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1 Catalog Description (316-1,2)

Principles underlying development of microstructures. Defects, diffusion,
phase transformations, nucleation and growth, thermal and mechanical treat-
ment of materials. Lectures, laboratory. Prerequisite: 315 or equivalent.

2 Course Outcomes

At the conclusion of 316-1 students will be able to:

1. Describe the Kirkendall effect, diffusion in ternary systems, and the im-
portance of short-circuit diffusion.

2. Describe the structure of various types of interfaces and the effects these
structures have on interfacial energy.

3. Apply concepts of mathematics and physics to imperfections, diffusion
and phase transformations.

4. Use basic concepts of dislocation theory: topology and energetics of dis-
locations in crystalline materials.

5. Exhibit a good understanding of dislocations as related to their type
(edge, screw, mixed), stress fields, energies, geometry (bowing, kinks,
jogs) and interaction.

6. Correlate dislocation motion to plastic flow.
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3 DIFFUSION

7. Describe how the grain size of a material can be controlled by mechanical
and thermal processing of materials

8. Demonstrate laboratory skills in structural and thermal processing of
materials.

3 Diffusion

3.1 Review of the Basic Equations

The diffusion equation describes the evolution of the composition profile with
time as the individual components diffuse within a sample. These components
can be either atoms or molecules, but for our purposes we’ll assume that the
diffusing species are atoms (as in a metallic sample). For a binary system of
A and B components, we can use either CA or CB (the respective concentra-
tions of A and B species in atoms/volume) to describe the composition. These
compositions sum to the total atomic concentration, C0:

C0 = CA + CB (3.1)

If the molar volumes of A and B are equal to one another, then C0 is fixed, so
that the following conditions hold:

∂CA

∂z
= −∂CB

∂z
(3.2)

∂CA

∂t
= −∂CB

∂t
(3.3)

Note that we are using z as our spatial variable. For a binary A/B alloy we can
use either CA or CB to describe the overall composition of the alloy. The flux
of atoms is given by Fick’s first law:

Ji = −Di
∂Ci

∂z
(3.4)

Here Di is the intrinsic diffusion coefficient for component i and Ji is the dif-
fusive flux of component i referenced to a given lattice plane in the material.
In a binary system there are two intrinsic diffusion coefficients, DA and DB ,
and two diffusive fluxes, JA and JB . The time evolution of the composition is
given by the continuity condition that relates a change in local concentration
must be related to the spatial derivative of the flux:

∂Ci

∂t
= −∂Ji

∂z
(3.5)

The diffusion equation is obtained by combining Eqs. 3.4 and 3.5:
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3.1 Review of the Basic Equations 3 DIFFUSION

∂Ci

∂t
=

∂

∂z
Di

(
∂Ci

∂z

)
(3.6)

If the diffusion coefficient is independent of concentration (and hence, inde-
pendent of x as well) then the diffusion equation can be written as follows:

∂Ci

∂t
= Di

∂2Ci

∂z2
(3.7)

The diffusion equation involves a first derivative with respect to time an a
second derivative with respect to distance, so in general we need an initial
condition and two boundary conditions. Consider for example the following
situation:

• Boundary conditions: CA = C1 for z → −∞ and CA = C2 for z → ∞

• Initial condition: The concentration jumps discontinuously from C1 to
C2 at x = 0

With these initial and boundary conditions, the solution to Eq. 3.7 is:

CA (x, t) =
C1 + C2

2
+

C2 − C1

2
erf

(
z

w (t)

)
(3.8)

Here w is the following diffusion length, which enters into all diffusion prob-
lems:

w (t) = 2
√
DAt (3.9)

Erf is the error function, which is defined formally as follows [1]:

erf(x) =
2√
π

ˆ x

0

e−t2dt (3.10)

Note that erf(x) transitions from -1 to large negative values of x to +1 for high
positive values of x, as shown in Figure 3.1.

0.50

0.25

0.00

−0.25

−0.50

−0.75

−1.00

−3 −1 0 1 3

x
−2 2

0.75

1.00

(x
)

e
rf

Figure 3.1: Behavior of the error function (from ref. [1]).

The solution to Eq. 3.8 is shown in Figure 3.2. To show how the concentration
profile evolves with time, we have included values of w in the plot.
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Figure 3.2: Representations of Eq. 3.8 for different values of w = 2
√
Dt.

This program was used to generate Figure 3.2:

1 figure
2 figformat % set some defaults so the figures look pretty
3 z=linspace (-1,1,200); % These are the z points
4 w=[0.2 ,0.4 ,0.6]; % these are the three values of the normalized

diffusion length that we will include in our calculations
5 c=@(z,w) erf(z/w); % define a function of two variables , z and w
6 col ={[1 ,0 ,0] ,[0 ,0.5 ,0] ,[0 ,0 ,1]}; % these are the three colors (

rgb format)
7 linetype ={'-','--','-.'}; % these are the three line types we

well used (plain , dashed and dash -dot)
8 axes
9 hold on

10 for i=1:3
11 plot(z,c(z,w(i)),'color ',col{i},'linestyle ',linetype{i})
12 legendtext{i}=['$w/L$=' num2str(w(i))];
13 end
14 legend(legendtext ,'location ','best','interpreter ','latex ')
15 ylabel('C_{a}')
16 xlabel('z/L')
17 ylim ([ -1.2 1.2])
18 set(gca ,'ytick ' ,[-1,1])
19 set(gca ,'yticklabel ' ,[]) % turn off the y axis tick labls by

making 'yticklable ' an empty vector
20 text(-1.15, -1, 'C_{1}','fontsize ' ,16)
21 text(-1.15, 1, 'C_{2}','fontsize ' ,16)
22 print(gcf ,'../ figures/erfsolution.eps','-depsc2 ') % save as an

eps file

We can also consider the situation where we have layer of material at z = 0,
which diffuses in the positive and negative directions into the bulk material.
In this case the initial and boundary conditions are as follows:

• Boundary conditions: CA = 0 for z = ±∞

• Initial condition: All of the A component is confined to a very layer at
z = 0, with a surface coverage (atoms/area) of Cs

• Normalization condition: The total amount of material in the sample
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3.1 Review of the Basic Equations 3 DIFFUSION

must be conserved, so if we integrate the concentration profile we must
end up with Cs:

ˆ ∞

−∞
CA (z) dz = Cs (3.11)

In this case the following solution to the diffusion equation is obtained:

CA (z, t) =
Cs

w (t)
√
π
exp

(
− (z/w)

2
)

(3.12)

Eq. 3.12 is plotted in Figure 3.3 for three different time points.
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Figure 3.3: Representations of Eq. 3.8 for different values of the diffusion length,
ℓDA .

In many cases all we need to know is the diffusion length, ℓDA , in order to un-
derstand what is going on at a pretty high level of detail. For example, ℓDA de-
scribes both the width of interfacial mixing for two materials that are brought
into contact with one another (Figure 3.2) and the diffusive broadening of a
thin interfacial layer (Figure 3.3). The quantitative interpretation of the diffu-
sion length in these two circumstances is illustrated in Figure 3.4. In Figure
3.4a we plot the interfacial broadening for a thin layer that is diffusing in the
positive and negative z directions. The width of the diffusion profile can be
characterized by the half-width of the peak, w′, evaluated at half the total peak
height. In Figure 3.4b we plot the concentration after bars with bulk concentra-
tions of C1 and C2 are brought into contact with one another. In this case w′ is
obtained by drawing a tangent to the concentration profile at the midpoint be-
tween C1 and C2, and taking 2w′ as the horizontal distance between the points
where this tangent line reaches concentrations of C1 and C2. The value of w′

in both cases is quite close to the diffusion length, w.
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(a)

-2 -1 0 1 2

z/w

0

0.1

0.2

0.3

0.4

0.5

0.6
C

A
w

/C
s

2w
′

(b)

-2 -1 0 1 2

z/w

C
A

2w′

C
1

C
2

Figure 3.4: Illustration of the interfacial width for the thin-film solution (a) and
error function solution (b) to the diffusion equation. In part a, w′ = 0.83w and in
part b w′ = 0.89w.

