steel Tank
0 X

~ 0

Wall Thickness

Figure 9.6: Steady state diffusion of hydrogen through a steel tank wall.

It has been found that hydrogen dissolves to some extent in steel, maintaining
a constant surface composition on the inner surface of the tank that depends
upon the tank pressure. Since air surrounds the tank and the hydrogen con-
tent in air at ground level is less than 1 part per million, we can assume the
hydrogen content on the outside of the tank to be zero. Let the equilibrium
hydrogen content on the inner surface be cH and the wall thickness be ξ. A
steady state situation means that the hydrogen content decreases linearly with
distance from cH at the inner wall to zero at the outer wall (x = ξ). This can be
expressed mathematically as equation 9.17:

(
∂c
∂x

)
=

c(x = ξ)− c(x = 0)
ξ − 0

=
0− cH

ξ
(9.17)

Plugging this into Fick’s First Law of equation 9.12, we obtain equation 9.18:

J =
DcH

ξ
(9.18)
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The product D · cH is often called the “gas permeability,” since to be perme-
able through the solid wall the gas has to be both soluble (cH) and mobile (D).
Gas permeability is given in units of g/cm · s or kg/m · s, which reflects the
product of the diffusion coefficient (cm2/s or m2/s) and the appropriate mass
concentration (g/cm3 or kg/m3). Fortunately, the gas permeability of hydro-
gen through steel is relatively small at room temperature. Nevertheless, given
sufficient time and sufficient diffusion the internal gas pressure (and cH) will
gradually decline to yet another steady state situation. A compelling demon-
stration of this effect is the loss of helium from mylar balloons. Helium rapidly
diffuses through typical rubber balloons. However, mylar balloons have a thin
aluminum metal coating that helps to slow down helium diffusion. Neverthe-
less, helium eventually escapes causing the balloon to slowly lose buoyancy.
The situation at any point can be well described by equation 9.18.

9.4 Fick’s Second Law

The steady state example just described is an exception rather than the rule.
In virtually all other instances of diffusion, the impurity concentration at a
given point is changing with time. For such situations we will need another
diffusion law, referred to as Fick’s Second Law of diffusion. Consider the two
concentration profiles in Fig. 9.7 and what is happening at imaginary planes 1
and 2, in each case separated by the distance, ∆x.

Fluxes Fluxes

C C

X X

Figure 9.7: Two contrasting concentration profiles and the relative fluxes at two
planes separated by a distance, ∆x.

Fick’s First Law in equation 9.12 tells us that the flux is proportional to the
negative of the concentration gradient at each point. Based upon the gradient
(slope) at each plane, it can be seen that the flux across plane 1 is greater than
the flux across plane 2 in the concave-up c vs. x profile on the left, and the
opposite is true in the concave-down c vs. x profile on the right. We might
therefore expect the local concentration between the planes to increase with
time in the first situation, but decrease with time in the second. To simplify
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our discussion, let’s assume that the flux is a linear function of distance, as
shown in Fig. 9.8.

Figure 9.8: Hypothetical linear flux vs. distance relationship that might corre-
spond to the concave-up concentration profile in Fig. 9.7.

This might correspond to the first situation in Fig. 9.7. As can be seen, the flux
into the volume between the planes is greater than the flux out, so we would
expect the impurity concentration in that volume to increase with time. If we
specify an identical area, A, on each plane, we can calculate the number of
impurity atoms that are added to the volume between the two planes during
an increment of time, δt, with the following equation 9.19:

(J1 − J2)Aδt = A∆xδc (9.19)

Since the units of flux are (#/cm2)/s, when we multiply (J1 − J2) by the prod-
uct of area (A in cm2) and time increment (δt in s), we arrive at the number
of impurity atoms that are added to the volume between the planes. Since
the volume in question is just the product of A and ∆x, this amounts to an
increment in the impurity concentration (δc in #/cm3). We can use equation
9.19 to help us derive Fick’s Second Law. Let’s begin by doing a Taylor series
expansion of flux around J1 in equation 9.20:

J2 = J1 +

(
∂J
∂x

)
∆x (9.20)

again ignoring higher order terms. Rearranging equation 9.20 we obtain equa-
tion 9.21:

J1 − J2 = −
(

∂J
∂x

)
∆x (9.21)
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Inserting the right side of this equation in place of (J1 − J2) in equation 9.19
and canceling the A and ∆x terms on both sides of the resulting equation yields
equation :

−
(

∂J
∂x

)
δt = δc (9.22)

In the limit that the increments (δt, δc) go to zero, it follows that equation 9.22
can be expressed as equation 9.23:

(
∂c
∂t

)
= −

(
∂J
∂x

)
(9.23)

However, we know from Fick’s First Law that J = −D(∂c/∂x). Substituting
−D(∂c/∂x) for J in equation 9.23, we obtain equation 9.24:

(
∂c
∂t

)
=

∂

∂x

(
D

∂c
∂x

)
(9.24)

This is the most general form of Fick’s Second Law, which holds for all situa-
tions, including those in which the diffusion coefficient is a function of com-
position (and therefore position). Fortunately, in many situations the diffu-
sion coefficient does not vary significantly over the concentration range in-
volved and therefore does not change significantly with position. This sim-
plifies things considerably. Fick’s Second Law of diffusion becomes equation
9.25:

(
∂c
∂t

)
= D

(
∂2c
∂x2

)
(9.25)

This equation tells us that the rate of change of concentration at a given point
is proportional (by the diffusion coefficient) to the second derivative of con-
centration with respect to distance at that point. We can use this equation to 1)
ascertain whether the concentration of an impurity is increasing or decreasing
with time at a chosen point, given a specific concentration profile, and 2) to test
whether specific diffusion equations are valid, namely that all such equations
must obey Fick’s Second Law as expressed in equation 9.25 (see the following
section). As an illustration of the first application, consider the three concen-
tration profiles in Fig. 9.9:

105



10 APPLICATIONS OF FICK’S LAWS
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Figure 9.9: Analysis of three concentration profiles by Fick’s Second Law.

The concave-up concentration profile on the left has a second derivative of
concentration with respect to distance that is everywhere positive. This means
that (∂c/∂t) must be positive; concentration is increasing with time as shown
by the vertical double-arrow. The linear concentration profile in the middle
plot has a second derivative with respect to distance that is zero. This means
that (∂c/∂t) is zero; local concentration is not changing with time. This is the
“steady-state” situation discussed in the previous section. The concave-down
concentration profile on the right has a second derivative of concentration with
respect to distance that is everywhere negative. This means the (∂c/∂t) is ev-
erywhere negative; concentration is decreasing with time as shown by the ver-
tical double-arrow.

10 Applications of Fick’s Laws

10.1 Homogenization and Point Defect Relaxation

Imagine a sinusoidal concentration profile as shown in Fig. 10.1. Using Fick’s
Second Law, it follows that in the concave-down portions of the profile where
the local concentration is greater than the average composition, c̄, the con-
centration will be decreasing with time. At the same time, in the concave-up
portions of the profile where the local concentration is less than the average
composition, the concentration will be increasing with time.

At time zero we can express the concentration profile as equation 10.1:

c(x, 0) = c̄ + β(0)sin
(πx

l

)
(10.1)

where β(0) is the amplitude of the sine wave at time zero. If we allow diffusion
to proceed, the concentration profile will relax as shown in Fig. 10.1. It turns
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Figure 10.1: Sinusoidal composition profile.

out that the solution to Fick’s Second Law for these boundary conditions is
given by equation :

c(x, t) = c̄ + β(0)sin
(πx

l

)
exp

(
−Dtπ2

l2

)
(10.2)

You can prove to yourself that this equation is a solution to Fick’s Second Law
by taking the first derivative with respect to time (t) and comparing the result
with the second derivative with respect to distance (x). The two derivatives
should be identical. Let’s test this equation by setting t = 0. This simply
reverts to the time zero function in equation 10.1. Now let’s consider the vari-
ation of composition at the point, x = l/2. Since the sine of (π(l/2)/l) or π/2
is unity, equation 10.2 becomes equation 10.3:

c(
l
2

, t)− c̄ = β(0) exp
(
−Dtπ2

l2

)
= β(0) exp

(
− t

τ

)
(10.3)

The parameter, τ, is referred to as the “relaxation time,” and is given by equa-
tion :

τ =
l2

π2D
(10.4)

When time is equal to the relaxation time (t = τ) the amplitude above the
average composition at the point, x = l/2, according to equation 10.3 will be
β(0)/e or 0.368β(0). This will, in fact, be true of every point along the profile;
each composition will be 36.8% of its value at time equal to zero, as shown in
Fig. 10.2.
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Figure 10.2: Initial profile and concentration profile at one relaxation time.

One very important application of the sine function concentration profile of
equation 10.2 has to do with point defect relaxation. In metals and in some
oxides, we can quench in a high vacancy population by quenching from high
temperature. If we then take the specimen to an intermediate temperature,
excess vacancies can be annihilated, but only by migrating to a surface. In
polycrystalline materials, grain boundaries can act as internal “surfaces.” In ei-
ther single crystal or polycrystalline materials, dislocation cores can also act as
internal “surfaces.” Fig. 10.3 shows schematic diagrams of how grain bound-
aries and dislocations can act as “sinks” for excess vacancies.

Figure 10.3: Schematics of grain boundaries and/or dislocation cores acting as
“sinks” for vacancies, indicated by the squares.

In the case of grain boundaries we can equate the grain size to the value of l
in the relaxation time equation 10.4. If instead dislocations dominate, we can
equate the average dislocation spacing to the value of l in equation 10.4. In
both cases, the diffusivity of interest will be the vacancy diffusion coefficient
at the temperature of interest. Polishing and etching can be employed to deter-
mine the dislocation density (etch pits) or #/cm2. Inverting the value obtained
gives an area per dislocation or cm2 per dislocation, as shown in Fig. 10.4. If we
take the square root of this value, we obtain the average separation distance of
dislocations to use as l in the relaxation time equation 10.4.
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= =

Figure 10.4: Acquiring the average dislocation spacing from a measured disloca-
tion density.

10.2 Non-Infinite Systems

“Non-infinite systems” are those where concentration profiles span the entire
specimen, from one end to the other. If diffusion is taking place from both
sides of a plate or slab, the two concentration profiles overlap in the middle of
the specimen. A classic example is diffusion out of a slab. For example, in Fig.
10.5 a slab of thickness, h, with initial impurity concentration, co, is held in an
environment that takes the surface concentration, cs, to zero.

Figure 10.5: Diffusion of an impurity out of a slab.

At short times the diffusion profiles do not overlap. They are described by
“semi-infinite” solutions to Fick’s Second Law, as will be described in the fol-
lowing section. At longer times, however, the diffusion profiles do overlap.
The solution to Fick’s Second Law for this situation is complicated, as shown
in equation 10.5.

109



10.2 Finite Systems 10 APPLICATIONS OF FICK’S LAWS

c(x, t) =
4co

π

∞

∑
j=0

(
1

2j + 1

)
sin

(2j + 1)πx
h

exp

[
−
(
(2j + 1)π

h

)2

Dt

]
(10.5)

Fortunately, the first term dominates, giving us equation 10.6:

c(x, t) =
4co

π
sin(

πx
h
) exp

(
−Dtπ2

h2

)
(10.6)

This equation would be used if one wanted to estimate a composition at a
specific point and time. More often, however, we are interested in the average
composition in the overall slab, as shown in the diagram on the right side of
Fig. 10.5. This is found by integrating equation 10.5 to obtain equation 10.7:

c̄(t) =
1
h

∫ h

0
c(x, t)dx =

8co

π2

∞

∑
j=0

1
(2j + 1)2 exp

[
−
(
(2j + 1)π

h

)2

Dt

]
(10.7)

Again, fortunately, the first term dominates, and for average compositions less
than 80% of the initial composition (c̄ ≤ 0.8co) the first term is an excellent
approximation to the solution. The results in equation 10.8:

c̄
co

=
8

π2 exp(− t
τ
) (10.8)

where τ = h2/π2D is called the relaxation time.

Eq. 10.8 is very useful for describing the degassing of metals, including decar-
burization of steels. In this case the diffusion coefficient in the relaxation time
would be that of the particular gas species or of carbon in the particular metal.
Another application involves the relaxation of vacancies in a supersaturated
metal, for example a metal quenched from high temperature has a large va-
cancy population. If the metal is taken to an intermediate temperature where
the equilibrium vacancy concentration is small (effectively zero compared to
the quenched-in concentration, co) and vacancies are sufficiently mobile that
they can annihilate at sinks such as dislocation cores or grain boundaries, re-
laxation will occur. The situation involving dislocation cores is represented
schematically in Fig. 10.6, where the concentration of vacancies is shown dur-
ing relaxation from the initial, quenched-in concentration, co, to a point where
the average vacancy concentration is c̄. In this case, h would be the average
dislocation spacing and the diffusion coefficient would be that of vacancies in
the metal of interest.
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Figure 10.6: Relaxation of vacancies to dislocation cores in a metal.

10.3 Semi-Infinite Systems

By “semi-infinite” systems we are referring to situations where the specimen
can be treated as essentially “infinite” in size compared to the extent of the im-
purity concentration profile at the surface. Another way of describing this is
that the concentration profile resulting from diffusion never reaches the other
end of the specimen. The specimen, although not infinite in extent, is effec-
tively “infinite” insofar as diffusion is concerned. In terms of diffusion it is
“semi-infinite.”

10.3.1 Thin Film Tracer Diffusion

Thin film “tracer” diffusion is of special importance to materials science and
engineering. It is how diffusion coefficients are often measured. Imagine a thin
film containing an area concentration (#/cm2) of a “tracer” that is deposited on
a highly polished, flat surface of a single crystal (crystal #1 in Fig. 10.7). To pre-
vent any loss of “tracer” (for example by evaporation) and also to provide a
second crystal in which to study diffusion, the highly polished, flat surface of
crystal #2 in Fig. 10.7 is butted up against crystal #1, sandwiching the tracer
thin film between them. For self-diffusion studies, the tracer is the same chem-
ical species as constitutes both crystals, however with a different atomic mass
(namely, another isotope than that of the host atoms making up the two crys-
tals). In many instances, a radioactive tracer is employed at low concentrations
(and low radioactive emission levels to protect lab workers). In this case, the
relative concentration of tracer at a specific diffusion depth is determined by
the number of radioactive “counts” registered at that depth, usually by “serial
sectioning” (see below). In other cases, the amount of a non-radioactive tracer
diffused to a given depth can be established by the use of a mass spectrometer
that can differentiate and quantify the relative amounts of tracer species vs.
naturally occurring (host crystal) species.
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Figure 10.7: Schematic of thin film tracer diffusion.

For impurity diffusion studies, the tracer is a different chemical species from
the host. Again, either radioactive or non-radioactive tracers can be employed,
with mass spectrometry being used in the latter case to quantify the amount of
a diffused species found at a given depth from the surface by serial sectioning,
as described below.

The unique aspect of thin film tracer diffusion is that the overall amount of
tracer remains constant, once applied to the surface and sandwiched between
the two crystals. On the right side of Fig. 10.7 are the concentration profiles
at early, intermediate, and long times of diffusion at a specified temperature.
Assuming no loss of tracer, the area under each curve (the total amount of
tracer) must remain the same at all times.

The actual diffusion process is carried out by heating the pair of crystals to
a predetermined temperature as rapidly as possible, holding for a set time,
and “quenching” to room temperature as quickly as possible. For ceramic
samples, heating and cooling rates are limited by what the crystals can sustain
without fracture caused by thermal shock. Once a diffusion heat treatment
is completed, the two crystals are cleaved at the thin film interface and each
crystal is subjected to the process called “serial sectioning,” as represented in
Fig. 10.8. Roughly equivalent “sections” are carefully removed, beginning
with the surface to which tracer was applied, and being careful to maintain a
flat/planar surface throughout the process.

Sectioning is typically accomplished using the same grinding media (abrasive
cloths, powders) used for metallographic sample preparation. It is very im-
portant, however, to quantify both the “depth” removed (each ∆x in Fig. 10.8)
and the tracer concentration (C in Fig. 10.8) for each section. Alternatively,
the count rate (counts/time) can be measured by a radiation detector. The
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Figure 10.8: Schematic of the serial sectioning process, and how the tracer diffu-
sion coefficient is determined.

count rate will be directly proportional to the concentration in each section.
The increment of depth can be measured directly by a high precision micro-
caliper. Alternatively, it can be indirectly calculated from the mass removed,
which can be measured quite accurately. In the case of non-radioactive trac-
ers, mass spectrometry is employed to calculate the tracer content in a given
section. With a radioactive tracer, the abrasive cloth holding the powder of
the “section” removed can be placed in a radiation detector and counted for a
predetermined time period. The solution to Fick’s Second Law that reflects the
boundary conditions for thin film tracer diffusion is given in equation 10.9:

C =
M

2
√

πDt
exp

(
−x2

4Dt

)
(10.9)

where C is either the tracer concentration or the tracer’s radioactive count rate,
and M is the area concentration of tracer deposited on the surface of crystal #1
in Fig. 10.7. Taking the natural logarithm of both sides of equation 10.9 gives
equation 10.10:

ln C = ln
(

M
2
√

πDt

)
− x2

4Dt
(10.10)

The slope of a plot of the natural logarithm of C vs. x2 yields −1/4Dt, as de-
picted on the right side of Fig. 10.8. Since the diffusion time is known, the
diffusion coefficient can be calculated. This process is repeated at other tem-
peratures in order to establish the pre-exponential factor (Do) and activation
energy (Q) of the tracer diffusion coefficient (D∗) as in equation 10.11:

D∗ = Do exp
(
− Q

RT

)
(10.11)
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where Do is called the “pre-exponential factor” and Q is the activation energy
of diffusion. We discuss the origin(s) of this characteristic of diffusion vs. tem-
perature behavior (so-called Arrhenius behavior) in a later section.

10.3.2 Constant Surface Composition Situations

As opposed to thin film tracer diffusion, where the “surface” composition
diminishes with time, there are a number of situations in materials science
and engineering where the “surface” composition is maintained constant with
time. These include “doping” situations, where a solid is held in an atmo-
sphere that keeps the composition of an impurity at a constant level on the
exposed surface. Similarly, the carburization of iron or steel can be controlled
by holding the surface in an atmosphere with a fixed ratio of carbon monoxide
and carbon dioxide. The amount of carbon in solution at the surface is thereby
fixed according to equation 10.12:

2CO(gas)⇔ CO2(gas) + C̄(insolution) (10.12)

As carbon diffuses into the interior of the solid, the above reaction guarantees
that additional carbon is added to the surface to maintain the surface carbon
composition. The overall impurity (or carbon) content of the solid is given by
equation 10.13:

ctot = A
∫ ∞

0
c(x)dx (10.13)

where A is the area of the surface into which solute is diffusing. This means, of
course, that as opposed to thin film tracer diffusion, the overall solute content
steadily increases with time. This is shown schematically on the left side of Fig.
10.9, where co is the initial carbon content and cs is the surface composition.
The concentration profile moves progressively to the right with time, as the
interior of the solid is progressively enriched with solute. We later consider
how thick the sample must be to be “semi-infinite” compared to the diffusion
profile, but from Fig. 10.9 it follows that the sample dimension should be large
relative to the diffusion profile at the longest time applied.

Before we introduce the solution to Fick’s Second Law that meets the boundary
conditions of Fig. 10.9, we will make the simplifying assumption that the dif-
fusion coefficient does not vary with impurity content, and therefore distance
from the surface (x). This is valid for the doping of semiconductors from gas
phase precursors, where relatively small dopant levels are involved. However,
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Figure 10.9: Schematic of impurity diffusion from a fixed surface concentration
into a solid with a background concentration and, on the right, the situation cast
in terms of the error function and the complementary error function.

in the case of carburization, relatively large changes in solute (carbon) content
occur and the diffusion coefficient is known to vary somewhat with carbon
composition (and therefore position) along the diffusion profile. Fortunately,
relatively good predictions of carbon diffusion profiles can be obtained by em-
ploying an “average” carbon diffusion coefficient (discussed later) that can be
assumed invariant with carbon content (and position).

The solution to Fick’s Second Law corresponding to the boundary conditions
in Fig. 10.9 is given by equation 10.14:

c(x, t) = cs − (cs − co)erf
(

x
2
√

Dt

)
(10.14)

which is usually written as equation 10.15:

cs − c(x, t)
cs − co

= erf
(

x
2
√

Dt

)
(10.15)

where x is the distance from the surface, D is the diffusion coefficient (a con-
stant diffusion temperature is assumed), and t is the time period over which
diffusion takes place. You should have encountered the “error function” (erf)
in prior math courses. It is an indefinite integral of the form in equation 10.16:

er f (z) =
2√
π

∫ z

0
e−η2

dη (10.16)
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where η is known as a “dummy variable.” In our case, z = x/(2
√

Dt). In
days past, with no closed-form solution to equation 10.16, one resorted to ta-
bles of the error function. Fortunately, many modern calculators now include
the error function. Alternatively, there have been many mathematical approxi-
mations. The most straightforward amongst the collection in the Handbook of
Mathematical Functions [4], having a reported accuracy of ±5x10−4, is equa-
tion 10.17:

1− er f (z) = erfc(z) ≈ (1 + a1z + a2z2 + a3z3 + a4z4)−4 (10.17)

where a1 = 0.278393, a2 = 0.230389, a3 = 0.000972, and a4 = 0.078108. This
approximation can be used in a either a computer program or in a mathemat-
ical spreadsheet to estimate erf(z). In equation 10.17 we have also introduced
the “complementary error function,” denoted as erfc(z). The simple relation-
ship between the two functions in equation 10.18:

erfc(z) = 1− erf(z) (10.18)

is illustrated in Fig. 10.10. On the right side of Fig. 10.9 we see these two
functions as applied to the above mentioned instance of doping/carburization
of a sample with an initial dopant concentration. An abbreviated table of error
function values is given in Table 1.

Table 10.1: Examples of Error Function Values

z erf(z) z erf(z) z erf(z)
0 0 0.8 0.742 1.6 0.976

0.2 0.223 1.0 0.842 1.8 0.989
0.4 0.428 1.2 0.910 2.0 0.995
0.6 0.604 1.4 0.952 2.2 0.998

Figure 10.10: The error function and the complementary function.
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We can generate a useful “metric” to describe diffusion in cases of constant
surface composition (error function solutions to Fick’s Second Law). In the
case just described, consider the diffusion profile in Fig. 10.11.

Figure 10.11: Schematic representation of the “diffusion depth” for the diffusion
process in Fig. 10.9.