3.2 Mole Fractions and Volume Fractions

An assumption that we make throughout this text is that the atomic volumes of
different chemical species are all identical, equal to V0. In reality, this is almost
never exactly true. Fortunately, it doesn’t really matter when thinking about
diffusion because we can always work with volume fractions instead of mole
fractions. In a generalized formulation the molecular volumes of the A and
B molecules are given by multiplying the reference volume by a factor of N ,
which is not necessarily the same for each molecule:

VA = NAV0

VB = NBV0
(3.13)

We can relate concentrations to mole fractions and volume fractions by con-
sidering a binary A/B system with n total atoms. Of these, nXA are A atoms
and nXB are B atoms. Multiplying by the the atomic volume gives the total
volume of each component. The total volume of A atoms is nXANAV0 and the
total volume of B atoms is nXBNBV0. From these expressions we obtain the
following for ϕA, the volume fraction of A atoms in the system:

ϕA = nXANAV0

Vtot
= CANAV0

ϕB = nXANAV0

Vtot
= CBNBV0

(3.14)

where Vtot is the total volume of the system. Note that we have used CA =
nXA/Vtot and CB = nXB/Vtot. Throughout the rest of this text we generally
assume that NA = NB = 1. In the case where NA and/or NB are not equal to
one we can define renormalized concentrations, C0

A and C0
B that describe the

concentration of subunits of volume V0. These fluxes are related to the atomic
fluxes, CA and CB by multiplying by the appropriate value of N :
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3.3 Vacancy Diffusion Mechanism 3 DIFFUSION

C0
A = CANA = ϕA/V0

C0
B = CBNB = ϕB/V0

(3.15)

The renormalized fluxes, J0
A and J0

B are obtained by a similar normalization:

J0
A = JANA

J0
B = JBNB

(3.16)

Fick’s first law still holds for these renormalized fluxes and concentrations,
since we are just multiplying each side of Eq. 3.4 by Ni. Fick’s second law
applies for a similar reason. We can also use Eq. 3.15 to substitute ϕi for C0

i :

∂ϕi

∂t
=

∂

∂x
Di

(
∂ϕi

∂z

)
(3.17)

The bottom line of all this is that Fick’s second law still applies, with same
diffusion coefficient used for the case where the atomic volumes are equal,
provided that we simply replace concentrations with volume fractions.

3.3 Vacancy Diffusion Mechanism

Figure 3.5 shows the output of a vacancy diffusion simulation of the interdiffu-
sion between two materials. Vacancies move when an atom from an adjacent
site moves into the vacancy. The resulting net motion of the atoms provides
a means for diffusive mixing across an interface, and this is the process being
illustrated in Figure 3.5 If the probability of hopping into a vacancy is differ-
ent for A and B atoms, then |JA| ̸= |JB |, and we need to consider additional
effects. These are described below in our discussion of the Kirkendall effect.
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Figure 3.5: Diffusion couple in its initial state (a) and after 100,000 hops of the
included vacancy (b). The size of the 2d lattice is 30×30..

The following program was used to generate the images shown in Figure 3.5.
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3.3 Vacancy Diffusion Mechanism 3 DIFFUSION

1 tic % start a time so that we can see how long the program takes
to run

2 n=30; % set the number of boxes across the square grid
3 vfrac =0.01; % vacancy fraction
4 matrix=ones(n);
5 map =[1 ,1 ,1;1,0,0;0,0 ,1]; % define 3 colors: white , red , blue
6 figure
7 colormap(map) % set the mapping of values in 'matrix ' to a

specific color
8 caxis ([0 2]) % range of values in matrix goes from 0 (vacancy) to

2
9 % the previous three commands set things up so a 0 will be white ,

a 1 will
10 % be red and a 2 sill be blue
11 matrix(:,n/2+1:n)=2; % set the right half of the matrix to 'blue

'
12 i=round(n/2); % put one vacancy in the middle
13 j=round(n/2);
14 matrix(i,j)=0;
15 imagesc(matrix); % this is the command that takes the matrix and

turns it into a plot
16 t=0;
17 times =[1e4 ,2e4 ,5e4 ,1e5];
18 showallimages =1; % set to zero if you want to speed things up by

not showing images , set to 1 if you want to show all the
images during the simulation

19

20 %% now we start to move things around
21 vacancydiff.matrices ={}; % makea blank cell array
22 while t<max(times)
23 t=t+1;
24 dir=randi ([1 4], 1, 1);
25 if dir==1
26 in=i+1;
27 jn=j;
28 if in==n+1; in=1; end
29 elseif dir==2
30 in=i-1;
31 jn=j;
32 if in==0; in=n; end
33 elseif dir==3
34 in=i;
35 jn=j+1;
36 if jn >n; jn=n; end
37 elseif dir==4
38 in=i;
39 jn=j-1;
40 if jn==0; jn=1; end
41 end
42 % now we need to make switch
43 neighborix=sub2ind ([n n],in,jn);
44 vacix=sub2ind ([n n],i,j);
45 matrix ([vacix neighborix ])=matrix ([ neighborix vacix ]);
46 if showallimages
47 imagesc(matrix);
48 drawnow
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3.4 Kirkendall Effect 3 DIFFUSION

49 end
50 if ismember(t,times)
51 vacancydiff.matrices =[ vacancydiff.matrices {matrix }]; %

append matrix to output file
52 imagesc(matrix);
53 set(gcf ,'paperposition ' ,[0 0 5 5])
54 set(gcf ,'papersize ' ,[5 5])
55 print(gcf ,['vacdiff ' num2str(t) '.eps'],'-depsc2 ')
56 end
57 i=in;
58 j=jn;
59 end
60 vacancydiff.times=times;
61 vacancydiff.n=n;
62 save('vacancydiff.mat','vacancydiff ') % writes the vacancydiff

structure to a .mat file that we can read in later
63 toc

3.4 Kirkendall Effect

The geometry of the Kirkendall experiment (1947) is shown in Figure 3.6 [2].
In the experiment a small block of brass (70% copper, 30% Zn) was surrounded
by inert, Molybdenum (Mo) wires. The sample was then coated with copper,
and heated to a high temperature to allow atoms within the material to diffuse.
In the measurement, the distance, w, between the Mo markers decreased as a
function of time. This result implies that the flux of Zn out of the brass portion
of the sample is larger than the copper flux back into the brass from the outside.

Figure 3.6: Experimental geometry of the original Kirkendall experiment

Diffusion does not need to occur by a vacancy motion in order for the Kirk-
endall effect to be observed, all that is needed is an asymmetry in the diffusion
coefficients of the individual components in the material. However, for our
purposes we will assume for now that diffusion occurs by a vacancy hopping
mechanism. This assumption is valid for the original Kirkendall experiment,
and it also enables us to make a connection to the relevant microscopic diffu-
sion mechanisms. It is an excellent example of the structure/property relation-
ships that define the field of materials science.
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3.4 Kirkendall Effect 3 DIFFUSION

Our starting point is to assume that the vacancy concentration remains at equi-
librium, so that the total number of lattice sites (including vacant sites) remains
constant. A consequence of this assumption is that the fluxes of of A atoms, B
atoms and vacancies must sum to zero:

JA + JB + Jv = 0 (3.18)

Rearrangement of this equation, in combination with Fick’s first law (Eq. 3.4)
and the requirement that ∂CA

∂z = −∂CB

∂z leads to the following:

Jv = (DA −DB)
∂CA

∂z
(3.19)

The situation for DA −DB > 0 is illustrated in Figure 3.7. In this case the net
vacancy flux is negative (to the left), and has a maximum magnitude at the
point where the concentration gradient is the largest. Because the vacancy flux
varies with position, there will be a time dependent increase or decrease in
the local vacancy concentration that can be obtained from a site conservation
equation similar to Eq. 3.5:

∂Cv

∂t
= −∂Jv

∂z
(3.20)

This results in a net depletion of vacancies in some regions of the sample (the
right in Figure 3.7c) and a net supersaturation of the vacancy concentration in
other regions of the sample (the left in Figure 3.7c). In most cases processes ex-
ist that enable these concentration variations to be eliminated, by the creation
of vacancies at the right portion of the sample and the destruction of vacancies
at the left portion of the sample. Typically, these processes involve the addition
or removal of vacancies to the core of a dislocation.
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Figure 3.7: Representative concentration profiles during diffusion in a binary sys-
tem (a), along with the fluxes for the case where DA > DB , and the change in
local vacancy concentration due to the diffusive fluxes.

3.5 The Interdiffusion Coefficient

In general, a material flux, J , within a material can be related to a velocity, v.
This velocity is obtained simply by multiplying J by the reference volume, V0,
that is used to define the diffusive flux: (V0 = 1/C0):

v
(m
s

)
= J

(
1

m2 · s

)
· V0

(
m3

)
(3.21)

The relevant velocity for us is a net, material velocity with respect to a set of
inert markers, corresponding, for example to markers shown in the schematic
representation of the Kirkendall experiment (Figure 3.6). It is easy to see from
this picture, that if there is a net material flux to the right (in the positive di-
rection), the result will be a net motion of the markers to the left. The value of
vℓ, the net velocity of the markers with respect to the ends of the samples, is
determined by using -(JA + JB) as the relevant flux in Eq. 3.21:

vℓ = − (JA + JB)V0 (3.22)

We will often find it useful to use mole fractions instead of concentrations in
our expressions, so we need to keep the following relationship in mind:

Ci = XiC0 (3.23)

with i=A we can differentiate Eq. 3.23 to obtain:
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3.5 The Interdiffusion Coefficient 3 DIFFUSION

∂XA

∂z
=

1

C0

∂CA

∂z
(3.24)

We can now combine Fick’s first law (Eq. 3.4) with Eqs. 3.22 and 3.23 to obtain:

vℓ = (DA −DB)
∂XA

∂z
(3.25)

This is the velocity that individual planes are moving with respect to a fixed
position in the sample that is far from the interface (the ends of the sample, for
example). The fluxes obtained from Fick’s first law are defined in terms of a
reference plane that is moving with a velocity vℓ. We can also define fluxes of
A and B atoms across stationary planes, and we refer to these fluxes as J ′

A and
J ′
B . We can get J ′

A by adding vℓCA to JA, where vℓCA is the net flux of A atoms
across a fixed plane in space due to the lattice plane velocity:

J ′
A = −DA

∂CA

∂z
+ vℓCA (3.26)

We can combine this expression with Eq. for vℓ to get:

J ′
A = −DA

∂CA

∂z
+ (DA −DB)CA

∂XA

∂z
(3.27)

With CA/C0 = XA, we can combine Eqs. 3.24 and 3.27 to obtain:

J ′
A = −DA

∂CA

∂z
+ (DA −DB)XA

∂CA

∂z
(3.28)

After a bit of algebra, keeping in mind that XA + XB = 1, we obtain the
following:

J ′
A = − [DAXB +XADB ]

∂CA

∂z
(3.29)

Now we can define an interdiffusion coefficient, D̃:

D̃ = [XBDA +XADB ] (3.30)

with this definition we have:

J ′
A = −D̃

∂CA

∂z
(3.31)

A similar approach can be used to show that J ′
B = −J ′

B and that the same
value of D̃ can be used to relate J ′

B to ∂CB

∂z . In addition, this same value of
D̃ now appears in Fick’s second law, where we can see from Eq. 3.30 that the
value of D̃ is generally going to be composition dependent. The concentra-
tion profile therefore evolves according to the time-dependent solution of the
following form of Fick’s second law:
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3.6 Connection to thermodynamics 3 DIFFUSION

∂Ci

∂t
=

∂

∂z
D̃

(
∂Ci

∂z

)
(3.32)

3.6 Connection to thermodynamics

At equilibrium the chemical potential of component i, µi is a constant. If µi is
not constant, then we must have diffusive fluxes as the system move towards
equilibrium. It’s not a gradient in concentration that generates the flux, it’s
really the gradient in the chemical potential, µ. A simple example illustrating
this point is the abrupt change in concentration that exists at an equilibrated
interface between two coexisting phases, shown as the α and β phases in Fig-
ure 3.8. Even though there is a large composition gradient at the interface,
there is no diffusion for an equilibrated system because the chemical potential
is spatially uniform.

Figure 3.8: Schematic representation of the interface between α and β phases.

This example illustrates the fact that diffusion involves more than just con-
centration gradients, but involves thermodynamic factors as well. In order to
account for these we need to revisit Fick’s first law, but write things in terms
of the chemical potentials. The flux of B atoms is can be written as the product
of CB and a diffusive velocity vB where vB is the average velocity at which the
B atoms are moving. This velocity is related to the concentration gradient by a
mobility coefficient, MB :

vB = −MB
∂µB

∂z
(3.33)

Note that MB must be positive. Atoms always move down a chemical poten-
tial potential gradient, although in some cases diffusion may take place up a
concentration gradient (more on this in 316-2). We can use the previous ex-
pression for vB to obtain the following expression for the diffusive flux of B
atoms:

JB = CBvB = −MBCB
∂µB

∂XB

∂XB

∂z
(3.34)

We can use Eq. 3.24 to write this in terms of a concentration gradient:
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3.7 Tracer Diffusion Coefficients 3 DIFFUSION

JB = −MBXB
∂µB

∂XB

∂CB

∂z
(3.35)

Comparing to Fick’s first law (Eq. 3.4), we obtain the following for DB :

DB = MBXB
∂µB

∂XB
= MBCB

∂µB

∂CB
(3.36)

We see the this intrinsic diffusion coefficients involves purely kinetic param-
eter (the mobility, MB), and a thermodynamic parameter (the derivative of
µB with concentration). As discussed in more detail in 315 (see the sectional
on Type II (binary) phase diagrams), chemical potentials are most commonly
expressed in terms of activity coefficients in the following way:

µB = µ0
B +RT ln aB (3.37)

Here µ0
B is the standard state, which is generally defined to be zero for a pure

material at thermodynamic equilibrium. This equation can be used to write
the chemical potential derivative in the following way:

∂µB

∂Xb
=

RT

a

∂aB
∂XB

(3.38)

3.7 Tracer Diffusion Coefficients

The tracer diffusion coefficient can be viewed as the diffusion coefficient for
a dilute species. The matrix in which the tracer is diffusing can itself be a
mixture of different elements, as we illustrated schematically in Figure 3.9. The
following features of the tracer diffusion coefficients are important to keep in
mind:

• Like mobilities, tracer diffusion coefficients are purely kinetic parame-
ters.

• Tracer diffusion coefficients will depend on the local composition (the
relative amount of A and B atoms in a binary alloy, for example).

• A binary A-B alloy there are two, independent, composition-dependent
tracer diffusion coefficients. If the tracer species is chemically identical
to atom A, then we refer to the tracer diffusion coefficient as D∗

A. If the
tracer species is chemically identical to atom B, then we refer to the tracer
diffusion coefficient as D∗

B .
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3.7 Tracer Diffusion Coefficients 3 DIFFUSION

Figure 3.9: Schematic Representation of an tracer atom (center, green) in an alloy
of A (red) and B (atoms).

By definition, tracer diffusion coefficients are are defined in the dilute limit,
where the activity increases linearly with concentration in a way that is given
by the Henry’s law coefficient, H . We’ll illustrate things by assuming that the
tracer is chemically identical to B. In this case we express Henry’s law in the
following way:

aB = HBXB (3.39)

From Eq. 3.38 we obtain the following expression for the chemical potential
derivative in the dilute (Henry’s law) regime.

∂µB

∂Xb
=

RT

XB
(3.40)

The tracer diffusion coefficient for the B atoms is related to the mobility by the
following expression:

D∗
B = RTMB (3.41)

The general relationship between D∗
B and DB , valid for all compositions, and

not just in the Henry’s law regime, is obtained by comparing Eqs. 3.36 and
3.41:

DB =
D∗

BXB

RT

∂µB

∂XB
=

D∗
BXB

a

∂aB
∂XB

(3.42)

As a result, DB = D∗
B whenever aB is proportional to XB . This is the case

when XB is very small (Henry’s law regime), and when XB is close to 1
(Rault’s law regime), but it is not necessarily true or intermediate values of
XB .
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3.8 Summary of Diffusion in a Binary System

We have defined three interrelated types diffusion coefficients: D̃, Di and D∗
i .

Here we provide a brief summary of these different diffusion coefficients and
the relationships between them.

1. D̃: The interdiffusion coefficient (often referred to as the mutual diffu-
sion coefficient). If you are interested in the time-dependent evolution
of the composition profile, this is the diffusion coefficient that you use
when you are solving the diffusion equation:

∂CB

∂t
=

∂

∂x
D̃ (CB)

(
∂CB

∂z

)
note that for a binary system, we only need to specify one of the compo-
sitions, since CA = C0−CB . Also note that in general, D̃ depends on the
composition, so cannot be treated as a constant.

2. DA and DB : The intrinsic diffusion coefficients for the individual com-
ponents. These are important for two reasons. First, they are needed if
you want to describe motions of atomic planes relative to the external
boundaries of the sample (the Kirkendall effect). This motion was deter-
mined from the the atomic fluxes relative to atomic planes, as opposed
to fixed points in space. These fluxes are determined by the appropri-
ate intrinsic diffusion coefficient. For example, for the B component, we
have:

JB = −DB
∂CB

∂z

Also, predictive models of interdiffusion are generally based on the rela-
tionship between these intrinsic diffusion coefficients and the interdiffu-
sion coefficient through the following expression:

D̃ = [XBDA +XADB ]

3. D∗
A and D∗

B : The tracer diffusion coefficients for the individual compo-
nents. Imagine a single atom in a homogeneous material. The tracer dif-
fusion coefficient describes the probability that the atom has diffused a
certain distance in a given period of time. These diffusion coefficients are
purely kinetic parameters, and can be expressed in terms of a mobilty:

D∗
B = RTMB

Unlike the interdiffusion and intrinsic diffusion coefficients, they are not
affected by the thermodynamics of the system. In general, values of the
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3.9 Diffusion in Ternary Systems 3 DIFFUSION

tracer diffusion coefficients will depend on the concentration of the ma-
terial in which the tracer atoms are diffusing. The special cases of D∗

A

at XA = 1 and D∗
B at XB = 1 are self diffusion coefficients. The in-

trinsic diffusion coefficients are related to the tracer diffusion coefficients
through the following relationship:

DB =
D∗

BXB

RT

∂µB

∂XB

3.9 Diffusion in Ternary Systems

Atomic diffusion in ternary systems is driven by chemical potential gradients,
just as it is does in binary systems. In systems with more than two components,
however, the composition is no longer specified by a single composition vari-
able. Some interesting effects can be observed in this case, as exemplified by
carbon diffusion in Fe-Si-C ternary alloys . The carbon chemical potential is
now a function of the concentration of both the silicon and carbon in the alloy:

µc = f (XSi, XC) (3.43)

The diffusion coefficient of carbon is much larger than the diffusion coefficient
for silicon (Dc ≫ DSi), so we can assume that the silicon remains station-
ary during a diffusion experiment, as shown in Figure 3.10. Silicon and carbon
have a unfavorable thermodynamic interaction within the alloy, so µc increases
with increasing silicon content, XSi. In order for the carbon chemical poten-
tial to remain constant across and interface between two regions of differing Si
content, the carbon concentration in the region with low Si content needs to be
smaller than the carbon concentration in the region with high Si content. This
chemical potential discontinuity at the interface is eliminated by the jump of
carbon atoms from the left (high Si side) to the right (low Si side) of the in-
terface. Diffusion then continues from left to right, down the carbon potential
gradient that has been established.