You will see one special composition highlighted, labeled c0.5. This corre-
sponds to the point where the composition is half way between the surface
composition (cs) and the original sample composition (co), which modifies
equation 10.15 to equation 10.19:

cs − c0.5

cs − co
= 0.5 = erf

(
x

2
√

Dt

)
(10.19)

It turns out that erf(z)=0.5 for a value of z that is very close to 0.5 (see the error
function Table or Fig. 10.10), or more precisely z = x/2

√
Dt = 0.477. If we let

z ≈ 0.5, it follows that x0.5 ≈
√

Dt. This distance of “root Dt” is commonly
referred to as the “diffusion depth.” It is a useful “metric” for diffusion in
situations involving constant surface composition. For example, one might
ask, “How much longer must I diffuse at the same temperature to double the
diffusion depth?” The answer follows from the definition of x0.5 in equation
10.20:

x′0.5
x0.5

= 2 =

√
Dt′√
Dt

=

√
t′

t
;

t′

t
= 4 (10.20)

or four times the length of time. We can also establish the thickness of sample
required to be “semi-infinite” with respect to a given combination of diffusion
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coefficient and time. From the previous Table of error function values, we
can observe that at z = x/2

√
Dt = 2 the diffusion profile has diminished

by 99.5% toward the original composition. In other words, very little (0.5%)
impurity has been delivered at this point in the diffusion profile. For diffusion
from one side, a specimen must therefore be greater than 2

√
Dt, or twice the

“diffusion depth.” For diffusion from both sides of a plate we might define
“semi-infinite” as being > 4

√
Dt or roughly four times the “diffusion depth.”

Of course, this is arbitrary and more stringent definitions of “semi-infinite”
can be made (e.g., z = 2.5, for which erf(z) = 0.9996). For diffusion from both
sides of a plate, this would amount to 0.08% added impurity at the middle of
the specimen.

Of course, we should not forget our non-infinite solutions to Fick’s Second
Law, which are required in place of error function (semi-infinite) solutions
when there is significant overlap of diffusion profiles from the two sides of
a plate. Eq.s 10.5 and 10.6 would be used to determine the concentration at a
given position, whereas equations 10.7 and 10.8 would be employed to deter-
mine the average composition (above the initial composition) for the plate. We
revisit such overlap when we consider decarburization (below).

All the solutions that follow are simply permutations of equation 10.15. For
instance, let’s consider carburization or doping of an initially “pure” host. Of
course, from thermodynamics we know that there is no such thing as complete
purity. Impurities, including the one we are interested in, are always present
to some degree. However, their level can be considered so inconsequential as
to be effectively zero, namely co can be taken to be zero in equation 10.15. By
making this assumption and rearranging, we obtain equation 10.21:

c(x, t)
cs

= 1− erf
(

x
2
√

Dt

)
= erfc

(
x

2
√

Dt

)
(10.21)

A representative diffusion profile is displayed in Fig. 10.12, showing how the
complementary error function comes into the picture.

Now let’s consider decarburizing, which is the opposite of carburizing (adding
carbon to iron or steel). On the left side of Fig. C, we are holding the surface
carbon content at a lower value than the initial carbon content of the specimen.
This can be accomplished by employing appropriate carbon monoxide/carbon
dioxide gas ratios, as per equation 10.12. As time proceeds, carbon is removed
by diffusion from progressively larger depths. Keep in mind, however, that
the specimen is “semi-infinite,” namely that its width is at least 2 diffusion
depths (or 4 diffusion depths if decarburized from both sides). The solution
to Fick’s Second Law satisfying the boundary conditions in Fig. C is given in
equation 10.22:
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Figure 10.12: Carburization or doping of a solid with an essentially zero initial
impurity content.

c(x, t)− cs

co − cs
= erf

(
x

2
√

Dt

)
(10.22)

In the event that complete decarburization is desired, the surface carbon con-
tent is taken to zero, simplifying equation 10.22 to equation 10.23:

c(x, t)
co

= erf
(

x
2
√

Dt

)
(10.23)

A schematic illustrating this situation is given on the right side of Fig. 10.13,
where it can be seen that the straightforward error function is the simple solu-
tion for the boundary conditions applied. It should once again be stressed that
the sample must be “semi-infinite,” namely if being decarburized from both
sides it should be several (>4) “diffusion lengths” in width, such that there is
no overlap of error function solutions at the middle of the sample. If there is
considerable overlap, we once again turn to our non-infinite solutions. These
take into account both the carbon contents vs. position (equation 10.6) and the
average carbon content of the slab (for values below 80% of the original, equa-
tion 10.8). It might be a good time to refer back to Fig. 10.5 for a schematic of
decarburization in the “non-infinite” case.

Before considering the special case of interdiffusion, let’s introduce some prac-
tical uses for all the error function solutions considered thus far. For many
years, the n-type and p-type regions of microelectronic circuits were made
by exposing “semiconductor-grade” (ultra-high purity) silicon wafers to gases
containing n-type dopants or p-type dopants through removable masks in a
process called “photolithography.” Although diffusion is sometimes still used,
for instance to set the background impurity level of a silicon layer, nowadays
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Figure 10.13: Decarburization of a sample with an initial carbon content with the
surface content taken to a finite, but lower value (left) or to effectively zero (on the
right).

doping is usually accomplished by ion-implantation of dopants owing to im-
proved controllability and speed.

Carburization and decarburization are fundamental to the processing of steels
and for the preparation of their surfaces. For example, carburization is well
known to increase the hardness of steels. In the case of a machine gear, for
instance, the materials engineer may be interested in maintaining different
properties of the gear core (high strength with toughness) and the gear sur-
face (high strength with hardness). This calls for a different carbon content in
the core vs. on its surface. In particular, carburization is employed to boost
the carbon content at the surface, making it hard and wear-resistant. This can
be done by a process of “pack carburization,” namely packing the gear in a
high temperature bed of charcoal, often referred to as “case hardening.” How-
ever, carburization is more often accomplished by exposing steel surfaces to
carbon-containing gases (see equation 10.12) or to carbon-containing plasmas.

The final instance of constant surface composition that we consider involves
the interdiffusion of solute across an interface, as depicted in Fig. 10.14.

Figure 10.14: An interdiffusion “couple” assuming a constant value of diffusion
coefficient.
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Here a solid with impurity concentration, c1, is butted up against a solid hav-
ing a lower impurity concentration, c2. It should be stressed that for the error
function solution to be employed, the differences in solute content should be
small and/or the diffusion coefficient must not vary much with solute content
(and therefore distance in the diffusion “couple”). With these qualifications,
the mid-point of the diffusion profile, both in terms of composition and in
terms of distance, remains stationary with time as shown in Fig. 10.14. It can
be seen that the composition at this point remains the average of the two initial
solute contents, or (c1 + c2)/2. Looking to the right from the interface (x = 0),
the situation looks identical to the carburization situation in Fig. 10.9, and we
can insert (c1 + c2)/2 in place of cs in equation 10.15 as is done in equation
10.24:

[
( c1+c2

2 )− c(x, t)

( c1+c2
2 )− c2

]
= erf

(
x

2
√

Dt

)
(10.24)

The denominator of the left side of equation can be simplified to (c1 − c2)/2,
and the resulting solution to Fick’s Second Law for interdiffusion with a con-
stant diffusion coefficient is equation 10.25:

c(x, t) =
(

c1 + c2

2

)
−
(

c1 − c2

2

)
erf
(

x
2
√

Dt

)
(10.25)

This equation also holds for the left side of the interdiffusion couple in Fig. ,
since erf(−z) = −erf(z) as shown in Fig. 10.15.

Figure 10.15: The error function for both positive and negative values of z.

Some textbooks have equation 10.25 as equation 10.26:

c(x, t) =
(

c1 + c2

2

)
+

(
c1 − c2

2

)
erf
(

x
2
√

Dt

)
(10.26)
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This arises from reversing the sense of “x” (and therefore “z”), namely that the
solid with the higher solute concentration is now on the right, so be careful to
use the solution that matches your boundary conditions. Note how the overall
error function in Fig. 10.15 actually looks like an interdiffusion profile with the
more highly doped specimen on the right.

Before moving on, it should be stressed that interdiffusion with an essentially
composition-independent and therefore position-independent diffusion coef-
ficient is rather the exception than the rule. Most interdiffusion problems in-
volve “interdiffusion” coefficients that are clearly functions of concentration
and therefore of position. In an A:B couple, where A and B are different metals,
the usual case is for A to diffuse faster into B or vice versa. In fact, the point of
average composition, (c1 + c2)/2, moves with diffusion time. Fortunately, pro-
cedures exist to solve interdiffusion profiles for composition-dependent dif-
fusion coefficients at each point. You will learn about these methods in lab
projects and in upper level materials science and engineering coursework.

11 Atomistics of Diffusion

We now turn to the “basics” of diffusion, namely the “nuts and bolts” of how
diffusion takes place in solids. We want to “unpack” all the contributions, the
so-called “atomistics” that contribute to the pre-exponential factor (Do) and
the activation energy (Q) of the general equation for diffusion in solids, as per
equation 11.1:

D = Do exp
(
−Q
RT

)
(11.1)

It turns out that we can do a pretty good job estimating ranges of values for the
pre-exponential factor for each of the primary diffusion mechanisms. In what
follows, we take a modular “plug-in” approach to the problem, as outlined in
Fig. 11.1.

We begin with our basic diffusion equation 9.11 repeated and reorganized here
as equation 11.2:

D =
1
6

Γα2 (11.2)

To review, α is the atomic jump distance (determined by the crystal structure)
and Γ is the atomic jump frequency. This equation (11.2) is found in Box A of
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Figure 11.1: A modular plug-in approach for understanding the atomistics of dif-
fusion in cubic crystals.

Fig. 11.1 and will be the “jumping off point” for each of the diffusion mecha-
nisms we consider. The first “plug-in” is equation 11.3:

Γ = ΓdefXdef (11.3)

Here the atomistic jump frequency is related to the product of a “defect” jump
frequency (Γdef) and a defect availability factor (Xdef). The availability factor
will be further described as we consider each of the individual diffusion mech-
anisms. The rest of Fig. 11.1 may seem quite daunting, however not every dif-
fusion mechanism involves all of the “plug-ins” or boxes in the figure. We will
proceed from simplest (interstitial diffusion) to most complex (vacancy and in-
terstitialcy diffusion). Along the way, the “plug-ins”/boxes should come into
focus, so be patient. The object is to develop for each mechanism an atomistic-
based description of the diffusion coefficient. Right now Box E in Fig. 11.1
seems quite complicated; however, this massive equation can be reduced to
the standard equation 11.1 in Box F or to the even simpler equation 11.4:

D = γSEact (11.4)

in Box G, which tells us that three groupings of factors govern each individ-
ual diffusion mechanism: a geometric factor (γ), and entropic factor (S), and
a thermally-activated term (Eact). Let’s get started by considering the most
straightforward of diffusion mechanisms, interstitial diffusion.

11.1 Interstitial Diffusion

Although self-diffusion by interstitials is possible in certain ceramic materials,
we will restrict our consideration to impurity diffusion where the impurity
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spends all of its time in the interstices of the crystal lattice. A good example is
carbon diffusion in iron. This type of impurity diffusion has special require-
ments, namely that 1) the atomic radius of the impurity is significantly less
than that of the host (e.g., rC < rFe), and 2) the atomic radius of the impurity
is comparable to that of the interstices. It should be stressed that self-diffusion
in close-packed metals never takes place by interstitial diffusion. The radius of
a host atom is far too great for it to squeeze into the much smaller interstices
in between host atoms. To place a host atom into such an interstice would be
highly unfavorable energetically; self-interstitials are therefore highly unlikely.

Let’s begin to analyze interstitial diffusion using the modular plug-in chart
in Fig. 11.1. Since the interstitial is always an interstitial, there is no thermal
activation process associated with its formation as in Box D. Furthermore, the
availability factor for interstitial jumps can be assumed to be essentially unity
(Xint ≈ 1), namely adjacent interstitial sites into which the interstitial can jump
can be assumed to be empty. Of course, at the highest carbon contents there is a
finite possibility that an adjacent interstitial is occupied. We could express the
availability factor as (1−Xi), where Xi is the site fraction of carbon interstitials.
But for simplicity we will assume that Xi � 1 and assume an availability factor
(Xint) of unity.

It is time to add important functions to our diffusion “toolkit.” These have to
do with the defect jump frequency in Box C of Fig. 11.1. In moving from one
interstitial site to another, a certain amount of lattice dilation must occur, as
illustrated in Fig. 11.2.

Figure 11.2: Schematic showing interstitial motion, local lattice dilation and the
resulting energy barrier/saddle point.

In other words, adjacent atoms must move apart to enable the interstitial to
pass. Energetically, this amounts to surpassing an energy barrier that separates
the two sites. Fig. 11.2 illustrates the special configuration with the interstitial
at the so-called “saddle-point”. The energy landscape is shaped like a saddle.
Alternately, you can think about a mountain pass. You go up and over the
pass, but when you are at the top of the pass you find the land rising to either
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side. From statistical mechanics, the probability that an interstitial has suffi-
cient energy to reach the saddle point is small. It is governed by the height of
the pass (∆Gm) and the temperature. Higher temperature means more energy
being available to the interstitials, and an increasing fraction of them having
the probability to make it to/past the saddle point. The relationship is given
by equation 11.5:

probability ∝ exp
(
−∆Gm

RT

)
(11.5)

We refer to ∆Gm as the free energy of motion which, in turn, can be separated
into enthalpy of motion (∆Hm) and entropy of motion (∆Sm) components as in
equation 11.6:

∆Gm = ∆Hm − T∆Sm (11.6)

It should be apparent that an interstitial at the saddle point has a different
entropy. Certainly, its vibrational frequency, and thus its vibrational entropy,
should be different at the dilated/congested saddle than in either interstice,
i.e., the energy wells on either side of the energy barrier in Fig. 11.2. We can
use the information in equation 11.6 to arrive at the equation in Box C of Fig.
11.1, or equation 11.7:

Γi = zν exp
(

∆Smi

R

)
exp

(
−∆Hmi

RT

)
(11.7)

Here we have replaced Γdef with Γi (i for interstitial), and ∆Smi and ∆Hmi for
∆Sdef and ∆Hdef, respectively. The other constants are ν, the attempt frequency,
and z, the coordination number of how many empty interstitial sites surround
an occupied interstitial site. The attempt frequency can be assumed to be the
lattice vibrational frequency, on the order of 1013 per second. You probably
encountered the “Debye frequency” in your prior materials thermodynamics
work.

Plugging Γi from equation for Γdef in Boxes C and B and Xi = 1 for Xdef in
Boxes D and B of Fig. 11.1, we obtain the following equation :

D =

[
1
6

α2zν exp
(

∆Smi

R

)]
exp

(
−∆Hmi

RT

)
(11.8)
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If we consider A to be the host lattice and B to be the species moving via inter-
stices, we can simplify equation 11.8 to equation 11.9:

DB = DB0 exp
(
−QI

R

)
(11.9)

where DB0 is the pre-exponential factor for impurity diffusion of species B by
interstitial mechanism, which includes all the entities within the brackets of
equation 11.8, and QI is the activation energy for interstitial motion. Since
there is no defect formation energy, QI is the same as the enthalpy of motion
or ∆Hmi . Before we take a try at predicting pre-exponential factors for intersti-
tial diffusion, let’s rearrange equation 11.9 to separate out geometric (γ) and
entropic (S) factors, as in equation 11.10:

D = γSEact =

(
α2zν

6

)(
exp

∆Smi

R

)
exp

(
−∆Hmi

RT

)
(11.10)

Let’s first unpack the underlying parameters in the geometric factor (γ). We
already know that the attempt frequency (ν) is on the order of 1013/s. But the
jump distance (α) and coordination number (z) depend upon not only the crys-
tal structure, but upon the actual element/metal under consideration. Let’s
focus our concentration on iron in both fcc (austenite) and bcc (ferrite) forms,
and consider the case of the interstitial diffusion of carbon. The two crystal
structures are displayed in Fig. 11.3. More importantly, the interstitial posi-
tions are marked with “X’s.” In addition, a typical jump distance is shown by
an arrow for each structure.

Figure 11.3: Interstitial positions in fcc (austenite) on left and in bcc (ferrite) on
right.
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Let’s first consider carbon diffusion in fcc-Fe (austenite), whose structure is
shown on the left side of Fig. 11.3. It is obvious that the two sets of lattice
positions (host atoms, interstices) form interpenetrating fcc lattices. In fact,
we will encounter interpenetrating lattices when we consider the “rocksalt”
structure of sodium chloride or table salt (NaCl), where the electropositive
Na+ “cations” sit on one set of sites and the electronegative Cl− “anions” sit on
the other. In austenite, most of the second interpenetrating (interstitial) lattice
is empty. However, the fact that it (the interstitial lattice) is also fcc is quite
important. It means that the coordination number of empty interstitials sites
around any given occupied interstitial site will be the same as the coordination
number of neighboring iron atoms around any given iron host atom. This
gives us the value we need for the coordination number in γ of equation 11.10,
namely 12.

On the other hand, the jump distance (or the arrow length in Fig. 11.3) is the
same as the distance between close-packed atoms (see the lower diagram in
Fig. 11.3), or one-half of the face-diagonal

(√
2ao/2

)
. Since the lattice pa-

rameter (ao) of fcc iron is ∼ 0.37 nm, the jump distance would be ∼ 0.26 nm.
Diffusion coefficients are rarely given in terms of nm2/s, however. So let’s
convert 0.26 nm to centimeters, or 2.6x10−8 cm. This yields the following for
the geometric factor for diffusion:

γ = zΓα2/6= 12
(

1013 s−1
) (

2.6x10−8 cm
)2

/6 = 0.014 cm2/s (11.11)

There have been several estimates of the entropic term (S) in equation 11.10.
One of the most straightforward calculations took into account the elastic
strain associated with the saddle point (C. Zener in Imperfections in Nearly
Perfect Crystals, 1952, p.289) and also the change in vibrational entropy asso-
ciated with the saddle point [5], arriving at the result that the entropy of inter-
stitial motion was ∆Smi ≈ R, such that the entropic term (S = exp (∆Smi /RT))
was approximately 2.7. The product of the geometric factor (γ) and the en-
tropic factor (S) in equation 11.10 is the pre-exponential coefficient of equation
11.9. Based upon our “back of the envelope” calculations, we predict a value
for DB0 of ∼ 0.38 cm2/s.

Before we make a comparison with experimental values, it must be stressed
that owing to the larger interstice size in fcc iron vs. bcc iron, the former
(austenite) can incorporate a much larger carbon content than the latter (fer-
rite). We mentioned previously that the diffusion of carbon in fcc iron was not
a constant, but rather varied measurably with carbon content. Fortunately, the
variation is not extreme and a practicable composition-independent approxi-
mation appears in most diffusion textbooks. This approximation is given by
the following equation 11.12:
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D̄C(austenite) ≈ 0.2
cm2

s
exp

(
−138kJ/mole

RT

)
(11.12)

Given our rather simplistic assumptions and the fact that the experimental
equation is itself an approximation, the agreement of pre-exponential values
(estimated: 0.38 cm2/s vs. experimental: 0.2 cm2/s) is remarkable.

Let’s see how we do estimating the geometric factor and pre-exponent for car-
bon diffusion in the bcc (ferrite) form of iron. Interestingly, the interstices in
bcc iron exist only on the faces of the unit cell as shown on the right side of
Fig. 11.3. These interstices are found along the edges and at the face centers of
the unit cell. As a result, the jump distance is half of the cube edge or lattice
parameter, such that α = ao/2 = 0.29nm/2 = 0.14nm. Since there are no bcc
interstices within the unit cell, the coordination number can be determined by
looking at the face-centered interstice on any face in Fig. 11.3. If occupied, it is
surrounded by 4 empty interstices at the 4 cube edge positions, so z = 4. As-
suming once again an attempt frequency of ∼ 1013/s, we arrive at a geometric
factor of ≈ 0.0013 cm2/s.

Once again, there have been several estimates of the entropic term (S) in equa-
tion 11.10. If we assume, as with the fcc structure, that the entropy of intersti-
tial motion is ∆Smi ≈ R such that the entropic term of S = exp (∆Smi /RT) is
approximately 2.7, we arrive at a “back of the envelope” estimate for DB0 of
∼ 3.5x10−3 cm2/s. The experimental equation for carbon diffusion in bcc iron
is [6]:

DC(ferrite) = 2.0x10−2cm2/s exp
(
−84.1kJ/mole

RT

)
(11.13)

This time there is only agreement of pre-exponent within an order of mag-
nitude, however this can be considered quite good considering all the ap-
proximations we have made. As additional support for our atomistic ap-
proach, the corresponding DB0 values are 3.0x10−3 cm2/s for nitrogen [7] and
1.0x10−3 cm2/s for hydrogen [8], in quite satisfactory agreement with our pre-
diction. The corresponding enthalpies of motion (QI) are 76.1 kJ/mole and
13.4 kJ/mole for N [7] and H [8], respectively.

11.2 Vacancy Diffusion

Self-diffusion or impurity-diffusion by vacancy mechanism can be likened to
the “tile” puzzles we have handled physically or solved as a computer game.

128



11.2 Vacancy Diffusion 11 ATOMISTICS OF DIFFUSION

Consider the tile puzzle in Fig. 11.4. The configuration on the top left is in-
soluble owing to the absence of a vacancy, whereas the configuration on the
top right is soluble by virtue of the vacancy’s presence. The analogy to solids
is that without such defects, there can be no diffusion and thus no reactivity.
This is further illustrated in the bottom diagrams of Fig. 11.4, each illustrating
a close-packed plane in either hcp or fcc solids. With the addition of the va-
cancy in the bottom-right configuration, it is obvious that self diffusion of the
atom to the left of the vacancy takes place by exchange with the vacancy. By
moving the vacancy all around the lattice, each atom will eventually have its
turn to exchange with the vacancy. From the outset, we might guess that the
vacancy diffusivity will be much larger than that of the host or “self” atoms;
the self-diffusion coefficient will be much smaller than the vacancy diffusion
coefficient.

Figure 11.4: Tile puzzle analogy for both self-diffusion and substitutional impu-
rity diffusion.

Substitutional impurities, namely those that sit on host atom sites rather than
in its interstices, also depend upon vacancy motion for diffusion to take place.
The shaded atom in the bottom-right configuration in Fig. 11.4 represents such
a substitutional impurity. It is obvious that for this to take place, the atomic
radius of the impurity must be comparable to that of the host. Impurity atoms
will similarly bide their time waiting to exchange with a host vacancy that
comes their way. They may exchange more readily or less so than the host
atoms, but both diffuse by so-called “vacancy mechanism.”

Let’s consider vacancy diffusion within the rubric of the modular “plug-in”
diagram of Fig. 11.1. Box B of Fig. 11.1 will become equation 11.14:
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Γ = ΓvXv (11.14)

where Γv is the vacancy jump frequency and Xv is the “availability” factor
or site fraction of vacancies. The latter amounts to the probability that each
adjacent site is unoccupied. The first of these two terms can be derived by
analogy to equation 11.7 for interstitial motion, or equation 11.15:

Γv = zν exp
(

∆Smv

R

)
exp

(
−∆Hmv

RT

)
(11.15)

where z is the coordination number, ν is the attempt frequency, and ∆Smv and
∆Hmv are the entropy and enthalpy of vacancy motion, respectively.