Hi C content
Hi Si Content

Low C content
Low Si Content

Hi C content
Hi Si Content

Low C content
Low Si Content

a) Before Diffusion b) After Diffusion

Figure 3.10: Chemical composition and carbon chemical potential across a ternary
Si-C-Fe diffusion couple, showing the situation before diffusion (a) and after dif-
fusion (b).
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3.10 Crystal Defects and High Diffusivity Paths

“Crystals are like people. It is the defects in them which tend to
make them interesting.” - Colin Humphreys

Real crystals are never perfect, and they always contain some sort of defects.
These defects can be classified into four categories, based on their dimension:

• 0-dimensional (point) defects: These include missing atoms (vacancies),
or atoms in location where they would not be in a perfect crystal struc-
ture (interstitials or substitutional impurities. From purely thermody-
namic considerations we know that point defects must exist at some fi-
nite concentration for temperatures above 0K.

• 1-dimensional (line) defects: These are dislocations.

• 2-dimensional (planar) defects: These include grain boundaries, which
are internal interfaces between regions of different crystalline orienta-
tion, and the external surfaces of a material.

• 3-dimensional (volume) defects: These are geometric imperfections in a
material, like pores and cracks. We don’t consider these types of defects
in this class, but they become very important when we discuss the frac-
ture properties of bulk, brittle materials in subsequent courses.

As illustrated in Figure 3.11, dislocation, grain boundaries and surfaces are
associated with a more open structure. As a result diffusion along these defects
is much faster than in the bulk of the material.

Dislocation Grain Boundary Free Surface

 

Figure 3.11: Examples of 1 and 2-dimensional defects that act as high-diffusivity
paths.

4 Dislocations

Plastic deformation of a crystalline solid occurs by the motion of dislocations,
which are one dimensional defects in the crystal structure. In general, defor-
mation of a material occurs by shear along specified planes called slip planes.
An illustration of this effect in single crystal aluminum is shown in Figure 4.1.
The material in this image is being deformed in tension, but the slip occurs
along suitably oriented planes that are experiencing a high degree of shear.
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4 DISLOCATIONS

Figure 4.1: Slip bands in single crystal aluminum undergoing tensile deformation.

When a stress is applied to a single crystal, deformation takes place when the
resolved shear stress, τrss , on an appropriately aligned shear plane exceeds
a critical value, referred to as the critical resolved shear stress, τcrss. The rela-
tionship between the tensile stress, σ and the resolved shear stress is illustrated
in Figure 4.2. In mathematical terms we have:

τrss = σ cosϕ cosλ (4.1)

where ϕ is the angle between the tensile axis and the slip plane normal, n⃗, and
λ is the angle between the tensile axis and the slip direction, d⃗.

Figure 4.2: Relationship between an applied tensile stress, σ and the resolved
shear stress, τrss.

Values of this quantity for different single crystals are shown in Table 4.1. For
the materials with close packed crystals structures on this list (fcc and hcp), the
value of τcrss is about four orders of magnitude less than the shear modulus,
G.
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4 DISLOCATIONS

Table 4.1: Critical resolved shear stress for single crystals (Read-Hill, “Physics of
Metals Principles”, chap. 4 (1964).

Metal Structure G (psi) G (Pa) τcrss (psi) τcrss (Pa)
Al fcc 3.9x106 27x109 148 1.0x106

Cu fcc 7.0x106 48x109 92 0.64x106

Mg hcp 2.4x106 17x109 63 0.44x106

Zn hcp 5.6x106 38x109 26 0.18x106

α-Fe bcc 9x106 27x109 4000 28x106

.

A note about units of stress:
The SI unit of stress is a pascal (Pa), or N/m2. We generally use SI units in this
text, but English units (pounds per square inch, or psi), are still often used
in engineering fields. One useful number to remember is that atmospheric
pressure is ≈ 105 Pa, or 14.7 psi. The exact conversion is that 1 psi = 6895 Pa
= 6.895 kPa.

Exercise: From the critical resolved shear stress for single crystal aluminum
shown in Table 4.1, calculate the minimum force (in pounds) that must be
applied to a one half inch diameter rod of single crystal Al to deform plasti-
cally.
Solution: The critical resolved shear stress for pure, single crystal Al is 148
psi, so we need to figure out what tensile stress on the sample will produce
this value for the resolved shear stress, τrss. The smallest value of σ for which
τrss is equal to the critical value of 148 occurs for the slip system with ϕ =
λ = 45◦, so from Eq. 4.1 we get σ = 2τrss = 296. Multiplying by the cross
sectional area of the rod gives:

F = (296 psi) · π · (0.25 in)2 = 58pounds

This is a pretty small force, and is much less than the force required to deform
a stock piece of aluminum that I would find in the machine shop.

Why is the force to deform a single crystal so low? We’ll start by considering
what we would expect for the critical resolved shear stress if the shear de-
formation were to occur by the sliding of atomic planes over one another, as
shown conceptually in Figure 4.3. We refer to the stress required to slide these
planes over one another as the dislocation-free critical resolved shear stress,
τ0crss.
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4 DISLOCATIONS

Figure 4.3: Sliding of close packed planes on top of one another.

We’ll start by reminding ourselves of the definition of a shear strain, illustrated
in Figure 4.4. In shear deformation, two parallel surfaces separated by a dis-
tance, d, are translated by an amount u with respect to one another. If the
deformation occurs in the x-y plane, we refer to the shear strain as exy , which
is given by:

exy =
u

d
(4.2)

For a linearly elastic material, the shear stress, τ is proportional to exy , with
the shear modulus G defined as the ratio of shear stress over shear strain:

τ = G
u

d
(4.3)

Figure 4.4: Application of a shear strain to a material.

In Figure 4.5 show a schematic representation of the stress as a function of
displacement for the atomic planes shown in Figure 4.3. The stress function
has the following features:

1. The stress is a periodic function, with the stress repeating every time the
displacement is increased by an amount equal to b, the distance between
atoms along the slip direction.

2. The stress is equal to zero at the stable equilibrium positions at u =
0, b, 2b, etc.

3. For u < b/2 the stress is positive because we need to apply a stress to
move the atoms out of their stable equilibrium positions.
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4. At u = b/2 the system is at an unstable equilibrium. The stress is also
equal to zero at this position, but the equilibrium is unstable because
any slight perturbation in the displacement will cause the atomic plane
to fall back into an equilibrium position at u = 0 or u = b.

5. The maximum stress is at u = b/4 . The stress actually reverses sign for
u > b/2, since a stress must be applied to avoid having the atoms fall
into the equilibrium position at u = b.

Figure 4.5: Schematic representation of the stress vs. displacement as the atomic
planes in Figure 4.3 slide over one another.

The simplest mathematical expression for the shear stress that has the right
periodicity is a sinusoidal function:

τ = a sin

(
2πu

b

)
(4.4)

Now we need to figure out what the constant a is in terms of actual material
properties. For small displacements the material is in the linear regime, and we
can use the definition of the shear modulus (Eq. 4.3) to obtain the following:

dτ

du

∣∣∣∣
u=0

= G/d (4.5)

Comparison of Eqs. 4.4 and 4.5 gives a = bG/2πd, so the shear stress becomes:

τ =
bG

2πd
sin

(
2πu

b

)
(4.6)

The critical resolved shear stress in this picture corresponds to the maximum
value of τ , equal to bG/2πd. The interplanar spacing, d is comparable to b.
(We’re not going to worry about the exact numerical factor here, since we’re
just aiming to get an approximate expression for τcrss). We take b ≈ d and
2π ≈ 6 to end up with the following expression for the ideal critical resolved
shear stress, τ0crss, which is the value of the critical resolved shear stress we
would expect to have if dis:
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τ0crss ≈ G/6. (4.7)

In reality, τcrss ≈ G/104, so this picture of atomic planes sliding over one an-
other can’t be correct. What is really going on here? The answer is that slip
occurs by the motion of dislocations, not by the concerted motion of entire
planes of atoms across one another. The concept of slip by dislocation motion
can be illustrated conceptually by the force required to slide a carpet across a
floor. If the friction between the rug and the floor is very high, it’s going to be
very difficult to move the rug along the floor simply by grabbing it from one
end and pulling. This situation is analogous to sliding atomic planes across
one another as illustrated in Figure 4.3. If the rug just needs to be moved a
small distance it is much easier to create a wrinkle at one end of the rug and
move it to the other end of the carpet. At the end of the process, the carpet has
moved by a length equal to the length of extra carpet stored in the wrinkle.
Dislocations are line defects in crystalline materials that are analogous to these
wrinkles.

Figure 4.6: Moving a carpet by propagating a defect along its length.

4.1 Edge Dislocations

The easiest type of dislocation to visualize is an edge dislocation. A dislocation
is formed by slipping part of the top half of a crystal relative to the bottom half
by the application of a shear stress, τ , as illustrated schematically in Figure 4.7.
The slip plane corresponds to the interface between the slipped and unslipped
regions of the sample. An edge dislocation can be viewed as the termination
of an extra half plane of atoms, and is illustrated for a simple cubic lattice in
Figure 4.8.
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slip plane

dislocation

Figure 4.7: Illustration of the boundary between regions that have slipped from
the application of a shear stress. The dislocation in this example refers to the
boundary between the slipped and unslipped regions.

Figure 4.8: Edge dislocation in a simple cubic lattice.

Motion of an edge dislocation is illustrated in response to an applied shear
stress is illustrated in Figure 4.9. Note that for every atom moving away from
its equilibrium on one side of the dislocation core, there is an equivalent atom
moving toward an equilibrium position on the other side of the dislocation
core. In energetic terms, for every atom that must be forced out of its lowest
energy position, there is atom moving toward its lowest energy position. As a
result the energy changes cancel (or very nearly so), and the energy barrier to
moving a dislocation is much less than the barrier to slide surfaces across one
another. As a result the net force to move a dislocation is very small. The stress
needed to move a dislocation is generally much less than G/6, and is as low or
lower than the observed critical resolved shear stress for single crystals.
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Figure 4.9: Schematic representation edge dislocation motion in the slip plane,
illustrating the Burgers vector, b⃗ for an edge dislocation.

The relative displacement of the two halves of the crystal caused by the mo-
tion of a single dislocation through it is the Burgers vector, b⃗, which is the
single most important characteristic of the dislocation. For an edge disloca-
tion b⃗ is perpendicular to the dislocation line, which we represent by the unit
vector ŝ (the ) i.e. b⃗ · ŝ = 0. Note that dislocations of opposite sign moving in
opposite directions give the same final shear. This is illustrated by comparing
Figures 4.9 and 4.10, which both result in the final deformed state of the mate-
rial. Finally, when two edge dislocations with opposite Burgers vectors (⃗b and
−b⃗) meet on the same glide plane, they annihilate each other (see Figure 4.11).

Figure 4.10: Deformation from Fig. 4.9, but resulting from an edge dislocation of
opposite sign moving in the opposite direction.
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Figure 4.11: Annihilation of two dislocations of opposite sign that are moving in
the same glide plane.

4.2 Screw Dislocations

As with edge dislocations, a screw dislocation line marks the boundary be-
tween ’slipped’ and ’unslipped’ regions of the sample, but for a screw dislo-
cation the displacement described by b⃗ is parallel to the dislocation line, i.e.
b⃗ · ŝ =

∣∣∣⃗b∣∣∣. (Note that in order to simplify our notation, we’ll refer to
∣∣∣⃗b∣∣∣, the

magnitude of the Burgers vector, simply as b in this text. A schematic repre-
sentation of a the displacements associated with a screw dislocation is shown
in Figure 4.12.

Figure 4.12: Schematic representation of a screw dislocation.

Figure 4.13 illustrates the the motion of a screw dislocation through a crystal.
In this case the dislocation moves from the front of the crystal to the back of
the crystal. The net effect of this motion is for the top and bottom halves of the
crystal to be displaced to the right, by an amount and in the direction given by
the Burgers vector. This figure illustrates the following:

1. When a dislocation line travels through a material, the motion of the line
traces out a plane.

2. The relative displacement between the material on either side of this
plane is given by the Burgers vector b⃗.

Note that this is true for ANY dislocation (edge, screw, or mixed).
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Figure 4.13: Motion of a screw dislocation The dislocation moves from the front
of the crystal to the back. The net result is the production of a step edge with
magnitude and direction equal tot he Burgers vector, b⃗.

4.3 The Burgers Circuit

In the previous section we have described some of the basic features of edge
and dislocations, and have shown that they differ in the relationship between
the orientation of the Burgers vector with respect to the dislocation line. Now
we introduce a formal procedure that can be used to determine the value of b⃗
for any dislocation. The procedure is based on the use of a Burgers circuit, as
described here:

1. Draw a circuit around the dislocation line that starts end ends at the same
point. A ’right handed’ convention is typically used to describe the di-
rection that we take the circuit. (Clockwise looking along the direction
of ŝ, counterclockwise if ŝ is pointed at you).

2. Repeat the procedure, using the same numbers of atomic steps in each
direction in a perfect crystal.

3. The Burgers vector is the vector connecting the start and end positions
for the circuit drawn in the perfect crystal.

Use of the procedure is illustrated in Figure 4.14 for an edge dislocation with an
extra half plane in the top half of the crystal. The circuit around the dislocation
begins and ends at point a and proceeds as follows:

1. Move four steps down (a to b)

2. Move three steps to the right (b to c)

3. Move four steps up (c to d)

4. Move four steps to the left (d back to a)

When this same procedure is repeated in the perfect crystal we end up at point
e, which is one step to the left of our starting point at point a. Our convention is
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to define the b⃗ as the vector starting at point a and ending at point b. When the
procedure is repeated for a dislocation where the half plane is in the bottom
half of the crystal we end up with the Burgers vector pointing in the opposite
direction, as shown in Figure 4.15.

a

b c

d a

b

e d

c

Figure 4.14: Determination of b⃗ for an edge dislocation. In this case ŝ is defined so
that it is pointing into the plane of the figure. The vector n⃗d is defined in Eq. 4.8.

d

cb

a e ba

d c

Figure 4.15: Determination of b⃗ for an edge dislocation with an opposite sign to
the dislocation from Figure 4.14.

In Figure 4.16 we repeat the same process for a screw dislocation. In this exam-
ple we have defined the direction of ŝ so that the dislocation is pointed toward
the bottom of the figure. The procedure for determining b⃗ is as follows:

1. Draw a circuit in the clockwise direction (viewed from the top, so we
are looking in the direction of ŝ) around the dislocation line. The circuit
begins and ends at point a.

2. Repeat the circuit in a perfect part of the crystal. The circuit begins at
point s and ends at point f .

3. The Burgers vector is obtained as the vector that starts at s and ends at f.

Note that b⃗ is parallel to ŝ, as it must be for a screw dislocation, but that b⃗ and ŝ
are pointed in opposite directions, i.e., they are anti-parallel. With our conven-
tion of drawing the b⃗ from the starting point to the ending point of the Burgers
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circuit in the perfect crystal, right handed screw dislocations have negative
Burgers vectors and left handed screw dislocations have positive Burgers vec-
tors. The left handed version of the dislocation shown in Figure 4.16 is shown
in Figure 4.17.

a

s
f

Figure 4.16: Burgers circuit for a right-handed screw dislocation, with s⃗ defined
so that the the positive direction of the dislocation line is toward the bottom of the
crystal (along the negative z direction).

Figure 4.17: Left-handed version of the dislocation from Figure 4.16.