We will address each of these parameters later, but for now let’s concentrate on
the site fraction of vacancies or Xv. If temperature is sufficiently high, the va-
cancy concentration will be in thermodynamic equilibrium. We can approach
this problem as was done for the regular solution model in your prior ther-
modynamics coursework. Expressions were written for both the enthalpy of
mixing in equation 11.16:

∆HM = ΩXAXB (11.16)

and the entropy of mixing in equation 11.17:

− T∆SM = −T [−R(XA ln XA + XB ln XB)] (11.17)

where Ω is the “interaction parameter” and XA and XB represent the mole
fractions of the two components. The phase boundaries of the regular solution
solvus were found by plugging these two equations into the overall expression
for the free energy of mixing, equation 11.18:

∆GM = ∆HM − T∆SM (11.18)

taking the derivative with respect to composition (XB), and setting the result
equal to zero.

In the case of the formation of vacancies in a solid metal, the corresponding
enthalpy term is given by equation 11.19:
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∆H ' Xv∆Hv (11.19)

where ∆Hv represents the enthalpy increase per mole of vacancies. Similarly,
the entropy of forming a mole of vacancies is given by equation 11.20:

∆S = ∆Snonconfig + ∆Sconfig (11.20)

where the non-configurational entropy, incorporating the thermal/vibrational
entropy per mole of vacancies (∆Sv), is given by equation 11.21:

∆Snonconfig ' Xv∆Sv (11.21)

and the configurational entropy looks a lot like the entropy of mixing (in equa-
tion 11.17) or equation 11.22:

∆Sconfig = −R[X ln Xv + (1− Xv) ln(1− Xv)] (11.22)

If we begin with the standard free energy of the “perfect” crystal (Go
A), and

insert all the enthalpic and entropic terms for vacancy formation, the Gibbs
free energy of the defective crystal compared to that of the perfect crystal is
given by equation 11.23:

GA − Go
A = ∆Gv = Xv∆Hv − TXv∆Sv + RT [Xv ln Xv + (1− Xv) ln(1− Xv)]

(11.23)

Fig. 11.5 shows how the enthalpic and entropic factors contribute to the overall
free energy of vacancy formation.

At first, ∆Gv decreases with increasing vacancy concentration, being domi-
nated by the entropy terms. Eventually, however, the enthalpy term turns
things around, dominating at higher vacancy concentrations. A minimum in
the free energy of vacancy formation occurs at the so-called equilibrium value
(Xe

v). This value can be derived by taking the first derivative of equation 11.23
and setting it equation to zero as in equation 11.24:

(
∂G
∂Xv

)
Xv=Xe

v

= 0 = ∆Hv − T∆Sv + RT ln
(

Xe
v

1− Xe
v

)
(11.24)
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Figure 11.5: Competition of the enthalpic and entropic terms in vacancy forma-
tion, resulting in an equilibrium concentration at Xe

v.

Rearranging equation 11.24, exponentiating, and making the assumption that
Xe

v � 1, we obtain equation 11.25, which relates the equilibrium vacancy con-
centration (site fraction of vacancies) to temperature:

Xe
v = exp

(
∆Sv

R

)
exp

(
−∆Hv

RT

)
(11.25)

For now, let’s leave the testing of our assumption (Xe
v � 1) for later, and plug

this equation (11.25) into Box D of Fig. 11.1. We previously derived equation
11.15, which is Box C of Fig. 11.1. Plugging these equations into the jump
frequency expression of Box B, we obtain an overall equation for self-diffusion
(Box A) by vacancy mechanism, or equation 11.26:

DA =

[
1
6

α2zν exp
(

∆Sv + ∆Smv

R

)]
exp

[
−(∆Hv + ∆Hmv)

RT

]
(11.26)

which can be simplified to the basic equation 11.27:

DA = DA0 exp
(
−QSD

RT

)
(11.27)

where QSD, the activation energy of self-diffusion, is the sum of formation
(∆Hv) and motion (∆Hmv) enthalpies, and DA0 is the pre-exponential factor
that incorporates all the factors within the first bracket of equation 11.26. As
with interstitial diffusion, we can reorganize equation 11.26 into geometric (γ),
entropic (S), and activation energy (Eact) factors, as in equation 11.28:
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DA = γSEact =

(
α2zν

6

) [
exp

(
∆Sv + ∆Smv

R

)] [
exp

(
−(∆Hv + ∆Hmv)

RT

)]
(11.28)

Before we examine the factors in the pre-exponent and estimate its value, it is
useful to calculate the diffusion coefficient of the vacancies themselves. Plug-
ging equation 11.15 into Box C of Fig. 11.1 and inserting this for the Γ term in
Box A, we obtain equation 11.29:

Dv =
1
6

α2Γv =

[
1
6

zνα2 exp
(

∆Smv

R

)]
exp

(
−∆Hmv

RT

)
(11.29)

Comparing equations 11.26 and 11.29, two important relationships result,
equations 11.30 and 11.31:

ΓA = ΓvXv (11.30)

DA = DvXv (11.31)

As we said above, the vacancies are moving around much more frequently
than individual host atoms. In the following section, we mention that the va-
cancy concentration in fcc metals can be as high as Xv ∼ 0.001 at just below
their melting points. Simple math shows us that the ratio of jump frequen-
cies (Γv/ΓA) or diffusivities (Dv/DA), that is of vacancies vs. host atoms, will
therefore be 1000x! Actually, you can prove this to yourself by solving a “tile”
puzzle and counting the number of jumps made by each numbered tile com-
pared to the number of jumps the “vacancy” makes to solve the puzzle.

Now let’s estimate a range of pre-exponential factors for self-diffusion in fcc
metals based upon our best guess of atomistic factors. We will assume a repre-
sentative value for the jump distance in equation 11.26 of approximately 0.3nm
or 0.3x10−7cm. For example, recall that we obtained α = 0.26nm for fcc iron.
We also established that the coordination number (z) of adjacent sites around
any given host atom, on which a vacancy might sit, is 12. Again, we will
assume the familiar value for the attempt frequency (ν) of ∼ 1013/s. Theo-
rists find values for both the entropy of formation and motion to be on the
order of R, or exp(∆S/R) ∼ 2.7, however a range of values is found in the
literature. We will employ a range of values of 1 . exp(∆Sv) . 10 and
1 . exp(∆Smv) . 10 . Plugging all these values into equation 11.26, we obtain
a range of pre-exponent values of 0.018cm2/s . DA0 . 1.8cm2/s.
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So how did we do? The pre-exponential factors for self diffusion are 1.7cm2/s,
1.9cm2/s, and 0.30cm2/s for fcc aluminum, nickel, and copper, respectively
[9]. Given all the assumptions we made, the agreement is quite good.

What about self-diffusion in bcc metals? Again, let’s assume a represen-
tative value for the jump distance in equation of approximately 0.3nm or
0.3x10−7cm. As opposed to fcc metals, the jump distance is different for site-
to-site jumps vs. interstitial-to-interstitial jumps. This is demonstrated in the
bcc structure of Fig. 11.6, where the near-neighbor jump is one-half the body
diagonal, or (

√
3ao)/2. In bcc iron, this jump distance would be 0.25nm or

.25x10−7cm. From the same Fig. 11.6, the coordination number is obviously 8
as opposed to 12 for fcc metals. Again, assuming a typical attempt frequency
(ν) of 1013/s and a range of entropic factors, such that 1 . exp(∆Sv) . 10
and 1 . exp(∆Smv) . 10, and inserting these values into the first bracket of
equation 11.26, we obtain as an estimate, 0.012cm2/s . DA0 . 1.2cm2/s.

Figure 11.6: Jump distance for self-diffusion in bcc metals.

Again, how did we do? The pre-exponential factors for self-diffusion are
2.0cm2/s, 1.8cm2/s, and 0.2cm2/s for bcc iron, molybdenum, and chromium,
respectively[9]. Again, the experimental values are in good agreement with
our simple-minded predictions.

11.3 Interstitialcy Diffusion

Of the three diffusion mechanisms we have thus far considered, interstitialcy
diffusion is certainly the most unusual. The German word for this mechanism
is “zwischengitterstossmechanismus,” which does a far better job conveying
the concept. The words that make up this moniker will help us understand
its meaning. The word “gitter” refers to the normal lattice sites. The word
“zwischen” means “between.” And the word “stoss” means “shove.” This
mechanism is exclusive to compounds with more than one sublattice. This is
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because the interstice size in metals is never big enough to accommodate a self-
interstitial. However, in certain ceramic materials one species, for example the
electropositive cations, can be much smaller than the electronegative anions.
And in this case the cation interstices can be large enough to accommodate
cation self-interstitials. The classic example is AgBr, which readily forms Ag
self-interstitials. But rather than moving around by interstitial mechanism, as
carbon does in iron, a coordinated two-cation motion mechanism takes place,
in which an interstitial cation bumps another cation off its normal site and
takes its place. That’s where the “shove” part of zwischengitterstossmechanis-
mus comes in. The normal cation now becomes an interstitial cation, and the
process continues. A schematic of the first step of such a process in AgBr is
shown in Fig. 11.7 in terms of “before” and “after” positions of ions. Only the
Ag+ species are shown, since all the action involves silver cations.

Figure 11.7: Schematic of the “before” and “after” positions of cations undergoing
interstitialcy diffusion.

I like to think of one of two analogies for interstitialcy mechanism. The first
involves “sending” an opponent’s ball in croquet. Once I touch your ball with
mine, I have the option of positioning my ball under my foot right next to
yours and then clobbering my ball, the transferred momentum sending your
ball way off course. The other analogy involves shuffleboard (or curling, if
you have ever seen it), where the momentum of my puck/stone is transferred
to your puck, which (hopefully) is removed from the scoring area while mine
takes its place. Two points need to be made about the interstitialcy event. As
shown in Fig. 11.7, the process is “collinear,” meaning that the pushed atom
moves along the same line as the pushing atom. This need not be the case,
as we well know from the shuffleboard/curling analogy. Non-collinear in-
terstitialcy mechanisms are definitely known to occur. Second, note that the
interstitial has moved twice as far as the host atom that got pushed. This may
not seem significant, but it is actually one way to confirm that the collinear
interstitialcy mechanism is occurring. Later we will find out how to use elec-
trical conductivity to establish the diffusivity by charged ions, so-called ionic
diffusivity/conductivity. It turns out that when we measure the diffusivity of
silver ions by tracer methods in AgBr, we get an answer that is approximately
half the diffusivity of silver ions measured by electrical conductivity. Why is
this? Look again at Fig. 11.7. The charge (the interstitial) is moving twice as
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far as the shaded host ion (which could be a tracer ion).

Given the complexity of the interstitialcy mechanism and the relative dearth
of representative pre-exponential factors, we will not subject this mechanism
to the intense atomistic scrutiny as we did for interstitial and vacancy mech-
anisms. However, we can make some remarks about “jump frequency” and
“defect availability” in Box B of Fig. 11.1. It makes sense that the interstitialcy
defects are jumping with a frequency, Γiy (”iy” for interstitialcy). But if I am a
silver cation on a host site, instead of waiting for “pullers” to come along (va-
cancies), I am now biding my time awaiting the arrival of a “pusher” to come
along (interstitialcy defects) and knock me on my way. Hence the defect avail-
ability factor will be the fraction of occupied interstices, or Xiy. By analogy
with the vacancy mechanism, the corresponding Box E interstitialcy diffusion
coefficient (with direct analogy to equation 11.26) is equation 11.32:

DA =

[
1
6

α2zν exp
(

∆Siy + ∆Smiy

R

)]
exp

[
−(∆Hiy + ∆Hmiy)

RT

]
(11.32)

As with the vacancy mechanism, this equation has geometric (γ), entropic (S),
and thermally-activated components (Eact), as in equation 11.33:

DA = γSEact =

(
α2zν

6

) [
exp

(
∆Siy + ∆Smiy

R

)] [
exp

(
−(∆Hiy + ∆Hmiy)

RT

)]
(11.33)

The motion-related components are relatively straightforward to understand,
however the formation components (∆Siy) and (∆Hiy) will have to wait until
we have considered point defects in ionic solids, including the introduction
of a special shorthand representation for ionic defects called “Kröger-Vink”
notation.

11.4 The Arrhenius Behavior of Diffusion

We have shown that for all diffusion mechanisms considered thus far, Arrhe-
nius behavior results, namely that the diffusion coefficient is thermally acti-
vated as per the equation in Box F of Fig. 11.1. We already saw this behavior
for tracer diffusion in equation 10.7 and for general diffusion in equation 11.1,
which is repeated here:
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D = Do exp
(
−Q
RT

)
(11.34)

As materials scientists and engineers, we need to be confident in using and ma-
nipulating diffusion data that behave in this Arrhenius, thermally-activated
fashion. Here are some things we need to be able to do: 1) Plot experimen-
tal data for diffusion on a ln D vs inverse temperature (T−1) plot to extract
pre-exponent and activation energy; 2) Given the pre-exponent and activation
energy for diffusion, calculate the diffusion coefficient for a specified temper-
ature, or make the corresponding Arrhenius plot of ln D vs. T−1; 3) Given the
diffusion coefficient at one temperature and the activation energy, predict the
diffusion coefficient at another temperature; 4) Given diffusion coefficients at
two temperatures, be able to extract the pre-exponential factor and activation
energy, plus predict the diffusion coefficient at an intermediate temperature.
All of these tasks are quite straightforward once we recognize that taking the
logarithm of both sides of equation 11.34 results in the formula of a line, as in
equation 11.35:

ln D = ln Do + (
−Q
R

)T−1 = b + mx (11.35)

where the axes are y = ln D and x = T−1, the slope is m = −Q/R and the
intercept is b = ln Do. Alternatively, the slope is given by equation 11.36:

m =
y2 − y1

x2 − x1
=

ln D(T2)− ln D(T1)

T−1
2 − T−1

1

(11.36)

These relationships are represented schematically in Fig. A. It should be noted
that diffusion data are more commonly plotted on base-10 log D vs. T−1 plots,
but it is easy enough to modify equation 11.35 to equation 11.37:

log D = log Do + (
−Q

2.303R
)T−1 = b + mx (11.37)

Be certain not to make the mistake of plotting temperature in oC! All diffusion
plots employ temperature in degrees Kelvin.
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Figure 11.8: Illustration of the Arrhenius behavior of diffusion.

12 How We Know That Point Defects Exist and
Move, Plus Some Useful Relationships

We are going to “turn back the hands of time” to answer these questions. Of
course, we can now image individual atoms on very sharp tips in machines
called (what else?) atom probes. But long before the existence of such atom
probes or high resolution electron microscopes, we knew about atoms and
their absence (vacancies) and that such defects moved around. At the times
in question (the 1950s and 1960s) the following methods were “de rigueur.”
Along the way we have learned quite a bit about diffusion in crystalline solids
(metals, ceramics) and distilled some important relationships concerning their
transport behavior.

12.1 The Classic Simmons-Balluffi Experiment

You can read about the original experiment for yourself in the refer-
ence [10], but this classic experiment employed simultaneous measurement
of macroscopic expansion (using a high-accuracy dilatometer) and sub-
microscopic/lattice spacing changes (using in situ X-ray diffraction) on a sin-
gle crystal specimen of an fcc metal during controlled heating. This may seem
like a circular argument, but we already anticipate that the vacancy concentra-
tion will increase with temperature (see equation 11.25) and should be high-
est near the melting point. So the procedure involved intrepid experimenters
willing to go to high temperatures, even approaching the melting temperature.
The general concept is given schematically in Fig. 12.1.

First we see a vacancy added to one of the close-packed planes in the fcc struc-
ture. We anticipate that the average lattice spacing would change (possibly
decreasing), but in the end this influence ends up being factored out. The
second effect has to do with the fact that vacancies can only be added at sur-
faces, as shown. Given enough vacancies, however, this will amount to extra
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a

  x-ray
diffraction
 (XRD)

dilatometer

Figure 12.1: Basic concepts of the Simmons-Balluffi method to determine the va-
cancy concentrations in an fcc metal vs. temperature.

planes being added to the crystal. This should be reflected in the dilatometer
measurements, if we are able to measure very small strains. So whereas the
change in lattice parameter, ∆a/a, will be reflected in both X-ray diffraction
or XRD (see the schematic of X-rays diffracting from the planes in Fig. 12.1)
and in dilatometry, the increase in the number of planes owing to vacancy for-
mation ((∆L/L)planes) will only be reflected in dilatometry. What we need to
do is relate a uniaxial (1D) length change to the overall volume change (3D).
Turning to Fig. 12.2, if the volume of a cube of material at room temperature is
given by V = L3, its volume once expanded (and at temperature) will be given
by V′ = (L + ∆L)3.

Figure 12.2: Changing from 1D expansion to 3D expansion.

Doing the math for ∆V/V = {[(L + ∆L)3 − L3]/L3} and dropping all terms
involving (∆L)2 or (∆L)3, since ∆L itself is quite small, we find equation 12.1:

∆V
V
' 3∆L

L
' Xv + βXv (12.1)
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where the first term on the right reflects the addition of planes owing to va-
cancy formation, and the second term takes into account the lattice contraction
and/or expansion in proportion to the site fraction of vacancies being formed.
But we can also argue equation 12.2:

3∆a
a

= βXv (12.2)

The contraction and/or expansion of lattice planes by X-ray diffraction is in
proportion to the site fraction of vacancies. Subtracting equation 12.2 from
equation 12.1 eliminates the βXvterm (so we needn’t concern ourselves with
the value of β) and yields the desired equation 12.3:

Xv = 3
(

∆L
L
− ∆a

a

)
(12.3)

This equation may seem simple enough, but careful examination reveals just
how difficult (how de rigueur) this experiment was at the time. Simmons and
Balluffi had to measure extremely small differences between two very small
quantities as they changed with temperature. You can pull up the original ref-
erences to examine the original data and plots, but a schematic representation
is given in Fig. 12.3.

,

Figure 12.3: Schematic representation of Simmons-Balluffi data for an fcc metal.

A first observation is that both quantities (∆L/L) and (∆a/a) increase signif-
icantly with temperature, much more than can be explained by the addition
of vacancies, and that both are concave upward with temperature. In fact,
both quantities are reflecting the fact that thermal expansion is occurring with
increasing temperature. This might seem to be a “deal-breaker” at first, un-
til you realize that thermal expansion should be reflected identically in both
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quantities (dilatometry, XRD). Therefore, as per equation 12.3, any thermal
expansion-induced changes will cancel out. A second observation is that up to
an onset temperature (Tonset) there is no apparent difference in the two quan-
tities. Actually, there should be a difference at every temperature (as long as
the vacancy concentration is in thermal equilibrium); however, below Tonset
the vacancy concentration is simply too small to be registered, meaning that
any difference will be undetectable within the experimental limits of the two
measurement methods. Above Tonset, however, there is a noticeable difference
between (∆L/L) and (∆a/a), whose value is precisely one-third the vacancy
concentration. It is obvious that the vacancy concentration increases mono-
tonically with temperature up to the melting point.

Taking the natural logarithm of both sides of equation 11.25 we obtain equa-
tion 12.4:

ln Xv =
∆Sv

R
+ (
−∆Hv

R
)T−1 = b + mx (12.4)

This tells us that by plotting the Simmons-Balluffi-derived Xv vs. temperature
data on an Arrhenius plot of ln Xv vs. inverse temperature, as shown schemat-
ically in Fig. 12.4, we can extract both the entropy of vacancy formation (from
the y-axis intercept) and the enthalpy of formation (from the slope).

Figure 12.4: Schematic Arrhenius plot of Simmons-Balluffi data for an fcc metal.

In the original work on aluminum, the values obtained for ∆Sv and ∆Hv were
2.2R and 72.4kJ/mole (or 0.75 eV), respectively.

12.2 Some Important Numbers and a Useful Relationship Re-
garding Vacancy Formation in fcc Metals

Now that we have the ability to establish equilibrium vacancy concentrations
in metals, we can derive useful relationships, for example between the en-
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thalpies of vacancy formation and the melting points of fcc metals. It turns
out experimentally that the equilibrium vacancy concentrations at the melting
points of fcc metals are almost always in the range, 10−4 > XV(Tm) . 10−3.
Let’s plug this range of values into equation 11.25 and assume that ∆Sv ≈ 2.3R
or exp(2.3R/R) ≈ 10. This yields equation 12.5:

10−4 − 10−3 ≈ 10 exp
(
−∆Hv

RTm

)
(12.5)

from which it follows that 9.2RTm . ∆Hv . 11.5RTm, or approximately equa-
tion 12.6:

∆Hv( f cc) ≈ 10RTm (12.6)

This rough estimate can come in quite handy, for example when you know the
melting point of an fcc metal, but lack a readily available measured value for
the enthalpy of vacancy formation. In addition, knowing that vacancy concen-
trations of fcc metals are on the order of 10−4to 10−3at their melting points is
also good to put to memory.

12.3 The Classic Bauerle and Kohler Experiment

So far we have good evidence for the existence of point defects like vacancies,
but is there evidence for their motion? We can certainly argue “yes” on the
basis of tracer diffusion experiments. However, this question was answered in
another way by Bauerle and Kohler [11]. This experiment is a bit more diffi-
cult to describe, but following the development will pay dividends. Since the
experiment involved the use of electrical resistivity measurements, we need to
introduce what is referred to as Matthiessen’s rule, given by equation 12.7:

ρ = ρt + ρv + ρd (12.7)

where the total resistivity of a metal is shown to be governed by several
electron-scattering mechanisms, including thermal vibrations (ρt), scattering
by vacancies (ρv), and scattering by other defects like dislocations (ρd). Since
the resistivity of metals tends to be quite low, Bauerle and Kohler employed
wires to enhance the measurable resistance, given by ρl/A, where l is wire
length and A is cross-sectional area. The experimental campaign is repre-
sented schematically in Fig. 12.5.
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slow
 cool

quench
T

t (time)

  room
temperaturemeasure measure

set

Figure 12.5: Schematic of the Bauerle and Kohler experimental campaign.

A wire of fcc metal was heated to what we will refer to as a “quench tem-
perature” (Tq) in order to set the equilibrium vacancy concentration for that
temperature. In two separate experiments, the wire was heated and held at Tq
and then quenched to room temperature, freezing in the equilibrium vacancy
concentration of the quench temperature, or Xv(Tq). After electrical measure-
ment at room temperature, the same wire was heated and held at Tq and then
slow-cooled to room temperature. This second process allows for vacancy an-
nihilation to take place, such that the resulting vacancy concentration is neg-
ligibly small. By subtracting the wire’s resistivity slow-cooled (ρsc) from that
quenched (ρq), we find equation :

∆ρ = ρq − ρsc = (ρt + ρv + ρd)− (ρt + ρd) = ρv = αXv(Tq) (12.8)

We are assuming that there are no changes in the other defects (including dislo-
cations) during quenching vs. slow cooling, and that the thermal contribution
to resistivity will be the same, since both measurements are made at room tem-
perature. The thermal and other defect contributions therefore cancel, leaving
only the vacancy scattering contribution, which we can set equal to a constant
(α) times the vacancy concentration frozen-in from the quench temperature
[Xv(Tq)], as in equation 12.8. This gives us something proportional to the equi-
librium vacancy concentration at only one quench temperature, so Bauerle and
Kohler repeated the procedure in Fig. at several other quench temperatures.
They then plotted the natural logarithm of ∆ρ(Tq) vs. the inverse of quench
temperature in Arrhenius fashion, as shown schematically in Fig. 12.6. Since
α is a constant that does not change with quench temperature, the slope of the
plot should reflect only the activation energy for vacancy formation, ∆Hv, as
shown in the Fig..