Exercise: Does the handedness of a screw dislocation (right handed or left
handed) depend on the way you define the direction of ŝ?
Solution: No! If you you can see this by taking your right thumb and di-
recting it along the dislocation line in Figure 4.16. In the direction that your
figures are pointing, the planes spiral upward toward your thumb. It doesn’t
matter which way you orient your thumb when you do this. For the disloca-
tion shown in Figure 4.17 you need to use your left hand to get this to work.
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4.4 The b⃗× ŝ cross product

The concept of the Burgers circuit is a useful formalism that can always be
used to specify the Burgers vector for a given dislocation. The confusing part
about the procedure is that the sign of the Burgers vector depends on some
arbitrary conventions that are not used the same way by everyone. For exam-
ple, our convention is to define b⃗ as the vector linking the start to the finish of
the Burgers circuit in the perfect crystal (linking points s to f in Figure 4.16),
but you can find plenty of other people who draw the vector the other way
around (drawing b⃗ from point f to point s). Nevertheless, we remove any am-
biguity by always using this ’start-to-finish’ definition for the Burgers vector.
Similarly, we remove ambiguity regarding the direction in which we take the
Burgers circuit by always doing it the same way. In our case we use the right
hand rule, directing our thumb along ŝ and drawing the circuit in the direction
in which our fingers are pointing.
Unfortunately, the ambiguity introduced by our definition of the direction of
ŝ along the dislocation line is impossible to remove. In figure 4.16 we defined
ŝ so that it points along the negative z direction, but there’s no reason that we
couldn’t have defined s⃗ so that it is directed in the positive z direction instead.
We end up with a Burgers vector that points in one of two opposite directions,
depending on how we define ŝ in the first place. The good news is that n⃗d, the
vector cross product of ŝ and b⃗ is independent of our convention for defining
the direction of s⃗. As a reminder, the vector cross product between vectors ŝ

and b⃗ is defined as follows, as illustrated in Figure 4.18:[?]

n⃗d = b⃗× ŝ = |⃗b| |ŝ| sin θn̂ = b sin θn̂d (4.8)

Here n̂d is a unit vector in the direction perpendicular to the plane containing
ŝ and b⃗. It’s orientation is defined using the right hand rule: We place our right
hand along ŝ, with our fingers oriented in the positive θ direction. Our right
thumb is then pointed along n̂d.

Figure 4.18: Definition of n⃗d.

When defined in this way, n⃗d has the following properties:

• Because redefining s⃗ to have the opposite orientation also changes the
orientation of b⃗, the negative signs cancel and we end up with a value for
n⃗d that is independent of the way that we choose to define s⃗.
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• For a pure screw dislocation, θ = 0 or θ = 180◦ . In either case, n⃗d = 0.

• For an edge dislocation, the magnitude of n⃗d is equal to the b, the mag-
nitude of Burgers vector. In addition, n⃗d points toward the extra half
plane.

This last point is perhaps the most important one, because it provides an easy
way to figure out how the extra half plane is oriented in an edge dislocation,
once we specify the orientations of b⃗ and ŝ. We just use the right hand rule,
cross b⃗ into ŝ, and our thumb will be pointed along the direction of the extra
half plane. To convince yourself that this actually works, you can try it with
the edge dislocations pictured in Figures 4.14 and 4.15.
With our convention for using the Burgers circuit to obtain b⃗ (Right-hand-rule,
start to finish), we have the following relationships between ŝ and b⃗:

• Right-handed screw dislocation: ŝ and b⃗ point in opposite directions.

• Left-handed screw dislocation: ŝ and b⃗ point in the same direction.

• Edge dislocation: ŝ perpendicular to b⃗, b⃗× ŝ points to the extra half plane.

4.5 Connection to the Crystal Structure

The Burgers vector must correspond to an atomic repeat distance in the crystal
structure. As we show below, the energy of a dislocation is proportional to
the square of the magnitude of the Burgers vector. For this reason the Burgers
vector will correspond to closest atomic distance in crystal structure. As shown
in Figure 4.19, the Burgers vector is half the unit cell diagonal for the BCC
structure, and half the face diagonal of the unit cell in the FCC structure.

BCC FCC (front face)

Figure 4.19: Burgers vectors for the BCC and FCC crystal structures.

4.6 Dislocation loops

A dislocation cannot terminate within a crystal, although it can terminate at a
grain boundary or crystal surface. Also, while the Burgers vector along a given
dislocation is constant, the dislocation itself is not necessarily a straight line.
In other words, b⃗ is fixed, but ŝ can change as the direction of the dislocation
changes. Consider for example the dislocation loop shown in Figure 4.20.
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Figure 4.20: Dislocation loop with screw, edge and mixed character at different
points along the loop. The direction of the dislocation line, s⃗, is indicated by the
arrows surrounding the dislocation loop.

Exercise: Describe the orientation of the extra half planes for the portions of
the dislocation loop in Figure 4.20 that have an edge character.
Solution: For an edge we have ŝ ⊥ b⃗, which occurs at points a and c. We just
need to figure out if the extra half plane is in the top half of the figure or in
the bottom half of the figure in each case. The easiest way to do this is to use
the fact that b⃗ × ŝ points in the direction of the extra half plane. At point a
b⃗× ŝ points up, so the extra half plane is in the top half of the figure. At point
c, ŝ has reversed, b⃗× ŝ points down, and the extra half plane is in the bottom
of the figure.

Exercise: What happens to the shape of the crystal in Figure 4.20 if the loop
expands and exits the crystal on all sides?
Solution: When a dislocation line moves, it introduces a net displacement
of b⃗ between parts of the crystal on either side of the plane defined by the
motion of the dislocation line. So if the dislocation exits the crystal, it will
result net translation of b⃗ of the two parts of the crystal. The trick here is to
figure out if the top half moves by an amount b⃗ or if the bottom half moves by
this amount. In this case the top half must be shifted by b⃗ because the extra
half plane at the top of the crystal ends up at the right edge of the crystal, and
the extra half plane in the bottom part of the crystal ends up at the left edge.
The final situation is as follows:
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Exercise: What happens to the shape of the crystal in Figure 4.20 if the loop
contracts to nothing and disappears?
Solution: The dislocation just disappears, and a perfect crystal (at least in
this region) is recovered.

4.7 Dislocation Density

The following two definitions of the dislocation density are often used:

• Total line length of dislocations per volume.

• The number of intersections that the dislocations make with a plane of
unit area.

Both definitions give dislocation densities with units of 1/area, and are equiva-
lent if the dislocations are straight. Typical dislocation densities are as follows:

• A well annealed metal: 106 − 108/cm2.

• Plastically deformed metal: can be as high as 5x1011/cm2.

• Ceramics: Much lower, typically 10/cm2.

• Si used in microelectronics: dislocation density of zero! Macroscopic sin-
gle crystals are typically grown without a single dislocation. The down
side of this is that Si is very brittle, since there is no plastic deformation
mechanism.

4.8 Dislocation Motion

4.8.1 Dislocation Glide

Dislocation glide (which is sometimes referred to simply as slip) corresponds
to dislocation motion within a glide plane that contains along the plane that
contains both the Burgers vector, b⃗ and the sense, s⃗, of the dislocation. For
an edge dislocation or a dislocation with mixed edge and screw character, a
single slip plane exists that is perpendicular to the vector n⃗d, given by the cross
product of ŝ and b⃗ (see Figure 4.18). Slip does not require atomic diffusion, and
so is not strongly temperature dependent. For an edge dislocation it occurs
when the extra half plane of atoms reattaches to a new atomic plane, moving
the half plane by a distance equal to b⃗. The process is illustrated schematically
in Figure 4.21.
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Figure 4.21: Glide of an edge dislocation.

For a pure screw dislocation, because ŝ and b⃗ are collinear, a variety of glide
planes are available. As a result, screw dislocations can more easily navigate
their way around obstacles (like a precipitate particle) by changing the slip
plane on which they are moving. The process is called cross slip and is il-
lustrated schematically in Figure 4.22. This illustration could correspond, for
example, to the motion of a screw dislocation with ŝ oriented along the [11̄0]
direction that moves along the (111) plane initially, switches to the (111̄) plane
and then begins moving again in the (111) plane. (Note - if you forget the
Miller index notation for planes and directions, the Wikipedia page [?] is a
useful refresher).

Figure 4.22: Cross slip of a screw dislocation.

4.8.2 Dislocation Climb

Edge dislocations can climb out of the glide plane by the addition or subtrac-
tion of vacancies to the dislocation core. The process is illustrated in Figure
4.23 for a situation where n⃗d is directed toward the top of the figure (i.e. the
extra half plane is above the glide plane). In this example an atom at the end
of the extra half plane jumps into a vacancy. The net result is that the vacancy
is destroyed, and the dislocation climbs up, away from the initial glide plane.
Because the process requires the diffusive hopping of atoms from one site to
another, climb is a thermally activated process that becomes more important
at elevated temperatures.
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Figure 4.23: Schematic representation of dislocation climb.

If dislocations climb in the direction of n⃗d (in the direction of the extra half
plane) as illustrated in Figure 4.23, vacancies are destroyed. If they climb in
the other direction (adding atoms to the extra half plane instead of removing
them), the opposite occurs and vacancies are created. Dislocation climb there-
fore provides an mechanisms for equilibrating the vacancy concentration. For
metals it is the process that allows us to assume that the vacancy concentra-
tion remains at equilibrium, and important assumption of our analysis of the
Kirkendall experiment in Section 3.4.

4.9 Dislocation Energy

Dislocation disrupts the regularity of the lattice, and introduces strain into the
sample. The strain field that results from the presence of a dislocation has a
very long range, and can easily be more than 100 times the unit cell dimension.
As a result the total strain energy is very large as well. This strain field and
the energy associated with it is important because it provides a mechanism
for dislocations to interact with one another over long distances. In essence,
dislocations ’talk’ to each other through these strain fields.