The result obtained for fcc gold by Bauerle and Kohler was 94.6kJ/mole or
0.98 eV, in excellent agreement with later work of Simmons and Balluffi by
dilatometry/XRD (90.7kJ/mole or 0.94 eV). We should stress that since the
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Figure 12.6: Schematic Arrhenius plot of quench-resistivity data from Bauerle and
Kohler.

quench-resistivity method only yields a quantity that is proportional to the
vacancy concentration as opposed to the vacancy concentration itself (as in
the dilatometry/XRD work), it is impossible to extract information regarding
the pre-exponential factor and underlying entropic term by quench-resistivity
method.

The real advantage of the Bauerle-Kohler method, however, is that in addition
to the enthalpy of vacancy formation, the enthalpy of vacancy motion can also
be determined. To appreciate how this is done, we have to resurrect an old
equation for the relaxation of vacancies, namely equation 10.8 repeated here:

c̄
co

=
8

π2 exp(− t
τ
) (12.9)

You will recall this as the “diffusion out of a slab” equation that we also em-
ployed to describe vacancy relaxation to sinks such as dislocations or grain
boundaries. It is valid when the average composition relaxes to below 80% of
the initial composition. In the present situation (quench-resistivity measure-
ments) we can modify this equation to equation 12.10:

X̄v = Xvo
8

π2 exp(− t
τ
) (12.10)

where X̄vis the average vacancy concentration and Xvo is the quenched-in
starting vacancy concentration. This, in turn, can be related to the quench-
resistivity measurements by equation 12.11:

∆ρ = αXvo
8

π2 exp(− t
τ
) (12.11)

having inserted the relationship from equation 12.8, namely that ∆ρ = αX̄v.
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Here is where the process of obtaining the motion enthalpy of vacancies gets
a little complicated, so stay with me. Fig. 12.7 shows a schematic of the
temperature-time history of the series of experiments.

quench hold hold hold

quench quench

measure measure measure measure

quench

t (relaxation time)

t (relaxation time)

quench quench quench

hold hold hold

measure measure measure

Figure 12.7: Schematic of the Bauerle-Kohler process for obtaining the enthalpy of
vacancy motion.

Bauerle and Kohler began by setting a high initial concentration of quenched-
in vacancies, by quenching from Tq to room temperature, where the initial
value of ∆ρowas measured. Remember that ∆ρ is always the as-quenched re-
sistivity minus the slow-cooled resistivity. They then proceeded to take the
wire to a relatively low intermediate temperature, Trelax1, high enough to fa-
cilitate vacancy relaxation to sinks, but not so high that a significant fraction
of the residual vacancies are lost. This involved a series of sub-experiments:
1) heat at Trelax1 for a set time, 2) quench to room temperature, and 3) measure
∆ρ(t1), and then repeat. As shown in Fig. 12.7, the measured ∆ρt is for the cu-
mulative time, e.g., t = t1 + t2 + t3 + etc., at the relaxation temperature. They
then went to a higher relaxation temperature, Trelax2, and repeated the same
series of heat-quench-measure procedures. By taking the natural logarithm of
both sides of equation 12.11, noting that α, Xvo, and 8/π2 are all constants, we
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obtain equation 12.12:

ln ∆ρ = ln(const)− t
τ

(12.12)

We can normalize each ∆ρ by the initial ∆ρo, and plot the natural logarithm of
∆ρ/∆ρo vs. cumulative relaxation time, as shown schematically in Fig. 12.8.

0.0

t (relaxation time)

Figure 12.8: Schematic of Bauerle-Kohler vacancy relaxation at two temperatures.

The plot starts at time zero, where ∆ρ = ∆ρoand ln(∆ρ/∆ρo) vs. time follows
a straight line of slope, −1/τ(T1), up to the point where the change was made
to relax at the higher temperature,Trelax2 , after which the slope increases, be-
coming −1/τ(T2). You might be asking, “Are we there yet?” And the answer
is, “Almost!” Remember the definition of the relaxation time in equation 10.4,
repeated here in terms of vacancies:

τ =
l2

π2Dv
(12.13)

where l is the spacing between sinks, which we assume is not changing
throughout thermal history, and Dvis the vacancy diffusivity. Using our
knowledge of vacancy diffusivity, we can write the following equation 12.14:

Dv = Dvo exp
(
−∆Hmv

RT

)
(12.14)

Since l and π2are constants, we can relate the relaxation times at the two tem-
peratures in Fig. 12.8 to the corresponding vacancy diffusivities, and the en-
thalpy of motion in equation 12.15:
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τ(Trelax1)

τ(Trelax2)
=

Dv(Trelax2)

Dv(Trelax1)
= exp

[
∆Hmv

R

(
1

Trelax2
− 1

Trelax1

)]
(12.15)

Using this procedure Bauerle and Kohler found the enthalpy of vacancy mo-
tion in solid gold to be 79.1 kJ/mole or 0.82 eV. Adding this to their enthalpy
of vacancy formation (94.6 kJ/mole or 0.98 eV), we obtain a value of 173.7 kJ/-
mole or 1.80 eV. This happens to be virtually identical to the activation energy
for gold self-diffusion (by tracer method), which is a nice double-check.

12.4 Some Useful Relationships Regarding Self-Diffusion
and Vacancy Motion in fcc Metals

Another highly useful relationship has been found for fcc metals, as expressed
in equation 12.16:

QSD( f cc) ≈ 18RTm (12.16)

where the activation energy for self-diffusion (typically measured by tracer
diffusion) is approximately 18 times the product of R and the melting point
(in degrees Kelvin). Since QSD = ∆Hv +∆Hmv, subtracting equation 12.6 from
equation 12.16 gives the approximation of equation 12.17:

∆Hmv( f cc) ≈ 8RTm (12.17)

For example, the melting point of gold is 961.8oC or 1234.8K, for which we
would predict a vacancy motion enthalpy of 82.1 kJ/mole or 0.85 eV, in good
agreement with the Bauerle and Kohler value (79.1 kJ/mole or 0.82 eV).

It turns out that the normalized self-diffusion activation energy, QSD/RTm, is
roughly constant for each type of crystal structure (including ceramics in ad-
dition to metals), however there is a different normalization factor for each
structure type. It would pay to do a literature search for the appropriate rela-
tionship when exploring a solid with a crystal structure new to you.

This is also a good chance to introduce the concept of “homologous temper-
ature,” which is defined as the fraction of an element’s melting temperature
on an absolute temperature scale. You will encounter this a lot when deal-
ing with kinetic phenomena in materials. For example, the two “intermedi-
ate” temperatures employed for vacancy relaxation in quenched gold, repre-
sented schematically as T1and T2in Figs. 12.7 and 12.8 were 40oC and 60oC,
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or 313K and 333K on the absolute temperature scale. These temperatures
are 25.4% and 27.0% of the melting temperature of gold. Were we to make
similar measurements on a different fcc metal, a good guess for relaxation
temperatures would be to start with the same homologous temperatures of
0.254 . (T/Tm) . 0.270.

One last useful number to keep in mind is the melting point diffusivity of solid
fcc metals. From the fact we were just given, namely that QSD/RTm ≈ 18, we
can exponentiate as in equation 12.18:

exp
(
−QSD
RTm

)
≈ exp(−18) = 1.8x10−8 (12.18)

You may recall that we employed a range of pre-exponential values for fcc
metals, namely 0.018cm2/s . DAo . 1.8 cm2/s. If we arbitrarily choose a
value of 1.0 cm2/s, this means that the melting point diffusivity of fcc metals
should be on the order of 10−8 cm2/s, which is in fact quite common experi-
mentally. This number, DA(Tm, f cc) ≈ 10−8 cm2/s, is therefore a good one to
put to memory.

13 Point Defects and Transport in Ionic Solids (Ce-
ramics)

Many properties/functions of ionic solids/ceramics are governed by their
point defect structures, including ionic diffusivity and ionic charge trans-
port/conductivity. However, in order to understand defect-related structure-
property relationships we need first to master the notation now near univer-
sally employed to describe point defects, their formation reactions, and their
point defect equilibria–otherwise known as “point defect chemistry.” The par-
ticular notation employed is referred to as “Kröger-Vink” notation, which we
introduce in the following section.

13.1 Kröger-Vink Notation

A helpful shorthand scheme for Kröger-Vink (K-V) notation is given in Fig.
13.1. An easy way to recall this shorthand scheme is by remembering it as
the M, S and C in “Materials SCience.” The “M” stands for matter, or the lack
thereof (for example a vacancy). The “S” stands for the site on which the defect
sits. And the “C” stands for charge. However, in K-V notation the “C” is not
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real charge (as on the individual ions), but rather effective charge, namely the
charge of a defect species relative to the perfect crystal. How these all work
can best be illustrated by considering a number of examples.

M

charge (effective)
neutral
positive

negative

   matter
(or lack thereof)

site

C

S

Figure 13.1: Schematic representation of Kröger-Vink notation.

Let’s begin by considering host species and fully-charged point defects in zir-
conia, ZrO2. Before we start, it is useful to consider the real charges on the
ions with which we are dealing. We can write the formula unit of ZrO2 as
Zr4+O2−

2 . Hence, we can write the host cation species as (Zr4+
Zr4+)

×, where the
superscript “×” represents a neutral species insofar as effective charge is con-
cerned. That is, the perfect (non-defective) crystal is charge-neutral. What we
have written is that a Zr4+ cation on a host Zr4+site has an effective charge of
zero (represented by the superscript “×” in K-V notation. Similarly, we can
write the host anion species as (O2−

O2−)
×, representing an O2− host anion on an

O2− site, with neutral effective charge. For a while we will continue to write
host and defect species with real charge inside the parentheses, however this
practice not part of the K-V system, but only a temporary “crutch” to help get
us comfortable with the notation scheme. In K-V notation, the host species we
have thus far considered would be, Zr×Zr and O×O .

But what about point defects? Let’s first consider oxygen defects, both vacan-
cies and interstitials. Oxygen vacancies could be written as, (v0−

O2−)
••, repre-

senting a vacancy with zero real charge on an oxygen 2- site. The effective
charge is thus +2, represented by the two dots. Another way to think about
this is to begin with a charge-neutral occupied oxygen site and remove from
it (and the perfect crystal) an O2−species. Since the crystal began electrically
neutral, what remains must be doubly-charged positive. How about oxygen
interstitials? Remember that, as opposed to close-packed metals where self-
interstitials are energetically unfavorable, self-interstitials of cations or anions
in ionic crystals are quite possible so long as the ionic radius of the interstitial
species is close to that of the interstice on which it resides. We can write an oxy-
gen anion interstitial as, (O2−

i0−)
′′, which represents a doubly-charged oxygen

anion on an originally uncharged interstice. The effective charge is doubly-
negative, as represented by the two strike marks. Another way to think about
this is to insert a doubly-charged negative ion in an empty interstice in an oth-
erwise neutral crystal. The effective charge should be doubly-negative. In K-V
notation, these two species would be represented as v••

O and O
′′
i for vacancy

and interstitial, respectively. Are you beginning to get the overall idea?

Let’s test out our understanding by considering cation defects. A cation va-
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cancy would be (v0+
Zr4+)

′′′′ or v
′′′′
Zr in K-V notation. Again, you can think of

this as removing a a Zr4+cation from an otherwise neutral crystal. What is
left behind must have a quadruply-charged positive effective charge. Note
that instead of a superscript of (4’), K-V writes the effective charge in terms
of quadruple-strike marks. Similarly, a cation interstitial would be (Zr4+

i0+) or
Zr••••i in K-V-notation. Again, you can think of this as inserting a Zr4+ cation
in an empty interstice in an otherwise neutral crystal.

Now let’s consider donor and acceptor doping. For example, let’s put a 5-
valent tungsten cation on a Zr4+site. We could represent this as (W5+

Zr4+)
• or

W•
Zr in K-V notation. The fact that this is a donor is obvious from its positive

effective charge. If we compensated for this doping by electronic species, we
would have to choose electrons over electron holes. We will consider their K-
V representation shortly. Now, consider putting a 2-valent calcium ion on a
Zr4+ site. We could represent this as (Ca2+

Zr4+)
′′

or Ca”
Zr in K-V notation. The

fact that this is an acceptor is obvious from its negative effective charge. If
we compensated by electronic species, we would have to chose electron holes
over electrons.

Finally, how do we represent those electronic species–electrons and holes.
Electrons have the following notation in K-V: e′. And electron holes have the
following notation in K-V: h•. Note that in neither symbol is there a subscript.
This is because electrons and holes do not belong to specific sites, but rather to
the crystal at large.

So we are now equipped to begin writing balanced point defect reaction equa-
tions and mass-action relationships. But there is one caveat that must be made.
In most cases the concentration of a specific species is indicated by putting a
set of brackets around the particular species. For example, the concentration
of oxygen vacancies and zirconium cation interstitials would be represented
as [v••

O ] and [Zr••••
i ], respectively. However, there is a special practice for the

electronic species, namely that the concentrations of electrons and holes are
represented as n and p, respectively, rather than [e

′
] and [h•]. But this is easy

to remember, since you are probably aware of n-type vs. p-type behavior in
donor-doped vs. acceptor-doped semiconductors.

13.2 Rules for Balancing Point Defect Reactions

The Kröger-Vink rules for writing balanced point defect reactions can also be
made to play off the M, S and C in “Materials SCience, as shown in Fig. KV2.
Here “M” refers to mass-balance, namely that the mass on the left of a reaction
must equal the mass on the right. The “C” stands for charge-balance, meaning
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that the charge on the left side of a reaction must equal the charge on the right.
It should be stressed that the charge need not be zero for this to hold; both
sides may have net effective charge, as long as that charge is the same both
before and after the reaction proceeds. Finally, the “S” stands for site ratio and
not site-balance. What this means is that sites need not be balanced. In fact, we
can create sites with our reaction, as long as we preserve the site ratio of the
host. For example, if we create two cation sites in a reaction involving Al2O3
as the host, as long as we simultaneously create three oxygen sites, preserving
the 2:3 ratio of cation:anion sites, we will satisfy this rule. It is best to learn
and apply these rules by writing some actual balanced point defect reactions,
which we do in the following sections.

M
charge-balance

   mass-balance site ratio

C

S

sites can be created or destroyed,
but must be done in the stoichiometric
ratio of the host

Figure 13.2: Schematic representation of the “MC
S ” rules for writing balanced

Kröger-Vink reactions.

13.2.1 Stoichiometric Point Defect Reactions

In what follows three important distinctions must be made: 1) between “intrin-
sic” and “extrinsic” defects, 2) between stoichiometric and non-stoichiometric
point defect reactions, and 3) between homogeneous and inhomogeneous
point defect reactions. By “intrinsic” we mean that the reactions involve only
species that are part of the undoped host crystal. You can think of the de-
fects as being generated from “within.” On the other hand, “extrinsic” defects
come from “without,” for example dopant species. The following two sec-
tions on stoichiometric and non-stoichiometric point defect reactions involve
“intrinsic” point defects exclusively. In the third section, we consider doping
and are therefore dealing with “extrinsic” point defects. Stoichiometric point
defect reactions preserve the stoichiometry of the host, namely the O:M ratio
in an oxide, MxOy, will be preserved at fixed y/x throughout the reaction. In
non-stoichiometric point defect reactions (dealt with in the following section),
the O:M ratio will be shifted from y/x(stoichiometric). The third distinction
involves homogeneous vs. inhomogeneous point defect reactions. Homoge-
neous point defect reactions can take place anywhere throughout the crystal,
and do not require surfaces to act as a source/sink for defects. No point defect
gradients are generated between surface and bulk. On the other hand, inho-
mogeneous point defect reactions require a surface to act as a source/sink.
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Furthermore, as they occur a gradient of point defects is generated between
the surface and the bulk. They also tend to be relatively slow vis-a-vis ho-
mogeneous reactions, which can take place at any point in the crystal, and no
migration to/from a surface source/sink is required. This may seem confusing
right now, but the distinction will be made clear as we consider specific cases.

The first stoichiometric reaction involves the formation of vacancy/interstitial
pairs in what are known as Frenkel point defect reactions. These can be either
cation Frenkel or anion Frenkel pairs. For sake of simplicity, we will consider
all the point defect reactions of the present section as taking place in the M-
monoxide host, MO or M2+O2−. I strongly suggest putting the host above the
double arrows representing the reaction equilibrium in every case to remind
yourself of the host you are dealing with. The first reaction involves cation
Frenkel pair formation, as per equation 13.1:

(v×i ) + M×M
MO
� M••

i + v′′M (13.1)

The species within the parentheses stands for an unoccupied interstitial site.
Since the interstitial population is usually quite small in ionic solids, the site
fraction of unoccupied interstices is usually considered to be unity, and this
part of the equation is usually not written, since it is understood to exist as in
the revised equation 13.2:

M×M
MO
� M••

i + v′′M (13.2)

This is the form of the reaction that you will see in textbooks. Let’s do two
things with this reaction:

1. Confirm that it satisfies all the requirements for a balanced K-V reaction
as per the MC

S rules in Fig. 13.2:

(a) Mass Balance: As we consider reaction 13.2, we can see one M
species on each side of the equation; this makes it mass-balanced.

(b) Charge Balance: The left side of the reaction has zero effective
charge and the right side has two positive effective charges and two
negative effective charges, which sum to zero; the equation is there-
fore charge-balanced.

(c) Site Ratio: Since there is one cation site on the left and one cation
site on the right, there is no change in site ratio; the reaction satisfies
the site-ratio rule. You might question the appearance of the inter-
stice on the right, whereas there is no interstice on the left. However,
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site ratio pertains strictly to the normal host sites, and the availabil-
ity of unoccupied interstices (as expressed in the equation ) is un-
derstood. So this is a balanced K-V point defect reaction.

2. Consider whether it is homogeneous or non-homogeneous.

As shown in Fig. 13.3, the reaction simply involves a metal cation jump-
ing from a normal host site into an ever-present empty interstice. This
can occur everywhere homogeneously throughout the crystal, as shown,
and does not require the presence of a surface to serve as source/sink.
As a result, there will be no gradient of defect population between the
surface and bulk of the crystal.

The corresponding oxygen interstitial reaction can be written as equation 13.3:

O×O
MO
� O′′i + v••O (13.3)

Once again, we can test this equation against the MC
S rules. There is one oxy-

gen species on either side, so mass-balance is obeyed. There is zero effective
charge on either side, so charge-balance in achieved. Finally, there is one anion
site on either side, so site-balance is maintained. This is once again a balanced
K-V point defect reaction. Of course, the empty interstitial on the left side
of the reaction is understood. As with the cation Frenkel reaction, the anion
Frenkel reaction can occur homogeneously throughout the crystal, as repre-
sented schematically in Fig. 13.3. So oxygen Frenkel pair formation is a homo-
geneous point defect reaction. One final very important point should be made.
Whereas the cation Frenkel reaction will vary with host crystal stoichiometry,
namely the aluminum interstitial in Al2O3will be trivalent (Al•••i ) as will the
vacancy left behind (v

′′′
Al), the anion Frenkel reaction is universal to all oxides.

In other words, the identical reaction as in equation 13.3 can be written for any
oxide, including Al2O3.

The second stoichiometric point defect reaction is the formation of Schottky
defects. This will provide an important example of an inhomogeneous point
defect reaction. The balanced point defect reaction is given by equation 13.4:

Ø
MO
� v”

M + v••O (13.4)

At first glance this seems like an incomplete reaction. There is no mass present,
and what the heck is “null?” Well, believe it or not this is, in fact, a balanced
K-V point defect reaction. There is no mass on either side, so mass balance
is maintained. Both sides are charge-neutral (the 2+ and 2- on the right side
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Crystal

Figure 13.3: Schematic of the homogeneous nature of Frenkel reactions, whether
cationic (left) or anionic (right).

cancel), so charge balance is preserved. But what about the fact that there are
no sites on the left, whereas there are two on the right? The site-ratio rule does
not prohibit the formation or annihilation of sites, but rather specifies that if
formed or annihilated, this must be done in the stoichiometric ratio of the host.
In this case we create anion and cation sites in the requisite 1:1 ratio of the host
MO crystal (O:M=1). The “null” simply represents the perfect, non-defective
crystal prior to the formation of the Schottky pair.

But now let’s consider what makes this an inhomogeneous point defect reac-
tion. Consider the schematic of a surface of MO crystal in Fig. 13.4, where the
subscript “S” represents a surface species.

MO

MS

vO vM

MS MS MS MS

OO MM MMMM MMMS

OS OS

OS

OS OS OS

OO OO OO

vO vM

Figure 13.4: Schematic of Schottky pair formation at the surface of the oxide MO.

Let’s move a bulk oxygen species to the surface, as shown, making it a surface
anion and turning the underlying M surface species into a bulk cation. Next
move a bulk metal species to the surface, as shown, making it a surface cation
and turning the underlying O surface species into a bulk O species. By these
two sub-steps, two vacancies are formed, one cationic and one anionic. The
net point defect reaction can be written as equation :
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M×S + O×S + M×M + O×O
MO
� M×S + O×S + M×M + O×O + v′′M + v••O (13.5)

It can be seen that all species involving mass (an M cation or an O anion) can-
cel, leaving the much simpler equation 13.4. However, the exercise has been an
important one, since pairs of vacancies cannot arbitrarily form in the bulk of a
crystal. Instead, Schottky pairs must be formed at surfaces and then migrate
into the interior of the crystal, as shown in Fig. 13.5, thereby creating a point
defect concentration gradient, hence the inhomogeneous nature of Schottky
defect formation.

M O

M

O

M O

M

O

Figure 13.5: Schematic showing the inhomogeneous nature of Schottky defect for-
mation.