4.9.1 Screw Dislocations

For a screw dislocation we can use some simple concepts to calculate this strain
energy, so we’ll start with this example. Our starting point is that the material
surrounding a screw dislocation is in a state of pure shear, with shear deforma-
tion as defined in Figure 4.4. We see this by considering a cylindrical portion
of the material around a screw dislocation, using the illustration in Figure 4.24.
The displacement applied across the dislocation is given by the Burgers vector,
b⃗ (Figure 4.24a). (When referring to the magnitude of the Burgers vector we’ll
drop the vector symbol and just use the b). If we unwrap the circumference
of the cylinder at a distance r from the dislocation line (Figure 4.24b) we see
that the shear displacement of b is applied over a distance of 2πr. The cylinder
has been unwrapped in the circumferential direction, i.e. the θ direction, and
the displacement is along the z direction so we have the following for th shear
strain, ezθ:
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(a) (b)

Figure 4.24: Strain field around a screw dislocation that is centered along the z
axis.

The distortion is pure shear, with a shear strain at a radius of r given by the
following:

ezθ =
b

2πr
(4.9)

Note that as r → 0, ezθ → ∞. The strain can’t really go to infinity, so we have
a problem here that we’re going to have to deal with eventually. The elastic
stress is obtained by multiplying by the shear modulus:

τzθ =
Gb

2πr
(4.10)

The elastic strain energy per unit volume, Ev is obtained from the following
expression:

Ev =

ˆ erθ

0

τzθdezθ =
G

2
e2zθ (4.11)

Dimensionally this makes sense, since G has units of force/area, or ener-
gy/volume.
We can combine Eqs. 4.9 and 4.11 to obtain the following:

Ev =
G

2

(
b

2πr

)2

(4.12)

Because the strain energy is radially symmetric, we can get the energy per unit
length of the dislocation (Es/h) by integrating all values of r. Because the area
element in radial coordinates is 2πrdr, we have:

Es/h = 2π

ˆ rmax

0

rEv (r) dr (4.13)

Substituting Ev from Eq. 4.12 into this equation gives:
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Es =
Gb2h

4π

ˆ rmax

0

1

r
dr (4.14)

After integration we obtain:

Es =
Gb2h

4π
[ln rmax − ln 0] (4.15)

We have a problem here because ln 0 = −∞. This is because for r → 0, the
shear strain goes to infinity and we can no longer use the simple, continuum
picture of linear elasticity to describe what is going on. Instead what we typ-
ically do is separate out a core energy, Ecore

s that corresponds to the strain
energy inside some small core radius, r0. We do this simply be adding Ecore

s

to Es and replacing the lower bound on the integration from 0 to ro.

Es = Ecore
s +

Gb2h

4π
ln

(
rmax

r0

)
(4.16)

We can generally choose r0 so that it is large enough so that our assumption
of linear elasticity holds for r > r0, yet it is small enough so that Ecore

s is a
relatively small fraction of the overall dislocation energy. In this case we can
ignore the core energy and approximate the dislocation energy as follows:

Es ≈
Gb2h

4π
ln

(
rmax

r0

)
(4.17)

4.9.2 Edge Dislocations

The stress field for an this case is much more complicated, as illustrated in
Figure 4.25. The distinctive features of the strain field are as follows:

• In the slip plane itself the material is in a state of pure shear.

• Above the slip plane there is compressive component to the strain field.

• Below the slip plane there is a tensile component to the strain field.

A more detailed calculation shows that the strain still decays as 1/r, with an
expression for the edge dislocation energy per length that is similar to the ex-
pression obtained for a screw dislocation:

Es ≈
Gb2h

4π (1− ν)
ln

(
rmax

r0

)
(4.18)

Here, ν is Poisson’s ratio. Typically ≈ 0.3 for most metals.
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Figure 4.25: Schematic representation of an edge dislocation, showing the regions
of tensile and compressive strain.

The conceptual picture shown in Figure 4.25 is useful, but we can do a little bit
better by reminding ourselves of some definitions pertaining to a stress state.
A two-dimensional stress state in the x-y plane has three independent compo-
nents of the stress: the shear stress, τ , and two normal stresses, σxx and σxy , as
shown in Figure 4.26. In Figure 4.27a the regions around an edge dislocation
where stress components have different signs are illustrated. Figure 4.27b has
similar information, but in this case we plot contours of equal stress for each
of the three stress components, σxx, σyy and σxy .

y
x

Figure 4.26: 2-dimensional stress tensor

y

x
y

x

y

x

(a) (b)

Figure 4.27: Stress distribution around an edge dislocation.
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4.9.3 General Comments

The following general comments are valid for edge, screw and mixed disloca-
tions:

1. Elastic strain energy scales with ln r so it has a very long range.

2. The boundary conditions matter, so the energy depends on the shape of
the sample. A small crystal with low value of rmax will have a lower
dislocation energy than a large crystal with a very large value of rmax.

3. Energy scales as b2. Dislocations with small values of b are therefore
preferred, which is why the Burgers vector in a material corresponds to
the smallest interatomic spacing in the material.

4. Energy scales as h. Energy is proportional to the length of the dislocation.
This means the strain energy will decreases as the line length decreases.

This last point seems trivial at first, but it has some important consequences.
Consider for example a dislocation loop. If the radius of a circular loop de-
creases, the energy associated with the loop will decrease as well. There’s
a line tension acting on the loop causing it to contract. This tension is like
the tension in a rubber band that once to squeeze things inward, and can be
viewed as a driving force for the dislocation loop to shrink in size. An applied
stress can cause a dislocation loop to grow instead of shrink, and this will be
considered later.
Let’s compare some numbers to see how the dislocation energy compares to
the energy of other defects, like vacancies, for example. To do this we’ll es-
timate the energy per atomic length along a screw dislocation line by taking
h = b in Eq. 4.17. We’ll also assume typical values for the other parameters in
the expression for Es, with b=0.3 nm, r0 = 1nm. rmax = 1µm, and G = 3x1010

Pa:

Es ≈
Gb3

4π
ln

(
rmax

r0

)
=

(
3x1010 Pa

) (
3x10−10 m

)3
4π

ln

(
1000 nm

1nm

)
= 4.5x10−19 J

(4.19)
A more convenient energy scale on an atomic basis is the electron volt,
which we obtain from the energy in Joules by dividing by the electron charge
(1.6x10−19 C). In these units the energy per atom along the dislocation line is
2.8 eV. This energy of comparable magnitude to typical vacancy formation en-
ergies of ≈ 1eV, but is actually larger because of the nature of the long-range
strain field that is produced around a dislocation.

4.10 Dislocation Line Tension

An energy per unit length has dimensions of a force. The dislocation energy
per unit length is therefore equivalent to a force, or tension, exerted by the
dislocation. We refer to this line tension as Ts:
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Ts = Es/h (4.20)

This line tension is a one dimensional analog of the interfacial free energy,
with units of energy per length instead of energy per area. The comparison is
summarized in Table 4.2.

Table 4.2: Comparison of line tension and the interfacial free energy.

Quantity Energy units Force Units
Ts J/m N
γ J/m2 N/m

The line tension itself is a force, and it gives rise to a force per unit length acting
perpendicular to a curved dislocation line, in the same way that the interfacial
free energy results in a pressure difference (force per unit area) across a curved
surface. The work done against this one dimensional pressure, which we refer
to as F r

s is equal to the increase in free energy associated with the increased
length of the dislocation line. By considering the graphical construction shown
in Figure 4.28:

F r
s 2πrdr = Ts2πdr (4.21)

Rearrangement gives the following expression for F r
s :

F r
s =

Ts

r
(4.22)

Figure 4.28: Relationship between the curvature and the the one-dimensional
pressure acting on a dislocation line.

4.11 Effect of Applied Stress

The line tension acts to decrease the area of a dislocation loop, but we need
loops to expand in order for a material to plastically deform. So how does an
applied stress induce a force on a dislocation? The relevant shear stress is the
component of the shear stress in the glide plane that operates in the direction
of b⃗. This shear stress is the resolved shear stress, τrss. This applied shear stress
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results in an additional force per unit length, F τ
s . It’s easiest to visualize the

relationship between τrss and F τ
s for an edge dislocation, as we illustrate in

Figure 4.30. To do this we use an energy balance. When the dislocation has
propagated across the entire sample a total applied shear force, P , results in a
net translation of the material above the slip plane by an amount given by the
Burgers vector, b⃗. The total work put into the system is simply Pb (force times
displacement). With τ = P/wℓ this total work is:

work = wℓτrssb (4.23)

This work goes into moving the dislocation, and must be equal to the force
applied to the dislocation multiplied by the distance the dislocation moves
as it translates across the sample. In our notation this distance is the sample
width, w, so we have:

work = F τ
s ℓw (4.24)

Equating these two expressions for the work gives:

F τ
s = τrssb (4.25)

So the force per unit length acting on the dislocation is simply the shear stress
multiplied by the magnitude of the Burgers vector.