Two additional caveats must be made, however. Grain boundaries and dislo-
cation cores can also serve as internal surfaces in ionic solids, where Schottky
reactions can take place in either forward direction (they act as sources) or re-
verse direction (they act as sinks). The second caveat is to be careful to refer
to “Schottky pairs” only when the O:M ratio is 1:1, as in MO. In Al2O3, for
example, the Schottky formation reaction would produce five point defects, as
in equation 13.6:

Ø
Al2O3
� 2v”’

M + 3v••O (13.6)

I will leave it to you to check and see whether or not this equation satisfies the
MC

S rules.
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In addition to Frenkel and Schottky defect reactions, there are two additional
“stoichiometric” point defect reactions. The first involves site-exchange. For
example, in the spinel MgAl2O4 there are two different coordination environ-
ments for cations. The Mg cations reside on tetrahedral sites, meaning that
they are bonded to four oxygen anions. The Al cations reside on octahedral
sites, meaning that they are bonded to six oxygen anions. However, at elevated
temperature the two cations can switch sites, as represented by the following
equation 13.7:

Mg×Mg + Al×Al

MgAl2O4
� Mg’

Al + Al•Mg (13.7)

As with Frenkel reactions, this exchange need not take place only at surfaces,
since the two cations are only changing places. Hence, such cation exchange
reactions are homogeneous in nature. Once again, we can test whether or not
this equation is balanced in terms of the MC

S rules. There is one Mg species and
one Al species on each side, so the equation is mass-balanced. There is one
tetrahedral site and one octahedral site on each side, so the equation preserves
site balance. In this case, the site ratio is O:Al:Mg equal to 4:2:1. Finally, both
sides are charge-neutral. This is a balanced K-V reaction.

The final homogeneous point defect reaction involves electrons and electron
holes. Fig. 13.6 shows a schematic representation of the top of the filled valence
band (VBM or valence band maximum) and bottom of the unfilled conduction
band (CBM or conduction band minimum) of a semiconducting ceramic, and
the thermal promotion of an electron from the top of the VBM to the bottom of
the CBM.

CBM

VBM

CBM

VBM

Figure 13.6: Schematic of the valence band maximum (VBM) and conduction band
minimum (CBM) and electron promotion across the band gap of a semiconducting
oxide.

This process in Kröger-Vink notation is given in the intrinsic electronic reaction
of equation 13.8:

Ø
MO
� e

′
+ h• (13.8)
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So we have considered four different cases of stoichiometric point defect reac-
tions, namely those that result in no change of the overall stoichiometry of the
host. The ratio of O:M is maintained by each such reaction.

13.2.2 Non-stoichiometric Point Defect Reactions

We can divide non-stoichiometric point defect reactions into two categories,
namely 1) those that decrease the O:M ratio, otherwise known as reduction
reactions, and 2) those that increase the O:M ratio, otherwise known as oxi-
dation reactions. As we will show, the former always produces electrons for
charge-compensation and are n-type in nature, whereas the latter always pro-
duces electron holes for charge-compensation and are p-type in nature. Let’s
first consider reduction/n-type point defect reactions. Since oxygen gas either
is produced (reduction reactions) or consumed (oxidation reactions) and this
can only take place at surfaces, all non-stoichiometric point defect reactions
are inhomogeneous.

We can decrease the O:M ratio by either decreasing the oxygen content or by
increasing the cation content. Both are accomplished by the removal of oxy-
gen, resulting in oxygen gas being released, plus the simultaneous produc-
tion of electrons. The oxygen-decreasing reaction, otherwise referred to as an
“oxygen deficit” reaction, results in the formation of oxygen vacancies, as per
equation 13.9:

O×O
MO
�

1
2

O2(g) + v••
O + 2e

′
(13.9)

This is probably unnecessary at this point, but to keep you in the practice of
checking off the MC

S rules, it can be seen that 1) there is one oxygen species on
each side of the equation, 2) both sides are charge-neutral, and 3) we started
with one anion site and end up with one anion site such that site-ratio is pre-
served. This is a balanced K-V reaction.

We can also decrease the O:M ratio by increasing the cation content. The
cation-increasing reaction, otherwise referred to as a “metal-excess” reaction
results in the formation of metal interstitials, as per equation 13.10:

M×M + O×O
MO
�

1
2

O2(g) + M••i + 2e
′

(13.10)

I will leave it to you to check and see whether or not this equation satisfies the
MC

S rules.
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We can increase the O:M ratio by either increasing the oxygen content or by
decreasing the cation content. Both are accomplished by the addition of oxy-
gen and the simultaneous production of electron holes. The oxygen-increasing
reaction, otherwise referred to as an “oxygen excess” reaction, results in the
formation of oxygen interstitials, as per equation 13.11:

1
2

O2(g)
MO
� O

′′
i + 2h• (13.11)

It should be stressed that this equation is universal in oxides, meaning that the
O:M ratio of the host (above the arrow in the equation) does not matter; the
same reaction is as true in Li2O as it is in V2O5. The cation-decreasing reac-
tion, known otherwise as a “cation deficit” reaction, results in the formation of
cation vacancies, as per equation 13.12:

1
2

O2(g)
MO
� O×O + v

′′
M + 2h• (13.12)

We must be careful, however, since this reaction is not universal but rather de-
pends upon the O:M ratio of the host. For example, the corresponding cation
deficit reaction for Al2O3would be given by equation 13.13:

3
2

O2(g)
Al2O3
� 3O×O + 2v

′′′
Al + 6h• (13.13)

Note that we are producing both anion sites and cation sites, but in the requi-
site 3:2 ratio for Al2O3.

13.2.3 Aliovalent Doping Reactions

We now consider how the oxide, MO, might be aliovalently-doped. Isovalent
doping would be doping MO with oxide NO, where the valence state of the
species N is 2+, as it is in the MO host. Aliovalent doping means doping with
oxides having cations of different prevailing valence states than the host. We
can write reactions for donor-doping, where the doping cation has a higher
valence state than M2+, and for acceptor-doping, where the doping cation
has a lower valence state than M2+. In each case we can charge-compensate
with ionic point defects or with electronic defects. For example, let’s consider
donor-doping of MO with the trivalent cation N, or N2O3. The ionic com-
pensation reaction involves the formation of cation vacancies, as per equation
13.14:
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N2O3
MO−−→ 3O×O + 2N•

M + v
′′
M (13.14)

This is a good reaction on which to test your K-V balancing skills. The reaction
is obviously mass-balanced and charge-balanced, but what about site-ratio?
Well, the reaction yields 3 anion sites and 3 cation sites, which are created in
precisely the O:M ratio of the host (3:3 equals 1:1).

The alternative to ionic compensation is electronic compensation. Note that in
so doing, we need to release some of the oxygen as gas to maintain the M:O
ratio of the host. The resulting reaction is given by equation 13.15:

N2O3
MO−−→ 2O×O + 2N•

M + 2e
′
+

1
2

O2(g) (13.15)

Now let’s consider acceptor-doping of MO with the monovalent cation N, or
N2O for which the valence states are N+

2 O2−. The ionic compensation reaction
involves the formation of oxygen vacancies, as per equation 13.16:

N2O MO−−→ O×O + 2N’
M + v••O (13.16)

The electronic compensation reaction requires the addition of some oxygen on
the left side of the equation 13.17:

N2O +
1
2

O2(g)
MO−−→ 2O×O + 2N’

M + 2h• (13.17)

An obvious question to ask is which compensation mechanism (ionic, elec-
tronic) will take place in a certain dopant oxide/host oxide combination? The
answer is that it depends upon the defect formation energetics, which we con-
sider in the following section. You may also have missed a critical changeover
from the previous two sections on stoichiometric and non-stoichiometric re-
actions to the present one on aliovalent doping reactions. You will notice for-
ward and reverse arrows in the reactions of the prior two sections, but only
a forward arrow in the reactions of the present section. This is owing to the
fact that the first two sections dealt with equilibrium point defect reactions,
meaning that the forward and reverse arrows were balanced. With aliovalent
doping of ceramics, this is not the case, unless one has excess dopant oxide
present at high temperature, namely a two-phase mixture. Instead, ceram-
ics are donor-doped and acceptor-doped by incorporating a fixed amount of
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aliovalent dopant in the initial processing of the doped host ceramic. It is ex-
pected that the forward reaction goes to completion during processing at ele-
vated temperature. Therefore, there is only a forward arrow. In other words,
in equation 13.14 for example, we can set the vacancy concentration equal to
one-half the trivalent donor concentration, or [v

′′
M] = 1

2 [N
•
M]. It should be quite

clear that all doping reactions, whether isovalent or aliovalent are “extrinsic”
reactions, since the dopant species comes from “outside” the host crystal. It
should also be clear that all doping reactions are inhomogeneous, reflecting
the fact that dopants react with the surfaces of host oxide crystals/particles
and undergo what is referred to as “solid state reaction” (and long range dif-
fusion) to achieve doping uniformity throughout the doped ceramic.

13.3 Point Defect Thermodynamics in Ionic Solids/Ceramics

We can approach the thermodynamics of point defect reactions in ionic solid-
s/ceramics in the same way we dealt with vacancy formation in metals. For
example, for the formation of Schottky pairs in the oxide MO the reaction is
repeated in equation 13.18:

Ø
MO
� v”

M + v••O (13.18)

The only difference is that we cannot consider the formation of individual
cation vacancies or oxygen vacancies. Given their charge, their formation
would be highly unfavorable energetically. Instead, we form pairs consist-
ing of a cation vacancy and an anion vacancy to maintain electroneutrality of
the crystal, as per equation 13.18. The enthalpy of this reaction can be written
as equation 13.19:

∆H = XS∆HS (13.19)

where XS is the site fraction of Schottky pairs, namely the site fraction of each
kind of vacancy on its sublattice, and ∆HS is the enthalpy per mole of Schottky
pairs. The entropy of Schottky pair formation can be written as in equation
13.3:

∆S = XS∆SS − R[(XM ln XM + (1− XM) ln(1− XM)) +

(XO ln XO + (1− XO) ln(1− XO))] (13.20)
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where ∆SS represents the non-configurational entropy of Schottky pair forma-
tion (per mole of Schottky pairs) and the term inside the brackets represents
the configurational entropy. If we plot the two functions in equations 13.19 and
13.3 vs. the site fraction of Schottky pairs, XS, and recall that ∆G = ∆H− T∆S,
we obtain the curves in Fig. 13.7.

+

Figure 13.7: The enthalpic and entropic contributions to the free energy of Schot-
tky pair formation.

The behavior closely resembles the same plot for vacancies in metals seen in
Fig. 11.5. Initially, the entropy term dominates, but with increasing Schot-
tky pair production the enthalpy term begins to dominate. The result is a
minimum in the free energy vs. XS curve corresponding to the equilibrium
Schottky pair concentration (Xe

S). We can write a mass-action expression (an
equilibrium constant expression) for the Schottky pair formation, as in equa-
tion 13.21:

K
′
S = av′′M

av••O
= γ[v

′′
M]γ[v••O ] (13.21)

where aV′ ′M
and aV••O

represent the individual defect activities. We have as-

sumed dilute solution behavior so the two γ factors are Henry’s Law constants.
These have to be the same for both cation and anion vacancies, such that they
are formed in equal populations. By dividing both sides of equation by γ2 we
arrive at equation 13.22:

KS =
K
′
S

γ2 = [v
′′
M][v••

O ] = exp
(

∆SS
R

)
exp

(
−∆HS

RT

)
(13.22)
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Similarly, we can write an equilibrium expression for oxygen Frenkel forma-
tion, repeated as equation 13.23:

O×O
MO
� O”

i + v••O (13.23)

for which the equilibrium expression is given by equation 13.24:

KF =
[O
′′
i ][v

••
O ]

[O×O ]
= [O

′′
i ][v

••
O ] = exp

(
∆SF

R

)
exp

(
−∆HF

RT

)
(13.24)

In this expression, the site fraction of oxygen on oxygen sites is assumed to be
unity, since the site fraction of oxygen vacancies is negligibly small. Hence,
their activity can be assumed to be unity. We will employ these reactions and
equilibrium expressions when generating and interpreting so-called Brouwer
diagrams in the following sections.

Similarly, we can write point defect equilibrium expressions for each of the re-
duction and oxidation reactions introduced previously. For the oxygen-deficit
reaction, repeated in equation 13.25:

O×O
MO
�

1
2

O2(g) + v••
O + 2e

′
(13.25)

the equilibrium expression would be equation 13.26:

Kred = p1/2
O2

[v••O ]n2 (13.26)

For the metal-excess reaction, repeated in equation 13.27:

M×M + O×O
MO
�

1
2

O2(g) + M••i + 2e
′

(13.27)

the equilibrium expression would be equation 13.28:

Kred = p1/2
O2

[M••i ]n2 (13.28)

It should be pointed out that both the oxygen-deficit reaction (equation 13.25)
and the metal-excess reaction (equation 13.27) have point defect concentrations
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decreasing as the oxygen partial pressure increases (at constant temperature).
This can be seen by applying Le Chatelier’s principle, namely increasing oxy-
gen partial pressure causes a response in the direction (arrow) opposite to the
side on which the pO2 term occurs. It also follows from the point defect equi-
librium expressions of equations 13.26 and 13.28, namely that to maintain the
equilibrium constant, increasing PO2 must be accompanied by a decrease in
point defect concentration.

Similarly, we can now consider oxidation reactions. For the oxygen-excess
reaction, repeated in equation 13.29:

1
2

O2(g)
MO
� O

′′
i + 2h• (13.29)

the equilibrium expression would be equation 13.30:

Kox =
[O
′′
i ]p

2

p1/2
O2

(13.30)

And for the metal-deficit reaction, repeated in equation 13.31:

1
2

O2(g)
MO
� O×O + v

′′
M + 2h• (13.31)

the equilibrium expression would be equation 13.32:

Kox =
[v
′′
M]p2

p1/2
O2

(13.32)

It should be pointed out that both the oxygen-excess reaction (equation 13.29)
and the metal-excess reaction (equation 13.31) have point defect concentrations
increasing as the oxygen partial pressure increases (at constant temperature).
Again, this can be seen by applying Le Chatelier’s principle, namely increas-
ing oxygen partial pressure causes a response in the direction (arrow) opposite
to the side on which the pO2 term occurs. It also follows from the point defect
equilibrium expressions of equations 13.30 and 13.32, namely that to maintain
the equilibrium constant, increasing PO2 must be accompanied by an increase
in point defect concentration. The reactions and equilibria of the present sec-
tion will form the foundation upon which schematic Brouwer diagrams can be
constructed and interpreted.
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We must consider one last equilibrium expression, namely that between elec-
trons and electron holes as described by equation 13.8. The equilibrium ex-
pression for this reaction is :

Ki = np = const exp
(−Eg

RT

)
(13.33)

where Eg is the “band gap,” corresponding to the difference in energy between
the conduction band minimum and the valence band minimum as shown in
Fig. 13.6.

13.4 Brouwer Diagrams

In 1954, G. Brouwer introduced what are now referred to as “Brouwer dia-
grams” (Phillips Res. Rep., 9, 366). Brouwer diagrams are logarithmic plots of
defect populations 1) vs. temperature (or rather inverse temperature), 2) vs.
oxygen partial pressure, or 3) vs. dopant concentration, again on a logarith-
mic scale. We consider schematic versions for each of these in the following
sections.

13.4.1 Brouwer Diagrams of Defect Concentration vs. Inverse Temperature

This type of diagram is useful for determining the energetics of point defect
formation and motion in ionic solids/ceramics. For example, consider the ex-
trinsic doping of NaCl by CaCl2, where Ca is divalent (Ca2+Cl−2 ), as given by
equation 13.34:

CaCl2
NaCl−−−→ Ca•

Na + 2Cl×Cl + v
′
Na (13.34)

Note the use of the forward arrow only, implying that this reaction goes to
completion during the initial processing of the Ca-doped NaCl ceramic. Now
consider the Schottky pair formation in NaCl, according to equation 13.35:

Ø
NaCl
� v’

Na + v•Cl (13.35)

for which the equilibrium expression is given by equation 13.36:
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KS = [v
′
Na][v

•
Cl] = exp

(
∆SS

R

)
exp

(
−∆HS

RT

)
(13.36)

The next step is to write what is commonly called the “electroneutrality con-
dition,” which we will henceforth refer to as the “ENC.” This condition is re-
quired to maintain the overall electroneutrality of the host crystal. The ENC
is a straightforward expression setting the sum of all the negatively-charged
point defects equal to the sum of all the positively-charged point defects, as
per equation 13.37:

[v
′
Na] = [Ca•

Na] + [v•
Cl] (13.37)

The next step is to make so-called “Brouwer approximations.” These are
regimes in which two species–one positively charged and one negatively
charged–predominate. As we consider equation 13.37, it is clear that there
should be two such regimes: 1) one where the Na-vacancy concentration is set
by the Ca-donor doping, or [v

′
Na] = [Ca•

Na], and 2) one where the Na-vacancy
concentration is determined by the Schottky equilibrium with Cl-vacancies,
or [v

′
Na] = [v•

Cl]. But which regime will be on the left and which will be on
the right on a log [defect] vs. inverse temperature plot? Since temperature
increases from right to left on plot with an inverse temperature (1/T) x-axis,
it makes sense that the extrinsic, donor-doped regime would dominate at low
temperatures, or to the right, whereas intrinsic, Schottky pair defects would
dominate at high temperatures, or to the left. The resulting schematic Brouwer
diagram is given in Fig. T, with the two Brouwer approximations/regimes
clearly marked.

intrinsic extrinsic

Figure 13.8: Brouwer diagram vs. inverse temperature for CaCl2-doped NaCl.

The slope of the Na-vacancy concentration (important for later) is marked
as −∆HS/2R. This follows from inserting the ENC for that regime, namely
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[v
′
Na] = [v•

Cl], into the equilibrium expression of equation 13.36 such that
KS = [v

′
Na]

2. This means that [v
′
Na] = K1/2

S and that the activation energy
for this regime will be −∆HS/2R. However, the diagram isn’t complete un-
til we show a line for each species in both regimes. The donor-dopant, ,
is easy. It is just a horizontal line extending from the extrinsic regime into
the intrinsic regime as shown. The Ca-dopant is a minority species in this
regime. So we have lines for each of the three species in the ENC of equa-
tion 13.37 in the intrinsic regime. But what about the behavior of [v•

Cl] in the
extrinsic regime? Well, we know its concentration at the dashed line demark-
ing the transition between electroneutrality regimes. In the extrinsic regime,
the concentration of Na-vacancies is fixed by the aliovalent dopant concen-
tration, namely [v

′
Na] = [Ca•

Na] =constant (not a function of temperature).
This means from the equilibrium expression of equation that Cl-vacancy con-
centration will be directly proportional to the Schottky formation constant, or
[v•

Cl] = KS/[v
′
Na] = KS/[Ca•Na] = KS/constant. Therefore, the slope on the

Cl-vacancy concentration in the extrinsic regime will be −∆HS/R, as shown.

This Brouwer diagram is especially helpful in determining the formation and
motion enthalpies of Na-vacancies in NaCl. A schematic representation of the
tracer-diffusion data for Na in NaCl is shown in Fig. 13.9.

Diffusion
    In
 

NaCl

CaCl2 -doped 

Figure 13.9: Na tracer diffusion in CaCl2-doped NaCl.

Based upon the Brouwer diagram of Fig. 13.8, we know that there is no
energy of formation of Na-vacancies in the extrinsic regime; the slope is at-
tributable solely to the enthalpy of motion, or −∆Hmv/R. However, in the
intrinsic regime there are contributions from both the enthalpy of motion and
the enthalpy of formation. From the Brouwer diagram of Fig. 13.8, we know
that the contribution from formation is −∆HS/2R, so the combined slope is
−(∆Hmv + ∆HS/2)/R. Since we know the enthalpy of motion from the slope
of the diffusion plot in the extrinsic regime, this means that we can now cal-
culate the enthalpy of Schottky pair formation from the slope of the diffusion
plot in the intrinsic regime. This demonstrates the power of Brouwer diagrams
for the study of point defect formation and motion in ionic solids/ceramics.
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13.4.2 Brouwer Diagrams of Defect Concentration vs. Oxygen Partial Pres-
sure

The second type of Brouwer diagram plots the defect concentrations vs. the
oxygen partial pressure on a log-log plot made at constant temperature. The
most commonly portrayed diagrams of this type are often referred to as “but-
terfly” diagrams, owing to their appearance. Although we will not construct
such diagrams, we will display a couple of examples and discuss their con-
struction and interpretation. For example, let’s consider an oxide MO that has
prevailing Schottky disorder. We have already written the stoichiometric point
defect reactions that can occur in such a material, repeated here in equations
13.38 and 13.39:

Ø
MO
� v”

M + v••O (13.38)

Ø
MO
� e

′
+ h• (13.39)

for which the equilibrium expressions are equations 13.40 and 13.41:

KS = [v
′′
M][v••

O ] = exp
(

∆SS
R

)
exp

(
−∆HS

RT

)
(13.40)

Ki = np = const exp
(−Eg

RT

)
(13.41)

respectively. In addition, we write the appropriate reduction and oxidation
reactions, repeated here in equations 13.42 and 13.43:

O×O
MO
�

1
2

O2(g) + v••
O + 2e

′
(13.42)

1
2

O2(g)
MO
� O×O + v

′′
M + 2h• (13.43)

respectively. The equilibrium expressions for these reactions are repeated here
as equations 13.44 and 13.45:
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Kred = p1/2
O2

[v••O ]n2 (13.44)

Kox =
[v
′′
M]p2

p1/2
O2

(13.45)

respectively. Now let’s write the ENC for this system, as in equation :

n + 2[v
′′
M] = p + 2[v••

O ] (13.46)

At first glance it would seem like the factors of “2” are in front of the wrong
species, until we consider that according to the reduction reaction of equation
13.42, two electrons are formed for each oxygen vacancy formed. Hence, the
electron population should be twice the concentration of oxygen vacancies.
Were these the prevailing species, the Brouwer approximation would be n =
2[v••O ].

Based upon the overall ENC, it would seem that there should be four Brouwer
approximations, namely n = p, n = 2[v••O ], 2[v

′′
M] = p, and 2[v

′′
M] = 2[v••O ],

however this is not the case. Instead, the oxide in question will either have
ionic species dominating at stoichiometry, such that the electrons and elec-
tron holes are minority species, or electronic species dominating at stoichiom-
etry, such that cation vacancies and anion vacancies are minority species. This
makes for two slightly different “butterfly” diagrams, as shown in Fig. 13.10.
We can understand and interpret such diagrams by considering their point
defect equilibria.

The diagram on the top is for ionic species dominating at stoichiometry, such
that [v

′′
M] = [v••O ] = K1/2

S . With increasing oxygen partial pressure, the oxida-
tion reaction takes over, such that the electroneutrality condition transitions to
p = 2[v

′′
M]. Inserting this Brouwer approximation into the equilibrium expres-

sion of equation 13.43, we obtain equation 13.47:

Kox =
[v
′′
M]p2

p1/2
O2

=
4[v

′′
M]3

p1/2
O2

(13.47)

Taking the logarithm of this expression and rearranging a bit, we obtain equa-
tion 13.48:
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Figure 13.10: Butterfly log[defect] vs. log pO2 Brouwer diagrams for prevailing
ionic disorder (top) and for prevailing electronic disorder (bottom.).

3 log[v
′′
M] = log

Kox

4
+

1
2

log pO2 (13.48)

Dividing both sides by 3, it follows that ∂ log[v
′′
M]/∂ log pO2will be +1/6 in this

regime, which appears on the right side of the upper diagram in Fig. 13.10.
Note that the electron hole line lies above the cation vacancy line, owing to the
factor of 2 in the Brouwer approximation, p = 2[v

′′
M]. The shift upwards of the

electron hole line vs. the cation vacancy line will be precisely the logarithm of
2, as shown.

Now let’s consider what happens under reduction, when the reduction reac-
tion takes over, such that the electroneutrality condition transitions to n =
2[v••O ]. Inserting this Brouwer approximation into the equilibrium expression
of equation 13.42, we obtain equation 13.49:

Kred = p1/2
O2

[v••O ]n2 = p1/2
O2

4[v••O ]3 (13.49)

Again, taking the logarithm of this expression and rearranging a bit, we obtain
equation 13.50:

3 log[v••O ] = log
Kred

4
− 1

2
log pO2 (13.50)
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Dividing both sides by 3, it follows that ∂ log[v••O ]/∂ log pO2 will be -1/6 in this
regime, which appears on the left side of upper diagram in Fig. 13.10. The
slopes of the electrons and electron holes in the central regime follows from
consideration of oxidation and reduction reactions. For example, reorganizing
the reduction reaction of equation 13.49 we obtain equation 13.51:

Kred/[v••O ] = p1/2
O2

n2 (13.51)

Taking the logarithm of this expression and rearranging a bit, we obtain equa-
tion :

2 log n = log
Kred
[v••O ]

− 1
2

log pO2 (13.52)

from which it follows that, since [v••
O ] is constant in the middle regime,

∂ log n/∂ log pO2will be -1/4. Hence the -1/4 slope in the middle regime. For
all other species, one can play off the corresponding majority defect to estab-
lish individual slopes. For example, from the intrinsic electronic disorder re-
action of equation 13.39, for Ki = np to remain constant in a regime where the
electron population is found to vary with pO2 to the -1/6 power, the electron
hole population must vary with pO2 to the +1/6 power. Similarly, from the
Schottky pair formation reaction of 13.38, for KS = [v

′′
M][v••O ] to remain con-

stant in a regime where the metal vacancy population is found to vary with
pO2 to the +1/6 power, the oxygen vacancy population must vary with pO2 to
the -1/6 power.

The second diagram in Fig. 13.10 is for the situation where electronic disorder
predominates in the stoichiometric (middle) regime, such that Ki = np. It can
be seen that in this regime the ionic defects (cation vacancies and anion vacan-
cies) are minority species. Note, however, that the Brouwer approximations
for the oxidation and reduction regimes are the same as for the upper diagram
in Fig. 13.10.

There are six such Brouwer diagrams like the two represented in Fig. 13.10.
This is communicated by Fig. 13.11, where the six situations are delineated.
There are two each for the three main types of stoichiometric disorder: Schot-
tky, Cation Frenkel, and Anion Frenkel. In each case there will be a diagram
where ionic disorder predominates (Kion >> Ki, where Kionstands for either
the Schottky or Frenkel equilibrium constant and Ki stands for the intrinsic
electronic disorder equilibrium constant) and a diagram where electronic dis-
order predominates (Ki >> Kion).
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Butterfly Diagrams
 (by stoichiometric disorder type)

Schottky Disorder Frenkel Disorder

ElectronicIonic

Cation

Ionic Electronic

Anion

Ionic Electronic

Figure 13.11: Six possible butterfly diagrams for Schottky, Cation Frenkel, and
Anion Frenkel disorder.

The power of Brouwer diagrams like those in Fig. 13.10 can be demonstrated
by their predictive capability. For example, if the MO oxide were a Schottky
pair-former, with KS >> Ki as in the top diagram of Fig. 13.10, with cation
motion governed by vacancy mechanism, this could be confirmed by tracer
diffusion studies of M-cations vs. oxygen partial pressure. According to the
top diagram of Fig. 13.10, we would predict +1/6 slopes vs. oxygen partial
pressure at extreme reducing and extreme oxidizing conditions, with a plateau
where the diffusion coefficient should not vary with pO2 in the middle regime.
Similar predictions could be made concerning the O-anion diffusivity.

One must be careful in drawing “butterfly” diagrams in oxides for which the
O:M stoichiometry is other than 1:1. For example, the oxidation reaction for
the oxide M2O (assumed to be a Schottky former) would be given by equation
13.53:

1
2

O2(g)
M2O
� O×O + 2v

′
M + 2h• (13.53)

whereas the reduction reaction would be equation 13.54:

O×O
M2O
�

1
2

O2(g) + v••O + 2e
′

(13.54)

I’ll give you a moment to establish the slopes of the majority species on either
side of this “butterfly” plot. They will prove NOT to be the same, which tells
us that asymmetrical “butterfly” Brouwer diagrams (warped butterflies) can
be anticipated for oxides with stoichiometries other than O:M of 1:1. (Spoiler
alert! I am about to tell you the slopes in the “wings” of the M2O butterfly
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diagram. If you want to test your Kröger-Vink/Brouwer prowess, look away
and see if you can solve for the slopes.)

The slopes on the M2O butterfly would be -1/6 on the left (this is essentially
unchanged from the MO butterfly situation), and +1/8 on the right. This latter
slope can be obtained if we write the equilibrium reaction for equation 13.53
as equation 13.55:

Kox =
[v
′
M]2 p2

p1/2
O2

(13.55)

Reminding ourselves that the Brouwer approximation for the ENC in the right
“wing” will be p = [v

′
m], and taking the logarithm of equation 13.55 and rear-

ranging, we obtain equation 13.56:

4 log p = log Kox +
1
2

log pO2 (13.56)

It follows that ∂ log p/∂ log pO2 will be +1/8.

We end this section by pointing out that “butterfly” Brouwer diagrams have
limited practical application, owing to two facts. First, few oxides are ampho-
teric, meaning that they exhibit both n-type and p-type behavior. Most go in
one direction (oxidation or reduction, p-type or n-type), but seldom both. Sec-
ond, few oxides are employed in an undoped intrinsic state. We will discuss
additional log[defect] vs. logpO2 diagrams as we consider two-regime extrin-
sic/intrinsic Brouwer diagrams in the following section.

13.4.3 Brouwer Diagrams of Defect Concentration vs. Dopant Concentra-
tion

A very useful type of Brouwer diagram involves plots of defect populations
vs. dopant concentration (at fixed T and pO2 ) on a log-log plot. As with the
log[defect] vs. inverse temperature plots already discussed, these have two
Brouwer approximations, namely two ENC regimes: one intrinsic and one
extrinsic. The procedures for creating such Brouwer diagrams are as follows:

1. Write the appropriate intrinsic point defect reaction and the correspond-
ing mass-action (equilibrium constant) equation.

2. Write the extrinsic doping reaction.
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3. Write the overall electroneutrality condition, from which the two
Brouwer approximations will be made clear.

4. Decide which regime goes where, for example on which side the extrinsic
regime should fall.

5. Solve the mass-action (equilibrium constant) equation for all point defect
species in each Brouwer regime.

Let’s start by considering cation-deficit oxide MO, which is known to be a
p-type semiconductor under oxidizing conditions. It is known that it can be
acceptor-doped by the oxide, N2O, where the dopant is monovalent, namely
N+

2 O2−, resulting in electronic compensation by electron holes. The intrinsic
point defect reaction is the oxidation reaction to form cation vacancies, as in
equation 13.57:

1
2

O2(g)
MO
� O×O + v

′′
M + 2h• (13.57)

for which the mass-action (or equilibrium constant) equation is equation 13.58:

Kox =
[v
′′
M]p2

p1/2
O2

(13.58)

Next let’s write the acceptor-doping reaction, repeated as equation 13.59:

N2O +
1
2

O2(g)
MO−−→ 2O×O + 2N’

M + 2h• (13.59)

As we discussed previously, the forward arrow (with no reverse arrow) indi-
cates that the reaction goes to completion during the processing of N-doped
MO. The overall electroneutrality condition will be equation 13.60:

p = 2[v
′′
M] + [N

′
M] (13.60)

The next task is to decide on which side of the Brouwer diagram to place the
extrinsic regime. This is pretty straightforward in the present case, owing to
the fact that with increasing donor-doping, extrinsic behavior should “win
out” over intrinsic behavior. We can begin by drawing a dashed line of slope
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Figure 13.12: Schematic Brouwer diagram of defect population in oxide MO
vs.N2O level.

+1 on the Brouwer plot, representing the concentration of acceptor species, or
[N
′
M], as shown in Fig. 13.12.

The vertical dashed line represents the transition between intrinsic behavior
(at low doping levels, p = 2[v

′′
M]) and extrinsic behavior (at high doping levels,

p = [N
′
M]). In the intrinsic regime, the Brouwer approximation is given by

p = 2[v
′′
M]. Rearranging equation 13.58 we obtain equation 13.61:

[v
′′
M]p2 = 4[v

′′
M]3 = Kox p1/2

O2
(13.61)

However, since temperature (and therefore Kox) and pO2 are both constants,
the metal vacancy concentration and hole content will also be fixed (p = 2[v

′′
M])

and independent of doping level. It can be seen that all three defect species
(p, [v

′′
M], [N

′
M]) are represented in the intrinsic regime, but it remains to be es-

tablished how the metal vacancy concentration varies with doping level in the
extrinsic regime. Rearranging equation 13.61 and substituting [N

′
M] for p we

obtain equation :

[v
′′
M] = Kox p1/2

O2
/p2 = Kox p1/2

O2
/[N

′
M]2 (13.62)

Since temperature (and Kox) and pO2 are constants, it follows that [v
′′
M] will

be proportional to the dopant concentration to the -2 power, as shown in Fig.
13.12.

We can also create a log[defect] vs. logpO2 diagram (at fixed temperature and
fixed acceptor dopant level) for this system. Again, we need to decide where
the extrinsic regime belongs, on the left or on the right. This is not as straight-
forward as with the log[defect] vs. log[dopant] diagram. However, examina-
tion of the intrinsic defect reaction of equation 13.57 indicates that as the oxy-
gen partial pressure increases, the metal vacancy concentration will increase.
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This suggests that the intrinsic regime should be on the right with the extrinsic
regime on the left. (Hint: if you try doing it the other way around, the result-
ing diagram will not make sense.) We begin by drawing a horizontal dashed
line in Fig. 13.13 indicating the fixed acceptor dopant level.

intrinsicextrinsic

T = const

= const

+1/6

+1/2

log[]

Figure 13.13: Schematic Brouwer diagram of dopant concentration vs. oxygen
partial pressure for oxide MO at fixed temperature and N2O doping level.

Again, the vertical dashed line indicates the transition between the two
Brouwer approximations or ENC regimes. The intrinsic regime is solved the
same way as for the butterfly diagrams of the previous section. Inserting the
ENC, namely that p = 2[v

′′
M], and rearranging equation 13.58 we obtain equa-

tion 13.63:

[v
′′
M]p2 = 4[v

′′
M]3 = Kox p1/2

O2
(13.63)

If we take the logarithm of both sides and rearrange, we obtain equation :

3 log[v
′′
M] = log

Kox

4
+

1
2

log pO2 (13.64)

from which it follows that ∂ log[v
′′
M]/∂ log pO2will be +1/6, as shown in Fig.

13.13. All three species (p, [v
′′
M], [N

′
M]) are represented in the intrinsic regime,

but we need to decide how the metal vacancy concentration behaves in the
extrinsic regime. Once again we can employ equation 13.58, which rearranged
gives us equation 13.65:

[v
′′
M] = (Kox p1/2

O2
)/p2 = (Kox p1/2

O2
)/[N

′
M]2 (13.65)

Since both Kox (fixed by temperature) and [N
′
M] are constants, it follows that

the metal vacancy concentration will vary with pO2 to the +1/2 power, as
shown in Fig. 13.13.
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Now let’s consider a cation-excess oxide MO that becomes an n-type semi-
conductor under reducing conditions. It can also be donor-doped with N2O3
additions during initial processing, again with electronic compensation. As
with the prior example, we will generate dual-regime isothermal Brouwer di-
agrams vs. log pO2and also vs. dopant concentration. We begin by writing the
metal-excess (metal interstitial) equilibrium, reproduced in equation 13.66:

M×M + O×O
MO
�

1
2

O2(g) + M••i + 2e
′

(13.66)

for which the mass-action/equilibrium relationship is given by equation 13.67:

Kred = p1/2
O2

[M••i ]n2 (13.67)

The N2O3 donor-doping reaction is given by equation 13.68:

N2O3
MO−−→ 2O×O + 2N•

M + 2e
′
+

1
2

O2(g) (13.68)

Note that the one-way arrow indicates that this reaction goes to completion
during the firing of N2O3-doped MO. The overall ENC can be written as equa-
tion 13.69:

n = 2[M••i ] + [N•
M] (13.69)

This time, let’s begin with the log[defect] vs. log pO2 Brouwer diagram (at
fixed dopant level). But will the intrinsic regime be on the left or on the right?
One way of resolving this issue is to examine the intrinsic defect reaction of
equation 13.66 and the corresponding mass-action/equilibrium relationship of
equation 13.67. It can be seen that the metal interstitial population will increase
(and overwhelm the extrinsic dopant level) as the oxygen partial pressure is
reduced. This tells us to expect the intrinsic regime on the left (low pO2 ). In Fig.
13.14 we begin by drawing a horizontal dashed line to represent the constant
N2O3 or [N•

M] level.

The vertical dashed line represents that transition from intrinsic behavior on
the left to extrinsic behavior on the right. Assuming the Brouwer approxima-
tion in the intrinsic regime to be n = 2[M••i ] and rearranging equation 13.67,
we obtain equation 13.70:
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Figure 13.14: Schematic Brouwer diagram vs. log pO2 of N2O3-doped MO at fixed
temperature and doping level.

[M••i ]n2 = 4[M••i ]3 = Kred p−1/2
O2

(13.70)

Rearranging once again and taking the logarithm of both sides, we obtain
equation 13.71:

3 log[M••i ] = log
Kred

4
− 1

2
log pO2 (13.71)

from which it follows that ∂ log[M••i ]/∂ log pO2 will be -1/6, as shown in Fig.
13.14. We have lines for each of the three species in the ENC for the intrinsic
regime, but how does the metal interstitial concentration behave in the extrin-
sic regime? Rearranging equation 13.67 and substituting n = [N•

M] = const,
we obtain equation 13.72:

[M••i ] = (Kred/n2)p−1/2
O2

= (Kred/[N•
M]2)p−1/2

O2
(13.72)

from which it follows that ∂ log[M••i ]/∂ log pO2 will be -1/2, as shown in Fig.
13.14.

Now let’s consider the corresponding log[defect] vs. log[dopant] Brouwer di-
agram (at constant pO2 ). The increasing donor-dopant level is represented by
the dashed line of slope +1 in Fig. 13.15.

The vertical dashed line represents the transition from intrinsic behavior to
extrinsic behavior, the latter of which must fall on the right side of the diagram
(high dopant level). In the intrinsic regime, since temperature (and therefore
Kred) and pO2 are both constant, if we rearrange equation 13.67 and insert the
ENC (n = 2[M••i ]), we obtain equation 13.73:
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Figure 13.15: Schematic Brouwer diagram vs. doping level in N2O3-doped oxide
MO at constant temperature and constant pO2 .

[M••i ]n2 = 4[M••i ]3 = Kred p−1/2
O2

= const (13.73)

from which it follows that n = 2[M••i ] = const, as shown in Fig. 13.15. We have
lines for all three species in the overall ENC in the intrinsic regime, but how
does the metal interstitial population behave in the extrinsic regime? Again,
rearranging equation and inserting the ENC (n = [N•

M]) we obtain equation :

[M••i ] = (Kred p−1/2
O2

)/n2 = (Kred p−1/2
O2

)/[N•
M]2 (13.74)

Again, since Kredis a constant (because T is constant) and pO2 is also constant,
the metal interstitial population will vary with the dopant concentration to
the -2 power, as shown in Fig. 13.15. We will revisit this diagram when we
consider electrical conductivity in the following section.

As a transition to our consideration of ionic conductivity, we will construct one
last log[defect] vs. log pO2 Brouwer diagram. Calcia-doped zirconia is an oxy-
gen vacancy ionic conductor except at very reducing oxygen partial pressures,
where electrons can begin to contribute electronic conductivity. The intrin-
sic equilibrium between oxygen vacancies and electrons is given by equation
13.75:

O×O
ZrO2
�

1
2

O2(g) + v••
O + 2e

′
(13.75)

for which the mass-action/equilibrium relationship is given by equation 13.76:

Kred = p1/2
O2

[v••O ]n2 (13.76)

The calcia (CaO) doping reaction is given by equation 13.77:
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CaO MO−−→ Ca
′′
Zr + O×O + v••O (13.77)

Note here that the dopant cations are divalent (Ca2+O2−) whereas the host
cations are tetravalent (Zr4+O2−

2 ). Note also the forward arrow, which indi-
cates that this reaction goes to completion during the processing of CaO-doped
ZrO2. The overall electroneutrality condition is given by equation 13.78:

n + 2[Ca
′′
Zr] = 2[v••O ] (13.78)

This time we will focus exclusively on the log[defect] vs. log pO2 Brouwer
diagram, which is presented in Fig. 13.16.

-1/6

-1/4

 

log []

Figure 13.16: Schematic Brouwer diagram vs. pO2 for CaO-doped ZrO2 at constant
temperature and constant doping level.

You should be able to rationalize: 1) that the intrinsic regime belongs on the
left, and 2) that the slope in the intrinsic regime should be -1/6. It may not be
obvious why the electrons have a -1/4 slope in the extrinsic regime. Isolating
the electron population in equation 13.76, we obtain equation 13.79:

n2 = (Kred p−1/2
O2

)/[v••O ] = (Kred p−1/2
O2

)/[Ca
′′
Zr] (13.79)

Taking the logarithm of both sides, and remembering that Kred is constant (be-
cause temperature is constant) and [Ca

′′
Zr] is also constant, it follows from equa-

tion 13.80:
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2 log n = log
Kred

[Ca
′′
Zr]
− 1

2
log pO2 (13.80)

that ∂ log n/∂ log pO2 will be -1/4. We will return to this Brouwer diagram (Fig.
) in the following section.

14 Electrical Conductivity

The usefulness and predictive power of schematic Brouwer diagrams can best
be illustrated by considering electrical conductivity, which is controlled by the
point defect species with the highest product of concentration and mobility. It
turns out that there can be contributions from electronic species (electrons and
electron holes), and from mobile ionic species. The former determines the elec-
tronic conductivity of a solid and the second determines the ionic conductivity
of that solid. Together, these two contributions determine the overall electrical
conductivity.

14.1 Electronic Conductivity

From introductory materials science and engineering courses, you should be
familiar with the following equation for the electronic conductivity:

σ = neµe + peµh (14.1)

where e is the unit of electron charge, µe and µh are the mobilities of electrons
and holes, respectively, and n and p are their concentrations, as previously
defined. Usually, however, one species will dominate (as a majority species)
whereas the other will have negligible concentration (a minority species). For
example, electrons are majority species in the n-type semiconducting oxide
MO, as reflected in the Brouwer diagram of Fig. 13.14. In this case, the elec-
tronic conductivity reduces to equation :

σ = neµe (14.2)

It is useful to do a unit analysis on the parameters in this equation to under-
stand common usage in the materials community. The basic unit of conductiv-
ity is a Sieman per centimeter, or S/cm. The Sieman is the same as a reciprocal
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ohm (1/Ω), and according to Ohm’s law an ohm is voltage/current (V/I) or a
Joule per coulomb (J/C) divided by a coulomb per second (C/s), such that an
ohm is given by (J-s)/C2. Placing these values into equation 14.2, we obtain
equation 14.3:

C2

(J·s·cm)
=

#
cm3 C¯e (14.3)

It follows that the basic units for mobility are cm2 per V·s (cm2/V-s). This may
make more sense written as a centimeter per second (carrier velocity) per volt
per centimeter (driving force), or (cm/s)/(V/cm).

Here is where the predictive power of schematic Brouwer diagrams comes
in handy. If the electronic mobility is independent of carrier concentration,
then the conductivity in equation 14.2 will depend solely upon the carrier con-
centration, n. Let’s consider the case of M-excess semiconductor MO, whose
Brouwer diagram is represented in Fig. 13.14. The corresponding predicted
behavior of conductivity vs. oxygen partial pressure is given in Fig. 14.1. Note
that if the donor-dopant level is reduced to a minimum, the intrinsic regime
(n = 2[M••i ]) can be preserved to high pO2 values, as reflected by the “un-
doped” behavior in the Fig..

Figure 14.1: Predicted conductivity vs. oxygen partial pressure behavior of n-type
cation-excess MO based upon the Brouwer diagram in Fig. 13.14.

In the 1970s, the Ford Motor company developed a resistance-based oxygen
sensor based upon such a log σ vs. log pO2behavior as shown in Fig. 14.1.
Employing a highly pure titanium metal filament, which was subsequently
oxidized to TiO2, they achieved a reproducible conductance (the inverse of
resistance, or G=1/R) vs. pO2behavior that could be employed to monitor
the oxygen content in the exhaust gases of the internal combustion engine.
This enabled engineers to control the air-to-fuel ratio, otherwise known at the
lambda-ratio. Hence, automotive oxygen sensors are typically referred to as
lambda-sensors. It should be noted that given the different cation valence (4+
in TiO2 vs. 2+ for MO), and therefore the different charge on an interstitial
cation, the slope on a log-log plot of G vs. pO2 was not the -1/6 for titania.
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Nevertheless, the invention of a resistance-based oxygen sensor was an im-
portant development. However, resistance-based oxygen sensors lost out to
electrochemical sensors as described in the following section.

14.2 Ionic Conductivity

It makes sense that Ionic conductivity will likewise be determined by the
product of ion concentration, ion charge, and ion mobility. A development of
the so-called “Nernst-Einstein” relationship is beyond the scope of the present
text, but one form of it describes the ionic mobility of a charged species, as
given in equation 14.4:

µi =
Diqi

kT
(14.4)

where Di is the diffusivity of an ionic species of charge qi, T is absolute temper-
ature and k is Boltzmann’s constant. Since the product kT is in units of Joules,
the product of cm2/s and C divided by Joules yields the appropriate units for
mobility of cm2 per V · s. The carrier concentration will be the concentration of
mobile ions or ci in units of #/cm3. The charge of the mobile species is given by
qi, which in turn is equal to the product of zi (the number of charges on a mo-
bile ion, e.g., -2 in the case of oxygen ions) and e, the unit of electron charge, or
qi = zie. Putting all this together, the product of carrier content, carrier charge,
and carrier mobility is given by equation 14.5:

σi = ciqi

(
Diqi

kT

)
=

(
ciq2

i
kT

)
Di (14.5)

which is yet another version of the Nernst-Einstein relationship. Let’s apply
this equation to the situation of calcia-doped zirconia, whose doping reaction
is repeated here as equation 14.6:

CaO MO−−→ Ca
′′
Zr + O×O + v••O (14.6)

As always, the forward arrow indicates a reaction that goes to completion dur-
ing the firing of calcia-doped zirconia. The resulting electroneutrality condi-
tion is [v••O ] = [Ca

′′
Zr], as shown on the right side of Fig. 13.16. The formula

unit for CaO-doped ZrO2 can be written as in equation 14.7:
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(ZrO2)1−x(CaO )x = (Zr1−xCax)O2−x x (14.7)

where the box represents oxygen vacancies. In fact, we can write the ionic con-
ductivity in terms of either oxygen diffusivity or oxygen vacancy diffusivity,
as in equation 14.8:

σi =

(
cO2−q2

O2−

kT

)
DO =

(
cv••O

q2
v••r

kT

)
Dv••O

(14.8)

where the v••O subscript refers to oxygen vacancies. Since q2
O2− = (−2e)2 =

q2
v••O

= (+2e)2, we can cancel these terms and also the kT product from both
sides to obtain equation 14.9:

cO2−DO2− = cv••O
Dv••O

(14.9)

If we divide both sides by the concentration of overall oxygen sites (cOS), and
replace cO2−/cOS and cv••O

/cOS by the respective site fractions, XO2− and Xv••O
,

respectively, we obtain equation 14.10:

XO2−DO2− = Xv••O
Dv••O

(14.10)

This may not look familiar, but we have previously dealt with a version of this
equation when dealing with self diffusion by vacancy mechanism in metals.
You can find it back in equation 11.31, which can be rewritten as DA = XvDv.
In reality, this expression should be XADA = (1 − Xv)DA = XvDv. In the
case of metals, however, the site fraction of vacancies is negligibly small such
that XA = (1− Xv) ≈ 1. However, in the case of CaO-doped ZrO2 the sizable
vacancy content cannot be ignored.

Let’s consider zirconia doped by 15 mole percent of calcia. The formula unit
can be written as in equation 14.11:

(ZrO2)0.85(CaO )0.15 = (Zr0.85Ca0.15)O1.85 0.15 (14.11)

such that the site fractions will be XO = 1.85/2 = 0.925 and Xv••O
= 0.15/2 =

0.075. Note that the ratio of site fractions (XO/Xv••O
) is 12.33. From equation
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14.10 it follows that the vacancy diffusivity at every temperature will be 12.33
times the oxygen ion diffusivity.

What we need to be able to do is to go back and forth between ionic conduc-
tivity and either of the diffusivities (oxygen, vacancy). If we know the con-
centration of overall oxygen sites, we can calculate the concentration of either
occupied oxygen sites (XOcOS) or of oxygen vacancies (Xv••O

cOS). The concen-
tration of overall oxygen sites can be calculated in a couple of ways. The cubic
fluorite structure of ZrO2 is given in Fig. 14.2.

 Cubic
Flourite

= Zr

= O

Figure 14.2: Schematic representation of the cubic fluorite structure of calcia-
doped zirconia.

There are 4 formula units or 8 oxygen sites per unit cell. If given the lattice
parameter (a0), the concentration of oxygen sites will be cOS = 8/a3

0. Alterna-
tively, we might be given the density of the the 15 mole percent-doped zirconia
in g/cm3. The mass per formula unit (f.u.) in equation 14.11 can be calculated
as in equation 14.12:

mass
f.u.

= [0.85AZr + 0.15ACa] + 1.85AO (14.12)

Where A stands for atomic weight. The density (g/cm3) divided by the mass
per f.u. (g/f.u.) gives the number of formula units per cm3. The number of
oxygen sites per cm3 (cOS) is just twice this value, since there are 2 oxygen
sites per formula unit. Either way, we can now go back and forth between
diffusivity (oxygen ion or oxygen vacancy) and ionic conductivity using the
Nernst-Einstein relationship of equation 14.8 as illustrated in Fig. 14.3.

Given that the oxygen vacancy concentration is fixed by the CaO doping, it
follows that the oxygen diffusivity will be given by equation 14.13:
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Figure 14.3: Using the Nernst-Einstein equation to go back and forth between
ionic conductivity and diffusivity (ion or vacancy).

DO2− = (DO)0 exp
(
−∆Hmv

RT

)
(14.13)

Incorporating this expression into equation 14.8 we obtain equation :

σi =

[
cO2−q2

O2−(DO2−)0

kT

]
exp

(
−∆Hmv

RT

)
(14.14)

Except for temperature, all the other parameters within the brackets are con-
stant or nearly so. This allows us to rearrange equation 14.14 into equation
14.15:

σi =
σi0

T
exp

(
−∆Hmv

RT

)
(14.15)

By plotting the natural logarithm of the product of ionic conductivity and tem-
perature (σiT) vs. inverse temperature, we can determine the enthalpy of oxy-
gen/vacancy motion, as shown in Fig. 14.3. This figure shows how to calculate
individual diffusivities from the ionic conductivity, and vice versa. It should
be pointed out that once one diffusivity is determined, the other diffusivity
can be readily calculated from the XO2−DO2− = Xv••O

Dv••O
relationship.

The oxygen sensors in the internal combustion engines of gas-powered au-
tomobiles are zirconia-based. However, instead of registering conductance
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(resistance) vs. oxygen partial pressure, the zirconia sensor serves as a solid
electrolyte membrane between two environments. One side is exposed to air
(pO2 = 0.21) as a reference, while the other is exposed to the hot combustion
gases coming from the engine. High temperature is required to keep the ionic
conductivity high enough for the zirconia sensor to function. An electrochem-
ical voltage is produced between the two sides of the zirconia electrolyte that
is proportional to the difference in pO2 between the two sides. When the air-to-
fuel ratio is high, excess oxygen decreases the difference (and the voltage). But
when the air-to-fuel ratio is low, the reducing products of combustion increase
the difference (and the voltage). A micro-processor uses the output of the oxy-
gen sensor to adjust the air-to-fuel ratio by controlling the fuel injectors in the
engine. You might suppose that the purpose of the oxygen sensor would be
to keep the engine operating at optimal efficiency, but this is not the case. The
purpose of the oxygen sensor is to maintain the air-to-fuel ratio in a narrow
range where all three catalysts in the catalytic converter function optimally to
react unwanted pollutants (reduction of NOx, oxidation of CO, and oxidation
of unburnt hydrocarbons).

15 315 Problems

1) Use the Ellingham Diagram (reproduced here as Figure 15.1) to answer
the following.

1. Find the temperature and partial pressure of O2 where Ni(s), Ni(l), and
NiO(s) are in equilibrium.

2. Can the same equilibrium be achieved with H2 and H2O instead of oxy-
gen? If so, what is the ratio of H2/H2O?

3. At 1245oC, H2, and H2O with a ratio of partial pressures of 10:1 is flowed
through a tube furnace containing a crucible filled with MnO powder.
Determine the driving force for the reaction

4. Can you safely melt aluminum in a magnesia (MgO) container? Why or
why not? What is the resulting reaction and its driving force?

5. Establish the T-log PO2 phase diagram between 1000oC and 1500oC fort
he Mn-O system at 1 atm total pressure.

2) In the days before the industrial revolution the PCO2 in the earth’s at-
mosphere was 275 ppm. Use the data in Figure 15.2 to calculate how high
one would need to heat CaCO3 to decompose it at a PCO2 for the preindustrial
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Metal Oxide

Melting Point
Boiling Point

Figure 15.1: Ellingham diagram.
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Figure 15.2: Thermodynamic data for Mg and Ca oxides and carbonates.

concentration of 275 ppm and for present day PCO2 (You will have to look this
up, please give your source). Also calculate how high one would need to heat
CaCO3 to decompose it if the CO2 level in the atmosphere reaches 500 ppm.

3) Based on Raoultian liquid solution behavior, calculate the Sn-Bi eutectic
phase diagram (using Excel, Mathematica, MATLAB, etc). Assume that there
is negligible solid solubility of both Sn and Bi in the other component, and
that ∆Cp ≈ 0 for both end members. Use the following melting points and
enthalpies of fusion:

Material Tm(K) ∆H(s→ l)(J/mol)
Sn 505.12 7030
Bi 544.59 11300

188



15 315 PROBLEMS

Figure 15.3: Cr-W Phase diagram.

4) Use MATLAB or a spreadsheet to calculate liquidus and solidus lines
for a “lens-type” T-X diagram for the A-B system, using the data below. You
may assume both the liquid and solid solutions behave ideally.

Type Tm(oC) ∆Hm(J/mol)
A 910 34700
B 1300 49800

1. Plot the T vs. X phase diagram. Label each region on the diagram with
the phases present and the degrees of freedom.

2. For the temperatures 800oC, 1100oC, and 1500oC, draw plots of the ac-
tivity of component A vs. composition. Include two plots for each: One
with respect to liquid as the reference state and one with respect to solid
as the reference state.

5) Based upon the temperature at the top of the miscibility gap in the Cr-W
system (see Figure 15.3), do the following:

1. Predict the miscibility gap (solvus) and spinodals based upon the regular
solution model. Use the spreadsheet and plot the results.

2. Compare your miscibility gap with the experimental one in the attached
figure. Speculate about why there might be differences.
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Figure 15.4: Pb-Sn phase diagram.

6) Consider the Pb-Sn phase diagram (see Figure 15.4).

1. Label each region on the diagram with the degrees of freedom.

2. Sketch free energy vs. composition curves for all phases at 150oC, 200oC,
250oC, and the eutectic temperature.

3. For each temperature from part (b), draw plots of the activity of Sn vs.
composition. Include two plots for each: One with respect to liquid as
the reference state and one with respect to solid as the reference state.
You may assume the liquid solution to be Raoultia. At 150oC, only plot
activity of Sn vs. composition with respect to the solid reference state. At
250oC, only plot activity of Sn vs. composition with respect to the liquid
reference state.

7) Calculate and plot the liquidus projection of the ternary phase diagram
for the NaF-NaCl-NaI system. The melting temperatures and heats of fusion
are as follows: NaF (990oC, 29,300 J/mol), NaCl (801oC, 30,200 J/mol) and
NaI (659.3oC, 22,300 J/mol). Assume and ideal liquid solution and negligible
solid solubility. Compare your result with the experimental diagram shown in
Figure 15.5. Why might they be different?

8) On the liquidus projection diagram for the hypothetical system A-B-C
shown in Figure 15.6), complete the following:

1. Label primary phase fields
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Figure 15.5: NaF-NaCl-NaI phase diagram. From ref. [12].

2. Draw the subsolidus compatibility joins.

3. Label all the binary and ternary invariant points.

4. Indicate the directions of falling temperature (binaries and ternary).

5. Sketch all the binary phase diagrams (including those formed by sub-
solidus compatibility joins).

9) Using the attached liquidus projection diagram for the hypothetical sys-
tem A-B-C shown in Figure 15.7, complete the following:

1. Determine the equilibrium crystallization path for the composition
marked with the star.

2. Determine the microstructural constituents:

(a) Just prior tot he liquid striking the phase boundary (liquid + solid 1
+ solid 2).

(b) At the eutectic but just prior to eutectic crystallization.

(c) After crystallization is complete.

191



15 315 PROBLEMS

Figure 15.6: Liquidus projection diagram.

Figure 15.7: Liquidus projection diagram.
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Figure 15.8: (LiCl)2 −CaCl2 − (KCl)2 phase diagram.

10) On the (LiCl)2 −CaCl2 − (KCl)2 phase diagram shown in Figure 15.8,
draw isothermal sections at the following temperatures: (note- Ternary eutec-
tic E1 is at 332oC and ternary eutectic E2 is at 412oC)

1. 600oC

2. 450oC

3. 400oC

4. 300oC

5. Also determine the precise (not schematic!) (LiCl)2 −KCaCl3 phase di-
agram.

11) (Bonus question - 10% of problem set value) Starting with the regular
solution model, prove that regardless of how positive the interaction parame-
ter (or heat of mixing) might be, the inital slope on any free energy vs. compo-
sition curve must be infinitely negative on the left side (XB → 0) and infinitely
positive on the right side (XB → 1).

12) A steel tank contains hydrogen at 15 atm pressure. If the solubility
of hydrogen in steel is 1x10−2 g/cm3 under 15 atm pressure, the diffusion
coefficient is 8x10−5cm2/s at room temperature and the tank is placed in a
vacuum, calculate the flux of hydrogen through a 3.5 mm thick wall.
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13) Austenite (γ−Fe) with .85 wt% carbon has a diffusion coefficient of
1.9x10−11m2/s at 900oC.

1. Determine the jump distance in terms of the lattice parameter ao and the
coordination number for carbon diffusion in this structure.

2. How many jumps does a carbon interstitial make each second? Assum-
ing a lattice vibration frequency of 1013s−1, what fraction of jumps is
successful?

3. Calculate and compare the random walk distance with the total distance
(back and forth) traveled by an interstitial carbon atom in one second.

14) Ferrite (α−Fe) (BCC structure) dissolves carbon to a lesser extent than
austenite (FCC structure).

1. Determine the jump distance in terms of the lattice parameter ao and the
coordination number for carbon diffusion in this structure.

2. Given the data in Table 2.1 of Porter, Easterling & Sherif, make an Ar-
rhenius plot of diffusion coefficients of carbon and nitrogen from room
temperature to 800oC.

3. A different interstitial solute diffuses at a rate of 4.1x10−2mm2/s at 300oC
and 7.3x10−2mm2/s at 600oC. Determine its activation energy and pre-
exponential factor.

15) Write a MATLAB code to evaluate the composition as a function of
distance for the draining plate problem.

1. For t/τ = 0.05 how many terms in the series is necessary to obtain a com-
position that is converged to within 1% of the exact answer. The percent
error is the maximum value of |c(x)− cexact(x)|/cexact(c)x100. To deter-
mine the exact answer evaluate the summation to j = 200. L=100um,
Co = 0.1at. %

2. Plot the converged solution as a function of x for t/τ = 0.05, 0.5, 1.0, 2.0.

3. For what approximate value of t/τ does a single term in the summation
with j = 0 provide an approximation to the exact solution within 10%?
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16) (After Shewmon 2-13) We wish to consider the rate at which the va-
cancy concentration increases in a specimen after an increase in temperature.
We assume that the vacancy concentration in the lattice near the free surface,
grain boundaries and edge dislocations will rise to the new equilibrium value
of the new temperature as soon as the temperature is raised. The vacancy con-
centration far from these vacancy sources rises only as fast as vacancies can
diffuse to the region from the source.

1. Assume that vacancies come only from grain boundaries, and the grain
diameter is approximately 1 mm. Calculate the relaxation time in two
regimes, at high temperatures where the diffusion coefficient Dv is
10−5cm2/s.

2. Calculate the relaxation time (τ) given a dislocation line length (disloca-
tion density) of 107cm/cm3. (Hint: First, calculate the distance between
dislocations, i.e, the vacancy sources.)

17) The diffusion coefficient of carbon in austenite can be approximated as:

Dc = 0.2 exp
(
−136, 000 J/mol

RT

)
cm2/s

1. How long does it take for the composition c0.5 during carburization to
penetrate .45 mm at 900oC? How long for 5 mm?

2. What annealing temperature is required to double the penetration in a
given time?

18) Consider two blocks initially one pure A and the other pure B that are
welded together and annealed at 1100oC. Plot the diffusion profile as a func-
tion of distance after half an hour. Assume that the diffusion coefficient of both
specie is D = 4.5x10−11m2/s and that D is not a function of concentration.

19) Calculate the enthalpy and entropy of vacancy formation (∆Hv, ∆Sv)
for a system given the equilibrium concentration of vacancies (Xβ

v ) is 1.7x10−8

at 440 K and 1.5x10−5 at 650 K.
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20) Given that D = 1
6 Γvα2, consider the diffusion of vacancies in an FCC

lattice:

1. Let ∆Sm
R = 2 and v = 1013s−1. Calculate the pre-exponential factor Do for

vacancies (assume ao = 0.4 nm.)

2. If ∆Hm = 6.5 kJ/mol, calculate Dv for vacancies at 750oC

21) Below are the linear thermal expansion (∆L/Lo) and X-ray lattice pa-
rameter (∆a/ao) results at different temperatures for aluminum. Calculate and
plot lnXv from this data versus T−1 and determine the enthalpy and entropy
of vacancy formation in aluminum. Show all equations used.

22) Below is a table of linear thermal expansion (∆L/L) and lattice param-
eter expansion (∆a/a) vs. temperature for aluminum. Calculate and plot lnXv
form this data versus 1/T and determine the enthalpy and entropy of vacancy
formation in this material. Show all equations used.

23) A gold specimen is quenched from 700oC to room temperature (25oC).
An identical specimen is air cooled from 700oC to room temperature. The
difference in their resistances is ∆ρo. The quenched specimen is annealed at
40oC for 120 hours and then annealed at 60oC. Resistivity measurements were
taken periodically by quenching the sample to room temperature. From the
two slopes shown in attached Figure 2-16, find ∆Hmotion.

24) Write balanced Kröger-Vink reactions for the following reactions, as-
suming full ionic charge for all ionic species.

1. Schottky defect formation in Li2O

2. Anion Frenkel defect formation in Nb2O5

3. Oxidation of CdO to yield Cd/O < 1/1 (write both possible reactions)

4. Doping Al2O3 with ZnO to produce oxygen vacancies.
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25) Pure ZnO is an n-type semiconductor dominated by oxygen vacancies,
but it can be further donor-doped by substituting Al3+ for Zn2+ sites.

1. Draw a schematic Brouwer diagram as a function of pO2 at fixed Al con-
tent.

2. Draw a schematic Brouwer diagram at fixed pO2 as a function of Al con-
tent. Include all relevant point defect reactions and mass-action relation-

ships.

26) Given the following oxygen ion diffusivities for calcia-stabilized zirco-
nia (CSZ) of composition (ZrO2)0.85(CaO)0.15 and density 5.5 g/cm3, calculate
a) the ionic conductivity at each temperature, and b) the enthalpy of motion.
Assume oxygen vacancies are the dominant defect.

16 315 Labs

Contents
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315 lab schedule WQ2020

Week of Jan 13th – Worksheet #1 (temp measurements) due at beginning of lab; in-lab, measure BiSn 

cooling curves and mount samples.

Week of Jan. 20th – Worksheet #2 (thermocalc free-energy) due at beginning of lab; in-lab, polish, etch, 

examine mounted samples.

Week of Jan. 30th – Lab #1 due.  In-lab, complete microscopy/ stereology on BiSn samples

Week of Feb. 7th   - Worksheet #3 (ternarys) due.

Week of Feb. 14th – Lab #2 due.  In-lab, mount and polish carburized steel samples.

Week of Feb. 21st – Worksheet #4 (carburization) due.  Hardness profiles and microscopy of polished 

samples. Work on Worksheet #5 (DICTRA) in lab.

Week of Feb. 29th – Worksheet #5 due. In-lab, complete hardness testing and microscopy.

Week of Mar. 3rd – Lab#3 due.  In-lab quiz/ practicum. 

16.1 Lab Schedule CONTENTS
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Metlab (MATCI facility) Safety Guidelines

THINK FIRST!
Be alert. Act cautiously.  Don’t rush. Ask.

Use Proper Equipment:
Safety glasses or goggles are mandatory.
Hoods should be used when handling chemicals.  Use them properly.  Use the 
sash for shielding; keep the sash open only the minimal amount.  
Gloves must be used when handling chemicals.

 Latex– OK for sample preparation, light etching (nital, methanol or 
ethanol).  NOT OK for strong acids or anything containing HF.

 Nitrile gloves – more chemically resistant than latex.  But thin gloves offer
limited protection.  

 Silver Shield gloves – recommended for HF.
Heat resistant gloves should be used when handling hot samples or working with
furnaces (room 2028).
Tools – Use the right one for the job.  
Clothing – Lab coats are available in the lab.  Use them.  Note:  open-toed shoes 
and shorts do not provide adequate protection against spills.  Dress appropriately 
(pants, closed-toe shoes) for lab.  

Use Common Sense
Do not eat in the laboratory.  
Use caution: hot items might not look hot; be careful what you touch; use PPE.
Use proper techniques: properly mounted samples, wheels and pads will avoid 
finger/ hand injuries during grinding or polishing. 
Sharp blades should be moved in a direction away from body parts.
Ask -  check with the lab instructor or manager if you have questions.

Be Considerate
Clean up incidental spills immediately to avoid further contamination.  Dispose of
cleaning materials properly – not in the general waste.  
Notify lab manager (or Research Safety) immediately about large spills.
Dispose of chemicals properly.  There are separate solvent, acid, base waste 
containers.  There are also separate waste containers for HF based solns. & nital.  
Dispose of sharps properly.  There are separate containers provided for broken 
glass and metal sharps. 
Do NOT dispose of chemicals down the drain.
Do NOT leave unlabelled chemicals in the hood or elsewhere in the lab.  Label 
containers with chemical names, quantities, date, your name.
Do NOT track chemicals from etching hood to microscope (or elsewhere). 
Remove gloves before using scopes or other equipment outside the etching area.
Do NOT add other solvents to the nital container (see below).

16.2 Safety Guidelines CONTENTS
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Metlab particulars
 Consult MSDS sheets, available on the reference table in 2008.
 DO NOT bring chemicals into the lab without discussing details with lab 

manager.  You must provide an MSDS sheet with your proposed use.
 Nitric acid.  Strong oxidizer.  Do NOT mix with organics or solvents.  The only 

exception to this is nital:  2% nitric acid in methanol.  Do not exceed this 
concentration.  Do not use another solvent.  Dispose of separately from acid or 
solvent waste.

 HF consult lab manager prior to use.  Latex gloves are not sufficient.  Do not store
in glass.  Make sure calcium gluconate is available before use.  

 Please notify the lab manager of any accidents, spills, equipment malfunctions. 

Be aware of the following hazards, and use appropriate equipment and steps to avoid 
problems:  
Activity Location Safety issues Safety equipment provided
Heat treatment 2028 Burns (carelessness). Dust from 

refractory materials.  Proper use 
of gas tanks on tube furnaces 
(see below).

Heat-resistant gloves, tongs, 
refractory bricks.    Face shields.  

Gas Cylinders 
(with furnaces)

2028 High pressure venting. Dual stage regulators to be used on
each tank when in use.  
Tank caps must in place for any 
transport.  Tank belts must be used
to secure tanks in lab. 

Sawing 2086 Disposal of residual scarf and 
cutting fluids/ coolants.

All saws in the lab are enclosed.  
Disposal containers are provided.  

Mounting 2086 Noxious smell, acrylic irritant.  Use of hood for acrylic or epoxy 
mounting

Grinding/
polishing

2084 Spinning wheels.
Clogged drains and overflow 
sometimes leads to wet floor. 
Concern about materials in 
drain.  Eye protection for 
samples and debris off wheels.

Safety glasses.
Mop
Proper sample/wheel/pad 
mounting. Caution when using 
spinning/motorized equipment: 
keep hands free of wheels.

Polishing 2084 Same as grinding Same as grinding
Chemical 
Etching

2084 Improper mixing of chemicals 
and solvents.

Spills.

Transport of chemicals outside 
of hood.  (Remove gloves before
using other equipment 
(microscopes, etc.) and before 
exiting lab.

Goggles and safety glasses, face 
shields.  Rubber aprons. Gloves 
(rubber, latex, nitrile and silver 
shield).  Labeled waste containers 
are provided in hood. 
Undergraduate students should ask
for help mixing etchants. 
Calcium gluconate is provided.  
Cautions against mixing particular 
chemicals are highlighted.  
Additional reference material is 
provided in 2008.
Spill trays are provided. 
Spill kits are supplied in lab. 

 

16.2 Safety Guidelines CONTENTS
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NAME:___________________________________________________________

MATSCI 315: Phase Equilibria and Diffusion in Materials
Laboratory Instructor: Dr. Kathleen Stair, Cook 2039, kstair@northwestern.edu

Lab Worsheet#1: Binary Alloy Phase Diagrams

DUE at the beginning of lab week of Jan 9th.  Please write neatly.

In the first lab of 315, we’ll experimentally determine the phase diagram for a binary alloy 
(BiSn) and then look at the corresponding microstructure.  To measure temperature in the range 
of room temperature to ~ 300 degrees Celsius, we’ll use thermocouples.  

Before coming to lab, please answer the following questions (you may include sketches) and 
bring these to lab: 

1) What is a thermocouple?

2) How does it work? (What is actually measured?)

3) What type of thermocouple would you choose for the measurements we will make?  
Why?  (What are your design criteria?)

4) Name and describe at least two other methods of measuring temperature, excluding 
thermometers.

16.3 Worksheet 1 CONTENTS
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Lab Worksheet#2:  BiSn Alloys – phase diagram generation from free energy curves in Thermocalc – do 
this on your own.  Due at the beginning of lab week of January 16  th  .  

Thermocalc (TCW5) is found on the computers in Bodeen (Tech C115).
Instructions to generate free energy curves to plot Bi-Sn phase diagram:

Open Thermo-Calc for Windows (TCW5)
Click on the icon for a binary phase diagram (center of the top tab) – this opens the “TCW Binary Phase Diagram 
“window.
Within the new window, select  Bi and Sn
Choose Phase Diagram.  This will display the binary phase diagram – note that you may redefine the axes.  Choose 
weight percent Bi to be consistent with the experimental plot you will generate.

NOW – the question is – how was this generated?  (A review of 314!)
Click on G-curves
Enter a temperature (in Kelvin); begin at a temperature above 573K
Click on Apply.  This will generate a series of free energy curves at that temperature.
Note: you can normalize to 1 mole or 1 gram; to find wt% choose the latter.
Generate enough free energy curves to map out the BiSn phase diagram on the blank sheet.  You are also provided 
with some hardcopies.  Show your work on these  - draw in how your determined compositions corresponding to 
transitions at any given temperature.

Summary Instructions:  
Use the set of free energy curves that follow to draw the Bi-Sn phase diagram into the empty graph, above.  
First, draw vertical lines indicating phase boundaries on the free energy curves.  Then draw the 
corresponding isotherm and add the range of phases to the phase diagram. 
Use Thermocalc to access additional free energy curves. Label phases.

16.4 Worksheet 2 CONTENTS
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MATSCI 315: Phase Equilibria and Diffusion in Materials
Laboratory Instructor: Dr. Kathleen Stair, Cook 2039, kstair@northwestern.edu

Lab#1: Binary Alloy Phase Diagrams

REMINDER:  Laboratory Notebook: You should be prepared to take notes in a notebook 
(not on loose paper) during lab. Keep notes and lab handouts in order.  You will need to 
refer to these when writing your lab reports. 

Lab 1 Objectives: 
To understand the experimental generation of phase diagrams. 
To understand the relationship between phase diagrams and free energy curves.
To measure, analyze and interpret data.

There are three parts to Lab1:
Lab Worksheet #1 – pre-lab on temperature measurement. Due at beginning of lab week 
of January 9.

Lab Worksheet #2 - Generating a BiSn phase diagram using free energy curves in 
Thermocalc.  Outside of class – generate the phase diagram using TCW5 found on 
computers in the Bodeen lab.Tech C115.  (Start in lab, if time permits.) Due in lab week 
of Jan. 18th. 

Lab1 – In lab exercise week of Jan. 9th:  generate a BiSn phase diagram from 
experimental cooling curves.  Individual write-up based on pooled class data.  Due at the 
beginning of lab, week of Jan. 23.

Lab #1:  BiSn Alloys – phase diagram generation from Cooling Curves

Checking calibration:  We will be using type K thermocouples and data-logging devices
to measure temperature in the range of 100-300°C as a function of time for Bi, Sn and a 
series of binary alloys of BiSn.  The change in the rate of change in temperature as a 
function of time indicates changes in phases, as described by the Gibbs Phase Rule (also 
see http://www.doitpoms.ac.uk/tlplib/phase-diagrams/cooling.php)
How accurate and precise is your measurement device?  Think about how you might 
check this and anticipate that you will discuss this in your report.

Part i:  Endpoints
Start by measuring a cooling curve of either Bi or Sn.  Plan to pool group data.  

 Use the Easy-Log program to setup a data-logger.
 Use a ring-stand and clamp to secure a data-logger and thermocouple near 

your hotplate.  You don’t want the data logger too close to the heat; you do 
want the thermocouple to “spring-load” into the melt.  Make sure the 
thermocouple leads are not touching anywhere along the length, except at the 
join.  

 Heat the crucible on a hotplate until the endpoint metal has melted.  (This 
might not be obvious if there is an oxide on the surface.  You can remove 
surface oxides by skimming the melt with a stirring rod.)  

 Make sure the thermocouple is in the melt and double-check that it is not 
shorted along its length.    

 Turn off the power to the hotplate and use the data-logger to record 
temperature down to ~ 100°C.  Re-heat your sample, again measuring 
temperature vs. time to remove your thermocouple.
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 Download your data to a common group folder using the EasyLog software.  
You may save the curves in Excel for export.  Use a logically formatted 
filename for easy identification, .eg. Sn_Mon3_KS  or 40Bi_Thurs1_KS

 Determine the transition temperatures and record these. 
  

Part ii:  Alloys
Repeat the procedure, above, for an alloy.  These are designated by wt% Bi.  Determine 
the changes in slope that correspond to phase transitions.  Record these on the pooled 
data sheets.

Lab 1 Write-up

1) Write a short paragraph describing the theory behind cooling curve 
measurements. Include relevant equation(s).

2) Write a second short paragraph describing what was measured and how and 
include some mention of measurement uncertainty. 

3) Using a plotting program (Excel or Matlab…or other) plot your endpoint (Bi or 
Sn) and alloy cooling curves. Indicate what phases are present in what 
temperature ranges by labeling the two curves with phase and temperature 
information.

4) Use the tabulated data, as well as the posted raw data, to determine all phase 
transition temperatures that can be determined for alloys in the Bi-Sn system.  
Again, using a plotting program, plot these transition temperatures as a function 
of wt% Bismuth, to determine the phase diagram.  You will need to decide which 
points form a set corresponding to the same phase transition, i.e. a given liquidus 
line, for instance.  Add appropriate fit(s), label phases, label axes, etc.....in order 
to generate a neat, complete, self-explanatory phase diagram.

5) Write a paragraph discussing the results. Also discuss what assumptions were 
made and how your plot does/doesn't agree with theory and other experimentally-
determined Bi-Sn phase diagrams.  (Be especially aware of what assumptions you
make in compositional ranges where no measurements were made.) You will find 
a calculated Bi-Sn plot at: http://www.metallurgy.nist.gov/phase/solder/bisn.html.
Note that the temperature and composition that correspond to the invariant 
reaction (that is the eutectic temperature and composition) are listed in a table 
below this figure.

Notes on graphing:

i) You are gathering discrete data points, hence plot the data as such.  (In Excel, choose a
scatter-plot, without additional lines.)  When you fit the data (i.e. by adding a trendline) 
use a line.    Always consider your options: which points should you include or not 
include when fitting a given line?  Should you let the program find the best regressive fit?
Or should you fix the slope?  Is the fit linear?  Non-linear?  Can you use data to 
determine all the liquidus, solidus and solvus lines in the system?  Are there any you 
cannot determine?  (You could indicate an approximation as dashed lines.)  The details 
should be discussed in paragraph II of your text.

ii) Represent data with the appropriate number of significant figures.  If you are 
averaging 321 °C, 323 °C, 324 °C the average value is 323 °C.  (Do not add false 
significance when computing an average value.)  If there is uncertainty in determination 
of a transition temperature, it is OK to indicate this as a range.  Likewise, if you have 
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several data points for a single value, i.e. the melting temperatures of the endpoints, then 
you could plot all the points, or plot the average but indicate the range which was 
measured.  Assuming a normal (Gaussian) distribution of these values, you can find the 
uncertainty of the mean to within a 95% confidence level by determining 2X the 
standard error of the mean: 2x the standard deviation (STDEV in Exel) divided by the 
square root of the number of points measured.  Indicate these values on your plots by 
adding error bars:  left click the data set and choose Format data series > Y error bars.  

iii) Label axes appropriately AND label all phases present in different regimes.  
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MSc 750-315:  Applications of Thermodynamics
Worksheet #3 - Ternary diagrams using Thermo-Calc

You will find the TCW5 program and the NIST_solder database installed on the computers in the Bodeen lab 
(Tech C115).  You can login using your netid and password – though you may need to change your password.

For the  Bi-Sn-Pb system:
Part 1, draw isotherms/ label temps on the liquidus projection.  Label invariant points.
Part 2, apply the lever rule on the isotherm at 423 K to determine quantities and 
compositions of phases at that temperature for two specific alloy compositions. 

Open TCW5; click on the ternary phase diagram icon (upper right).
Choose Database: User.  Find TDB NIST_solder.TBD file
Choose Bi Sn Pb
Choose liquidus projection or isothermal section (in this case, choose a temperature). Note that 
you can redefine the axes. 
On the liquidus projection below, use the isothermal sections to draw in the isotherms – labeling 
temperatures. Label all (binary and ternary) invariant points.  
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Tie lines. -   Use the lever rule to determine the following (show work on figure, above).  

150oC (423K):  80wt% Bi, 5wt% Pb:  
How much liquid?  
Composition of liquid? 
How much solid?
Composition of solid?

150oC (423K):  70wt% Bi, 15wt% Pb:  
How much liquid?  
Composition of liquid? 
How much solid?
Composition of solid?

2
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315 Lab #2 BiSn alloys: Metallographic preparation and microstructural examination 

Recall that we determined the phase diagram of Bi-Sn using cooling curves.  In this lab we will examine microstructures
of the alloys.  Part of the learning objective is to become familiar with metallographic preparation procedures and use of
the optical microscope, as well as correlating microstructure to the phase diagram. Read through all steps before starting.

1. Put on safety glasses.  Choose a sectioned sample of Bi-Sn; make sure each group (every subgroup of 2-3) in the lab
section selects a different composition.  Record the composition.  Each of these samples contains saw-cut damage.
Your objective is to reveal the true microstructure of the sample by removing this damage, as well as sequentially
removing damage from the initial grinding steps.  

2. The samples will be mounted in acrylic using 1 ¼” diameter molds.  Make a label for your sample (composition,
your initials) that will fit in the mold, under the surface of the acrylic, before it hardens. .  A small piece of paper stuck
just under the surface will suffice.  

3. Gloves are located in the two drawers to the left of the hood in 2084.   Set the side of the sample to be examined
face down in a Sampl Kup (blue) mold.  Measure two parts acrylic powder into a small paper cup.  Add one part
acrylic resin.  Mix (or more appropriately, “fold” – to avoid mixing in too many air bubbles) the powder and liquid (it
should have a consistency of honey or syrup), then pour the mixture over the sample in a Sampl Kup.  Add a label to
the back of your mount before the acrylic solidifies. The acrylic will harden in about 15 minutes.  

4. Round the sharp edge of the sample by rotating the edge on a piece of grit paper.  This helps keep the samples from
“grabbing” the paper or cloths on the autopolisher.  Use the autopolisher to sequentially grind with SiC grit (~ 1-2
minutes for each size), then polish diamond suspension.  (Note that this is slightly modified from the recommended
“universal” autopolishing sequence; the diamond suspensions tend to become embedded in the soft metals you are
polishing,  and the surfaces  become gummy and discolored  when using the normally-recommended 0.05  micron
alumina final step.  Also you can use lower force – 4 or 5 lbs – and shorter times than are recommended for harder
materials.)  It is critical that you wash and ultrasonically clean the samples between each polishing step (but not each
grinding step) to avoid contaminating the polishing pad with larger sized grit or sample debris.

5. Before looking at samples on the light microscope, make sure they are clean and DRY.  Use ethanol as a final rinse,
and then dry the samples under the hand dryer. Please be careful.  Moisture or solvents will ruin the objective lenses.
Set the samples face down on a piece of paper to make sure water does not seep from between the sample and mount.
Microscope instructions are attached.

6. Use the autopolisher to sequentially grind and polish the samples to a final grit size of 1 micron diamond.

7. Etch (using the assigned etchant) to reveal microstructure.  The etchant for this lab is 5% HCl in methanol, by volume
– prepared by your TA or lab instructor.  Make sure you are wearing your safety glasses and add gloves – rubber
gloves or latex gloves are OK – before working with the etchant.  The etchant should remain in the hood.  (You
should remain entirely outside the hood.)  You are etching until you rinse the sample.  Use tongs to dip the sample in
the etchant for ~ 5 seconds; rinse; examine the surface by eye.  It will become slightly cloudy as etching occurs.  

8. Record images that are representative of your sample, to be included in your lab report.   Be sure to mark each
micrograph with a micron bar. 

9. Share images of all the final polished, etched samples between all members of your lab group.  

10. Analyze the volume fraction of the different phases present using a point grid.   Note:  you could measure the relative
amount of each phase or the relative amount of primary phase vs. eutectic (remember, the eutectic is a two-phase
micro-constituent).  Make a careful note of what you measured and why.  
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Lab#2:  WRITE_UP: Due beginning of lab week of Feb 6th – groups of two or three.

Metallographic preparation and microstructure of BiSn alloys 

This (short memo-style) report will be a truncated version of a formal lab report.   The intent is to document your sample
preparation and relate the final microstructures to the phase diagram.

Title, authors

Methods  and Materials:  Describe  your  samples  and how you  prepared  them.  Include  any  images that  show the
progression of grinding, polishing, etching steps. Include details about grit size, diamond suspension size, loads, etchant
and etching times. Label images as figure 1, etc. and include captions.  Note that figure captions are placed below a figure.
(The convention for tables is that the title is above the table.)

Results  & Discussion: (Begin  this  section with text.)  Discuss  the  alloys  that  were  prepared by  your  group.  Show
corresponding images.   Include figure numbers and captions and label the phases present.   Include a discussion of the
volume fraction analysis and conversion to weight percent and how it agrees (or doesn’t) with the known composition of
your alloy. 
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Using Stereology to measure Volume Fraction
(for more details, see ASTM E562 – 83) 

Often, when viewing cross-section of metallography (or ceramic, etc) samples under a microscope, it is 
desirable to make quantitative measurements of such values as the grain size and volume fraction of particular 
phases.  

The latter is easily accomplished using point-counting techniques.  In this case, a test grid is superimposed upon
the image of the sample and the number of points falling within the microstructural constituent of interest is 
counted.  This, divided by the total number of points in the grid, provide an estimate of the volume fraction of 
the constituent of interest.

 VV = P(alpha)/PT

Size of grid/ Number of Measurements
The size of the test gird is typically 4x4 or 5x5 points.  In order to lower the uncertainty in the measurements, 
one should count approximately 100 points on the constituent of interest, P (alpha).  This means overlaying the 
grid many times, on different areas of the sample.  Often, an eyepiece reticle is used to facilitate this counting.  

Magnification
The magnification should be high enough to avoid adjacent grid points falling on the same microconstituent 
feature.  Choose a magnification giving an average constituent size of ~ ½ the grid spacing.

Counting 
Count and record the number of points on the microconstituent in each application of the grid.  Count points 
falling on a boundary between constituents as ½.

Uncertainty in measurement
You can easily determine the standard deviation, standard error of the mean and confidence levels by tabulating 
all the values measured.  In theory, the value of the coefficient of variation (the standard deviation / mean) is:

σ (V v)
V v

=√ 1−V V

Pα

Comparison to mass fraction
Note that the volume fraction and mass fraction are not equivalent, but one may convert from one to the other 
using the densities of the respective phases (see Callister, chapter 9):

W α=
V α ρα

V α ρα+V β ρβ
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Materials Science and Engineering Dept.
315 - Phase Equilibria and Diffusion

Worksheet #4 Diffusion of Carbon into 1018 steel using pack-carburization

These are questions to answer during lab and after – and include in your final report.
These answers will be due in the beginning of lab, week of Feb. 13th

1. What equations (solutions to the diffusion equations) describe diffusion from a plane 
source, i.e. carburization? That is, equations that describe the concentration profile 
(concentration vs. distance) as a function of time, temperature and diffusivity?

2. Re-write these equations to describe the change in hardness.  What assumptions are made
in our experiment? 

3.  Briefly describe the following hardness measurements:

Rockwell

Vickers

Knoop.

4.  What are the units for Vickers and Knoop testing?  Assuming a ductile material, hardness ~ 3 
x yield strength.  What units will you use for the comparison between hardness and yield 
strength?  Explain the conversion.

5.  You will be experimentally determining the diffusivity of carbon in steel at 940 and 960°C, 
the temperatures at which class samples were prepared.  Find some comparison values or an 
equation you can solve – that is values from the literature to which you will be able to 
compare your results: 
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Dictra – Carburization simulation (www.thermocalc.com) 
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Materials Science and Engineering Dept.
315 - Phase Equilibria and Diffusion

Diffusion of Carbon into 1018 steel using pack-carburization

Samples of 1018 steel were packed in a mixture of 85wt% activated charcoal and 15wt% calcium
carbonate in steel bags.  Samples were subsequently pack-carburized for three times at three 
temperatures (915°C, 940°C and 960°C).  Each lab group will examine three samples from a 
single carburization temperature.  

Part I: Mount the samples in thermo-setting resin and label.  Grind (320, 400, 600, 800 girt SiC)
then polish with 3µ and 1µ diamond suspension on a microcloth pad.  Briefly (1-3 seconds) etch 
with nital (2% nitric acid in methanol).  You might swab the etchant on the surface with a cotton-
tipped swab.  Rinse with water, then with solvent; dry.  Examine the microstructure across the 
sample.  Gather images that you can relate to the change in composition from center-to-edge of 
the samples.

Part II: Measure a hardness profile from edge toward the center of the sample.  (Note that this 
might work best on an unetched sample.  If you have already etched, return to the 1 micron 
diamond wheel to remove the etched layer from the surface.)  Use the Struers semi-automated 
microhardness tester to measure Vickers hardness  from the carburized surface toward the center 
of the specimen in increments of ~50-100 microns for the first ~2 mm, then ~200 microns until 
the values clearly plateau.  Use the 10X objective to focus; use the 40X objective to measure the 
indent.  Rotating between objectives and indenter is best done using the automated program 
(Duramin5).  To avoid interference between indentations, spacing should be about 3x the indent 
size -- but zig-zagging is allowed.    You want to obtain 10-20 points to define your hardness 
profile.  In addition, you should measure ~ 10 points near the center (undiffused region of the 
sample) to determine what uncertainty is associated with the measurement on these samples, 
independent of the change in hardness. 

Write-up (groups of 2 or 3):
Introduction – brief background on pack-carburization of steel and literature values of the 
diffusivities which you will solve for experimentally.

Methods – how did you prepare and characterize samples?  Well-written and concise, with 
enough detail to repeat the experiments.

Results - Your results will include micrographs with appropriate captions that describe the effect
of carburization on the steel microstructure.  You will need images from both the center and the 
edge of your sample(s).  Label phases/ microconstituents, add micron bars, etc. on these.  
Estimate the carbon content at the surface, and explain your rationale. 

Results, cont’d - Your results will also include experimental hardness profiles along with a fit 
from which you estimate the diffusivity of carbon in steel.  The experimental data should be 
represented as points; the fit should be represented as a smooth curve. (Note that this curve 
will NOT be a polynomial; you know the functionality based on the solutions to planar 
diffusion  -see in-lab handout from week 1 of this lab.  USE THESE, NOT a polynomial, 
which will give a very poor fit.  ERF and ERFC functions are available in Excel and Matlab.

Discussion – place your results in the context of literature values and those determined from the 
Dictra plots. Clearly state any assumptions you made in your analysis.  (Use the DICTRA 
solutions (in-lab handout week 2 of this lab) as a starting point to determine D and also for 
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comparison.  Also include values of D based on other sources (Porter & Easterling, Callister, 
etc.).  Show the comparison graphically.)

Conclusions – provide a summary of the main points/ values determined in the lab, how well 
they matched expected values and some assessment about the agreement or lack thereof.

Quick Microhardness Instructions: Vickers (Knoop)

Turn on microhardness tester (rear) and restart computer.  

Insert specimen into holder.
VERY IMPORTANT: THE SAMPLE MUST BE FLUSH WITH THE TOP OF THE HOLDER.
Note that the tip clearance is very small.  IF the sample is at all recessed, when you focus you 
will be below the tip clearance level.  If the tip runs into the sample holder this is a VERY 
COSTLY and TIME-CONSUMING repair.  (The equipment must be shipped back to Struers for 
repair.)  

Inspect with 10X objective to focus and find the test area.  Also, focus the eyepeice.  Set the load
to 300gm. (Note on load selection -- you want a large enough indent to measure accurately; but 
use a load that does not cause excessive damage to your sample, such as deformation or cracking 
at the indent tips.)

Vickers is chosen, and the processor load is set to 300gm; objective to 40X

Select “indent.”  Do NOT move the indentor with the start button illuminated.  Note that for a 
Vickers test the indent should be an equiaxed pyramid.

Change to the 40X objective.  

You may use (or over-ride as necessary) the Automeasure feature.  

Make sure you record both hardness and distance from the edge of the sample. 

NOTE: Use the  Struers semi-automated microhardness tester to measure Vickers hardness  from
the carburized surface toward the center of the specimen in increments of ~50-100 microns for 
the first ~2 mm, then ~200 microns until the values clearly plateau.  Use the 10X objective to 
focus; use the 40X objective to measure the indent.  Rotating between objectives and indenter is 
best done using the automated program (Duramin5).  To avoid interference between indentations,
spacing should be about 3x the indent size -- but zig-zagging is allowed.    You want to obtain 
10-20 points to define your hardness profile.  In addition, you should measure ~ 10 points near 
the center (undiffused region of the sample) to determine what uncertainty is associated with the 
measurement on these samples, independent of the change in hardness. 
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NOMENCLATURE Nomenclature

Nomenclature

` Liquid
`s Liquid solution
µA, µB chemical potentials of A and B
F Degrees of freedom
g Gas
s Solid
XA, XB Mole fractions of A and B
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