Figure 4.29: Force force acting on a dislocation.

The only real assumption in Eq. 4.25 is that τ is the component of the shear
stress oriented along the direction of the Burgers vector. The resulting force is
perpendicular to the dislocation line itself, regardless of the specific orientation
of the dislocation line. This point as an important one that is not completely
obvious, so we illustrate it for a screw dislocation in Figure 4.30. The orien-
tation of the Burgers vector is identical to that of the Burgers vector for the
edge dislocation in Figure 4.29, but the dislocation is now a screw dislocation
oriented along the y direction that propagates in the negative x direction as
the dislocation moves through the crystal. Because the final state of the crystal
is the same as for the edge dislocation in Figure 4.29, the work done by the
applied stress is still given by wℓτb, i.e. Eq. 4.23 still applies. The dislocation
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moves a distance ℓ in this case. Because the length of the dislocation is w, the
total force applied to the dislocation is F τ

s w, and the energy required to trans-
late it by a distance ℓ is F τ

s wℓ. So we see that Eq. 4.24 still applies as well. The
net result is that the F τ

s is still given by τrssb, just as it was for an edge dislo-
cation. It can be shown that the same must be true for a mixed dislocation as
well.

Figure 4.30: Force force acting on a dislocation.

Now we can look at the stress required to expand a circular dislocation loop.
We’ll assume that the energy/length of the dislocation is a constant. In other
words, we are neglecting the factor of 1−ν in Eq. 4.18 that gives a small energy
difference between edge and screw dislocations. The total force per unit length
acting on a circular dislocation loop is the sum of F r

s , which acts toward the
center of the loop and therefore negative, and F τ

s , which for an appropriately
aligned shear stress is positive:

Fs = F τ
s − F r

s = τrssb−
Ts

r
(4.26)

At equilibrium the net force acting on the dislocation is zero (Fs = 0). This
occurs when the applied stress is equal to a critical value that we refer to as τ∗:

τ∗ =
Ts

rb
(4.27)

If τrss > τ∗ the dislocation loop expands, and if τrss < τ∗ the dislocation
shrinks and disappears altogether.
So why do precipitates strengthen a material? The answer is connected to
Eq. 4.27. Consider a dislocation that is moving toward two precipitates. The
applied stress results in a force per unit length, F τ

s that moves the dislocation.
The pinning of the dislocation between the precipitates results in a curvature,
r, with an associated stress τ∗ that must be applied in order for the dislocation
to move. The maximum value of τ∗ corresponds to the minimum value of the
dislocation curvature r, which is equal to half the interparticle spacing. In this
example, τ∗ is the critical resolved shear stress for the material. For optimum
strengthening, what we want very small precipitates with a correspondingly
small interparticle spacing.
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4.12 Dislocation Multiplication

Where do these dislocations come from in the first place? Shape change asso-
ciated with the emergence of dislocation to the exterior of the crystal must be
decreasing their density. A typical dislocation density of ≈ 107/cm2 is way too
small to give the experimentally measured plastic strain observed in a typical
metal. So there must be some mechanism of creating new dislocations. One
possibility we can consider is that the applied stress is itself sufficient to nu-
cleate a dislocation loop. To figure out if this makes sense, we can calculate
the shear stress required to expand a relatively small dislocation loop with a
radius, r, of 10b. We’ll assume r0 = b and rmax = 10b and estimate the disloca-
tion line tension From Eqs. 4.17 and 4.20:

Ts ≈
Gb2

4π
ln (10) ≈ Gb2

8
(4.28)

The resolved shear stress, τ∗, required to expand the loop is given by Eq. 4.27:

τ∗ =
Ts

rb
=

G

80
(4.29)

Actual values of the critical resolved shear stress are ≈ G/104 (see Table 4.1), so
there must be some other mechanism operating at a lower stress that enables
new dislocations to be created. This mechanism is the Frank-Read source.
The process by which new dislocations are produced by a Frank-Read source
is illustrated in Figure 4.31. It is based on the behavior of a dislocation segment
that is pinned between two points (precipitate particles for example), labeled A
and B in Figure 4.31. In the absence of an applied shear stress, this dislocation
is a straight line between points A and B, (line 1 in Figure 4.31). As a shear
stress is applied to the material the dislocation expands outward in a series of
arcs, labeled as 2, 3, 4 and 5 in Figure 4.31. Because F τ

s is always acting normal
to the dislocation line, pushing it outward, the dislocation bends around the
pinning points. Eventually, two segments of the dislocation with opposite ŝ are
in close proximity to each other (arc 4 in Figure 4.31). These segments of the
dislocation annihilate each other, and the dislocation breaks into two separate
arcs, both of which are now labeled as 5. The larger of these arcs is a dislocation
loop that continues to expand, and the smaller of the arcs repeats the process
as it expands in response to the stress. In this way an unlimited number of
dislocation loops can be created by the original segment of the dislocation.
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Figure 4.31: Schematic representation of a Frank-Read dislocation source. Note
that all sections of all of the dislocations have the same Burgers vector.

We can also use this argument to obtain values for the critical resolved shear
stress in the system. Because the shear stress needed to expand the dislocation
is inversely proportional to the dislocation radius of curvature, r (from Eq.
4.27), the largest stress corresponds to the smallest radius of curvature for the
dislocation line. In its original unstressed configuration (line 1 in Figure 4.31),
the dislocation is a straight line, with r = ∞. Then the radius of curvature
decreases as the dislocation begins to grown in response to the applied stress.
The minimum radius of curvature is d/2, where d is the distance between the
pinning points of the dislocation. This corresponds to line 1 in Figure 4.31.
This corresponds to the maximum applied stress, which for r = d/2 is 2Ts/db.
This is the critical resolved shear stress, τCRSS , for the system, if dislocation
pinning is the strengthening mechanism in the material. If we estimate Ts as
Gb2/8 as we did above, we obtain:

τcrss ≈
Gb

4d
(4.30)

Precipitation strengthening of a material is based on the introduction of very
closely spaced nano-scale precipitates, giving the smallest possible value of d,
and hence the maximum τCRSS .

5 Thermodynamics of Interfaces

5.1 A Brief Review of the Thermodynamic Potentials

A statement of the combined first and second laws of thermodynamics is that
the internal energy, U , is minimized at equilibrium under conditions of fixed
temperature and entropy. We more commonly fix the temperature instead of
the entropy. For this reason we define some closely related thermodynamic
potentials: the Helmholtz free energy, F , and the Gibbs free energy, G. We are
often interested in an incremental change (the variation) in a function that is a
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product of two other functions. Recall that the variation of a product rule for
the variation of two functions A and B is given as:

δ (AB) = AδB +BδA (5.1)

This expression is used frequently in the calculations in the following sections.

5.1.1 Internal Energy

The variation in the internal energy, U , for a multicomponent system at equi-
librium is given by the following expression:

δU = TδS − PdV +
∑
i

µiδni (5.2)

Here µi is the chemical potential of component i and ni is the number of atoms
of this component. Note that δU = 0 for fixed entropy, volume and number of
atoms (δS = δV = δni = 0). This means that at equilibrium under conditions
of fixed entropy, volume total amount of each component, the internal energy
is minimized at equilibrium.

5.1.2 Helmholtz Free Energy

The Helmholtz free energy, F , is defined in the following way:

F ≡ U − TS (5.3)

The variation of F is:

δF = δU − TδS − SδT (5.4)

Substituting 5.2 for δU into this expression:

δF = −PdV − SδT +
∑
i

µiδni (5.5)

So that δF = 0 for fixed V , T , ni. This means that at equilibrium under condi-
tions of fixed temperature, volume and total amount of each component, the
Helmholtz free energy is minimized.

5.1.3 Gibbs Free Energy

The Gibbs free energy is defined in a very similar manner, but in this case we
replace the internal energy, U , with the enthalpy, H :

G ≡ H − TS = U + PV − TS (5.6)

Here the enthalpy is given by the following espression. :
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H = U + PV (5.7)

By comparing these equations to Eq. 5.3, we see that all we’ve really done is
add a PV term to the Helmholtz free energy:

G = F + PV (5.8)

In differential form

δG = δF + PδV + V δP (5.9)

Using Eq. 5.5 for δF gives:

δG = V δP − SδT +
∑
i

µiδni (5.10)

So that δG = 0 for fixed P , T , ni. This means that at equilibrium under con-
ditions of fixed temperature, pressure and amount of each species, the Gibbs
free energy is minimized.

5.1.4 Chemical Potential Expressions

One useful thing that emerges from all of these expressions is that we can get
some useful, equivalent expressions for the chemical potential. The chemical
potential of component i is always given by the derivative of some thermody-
namic potential with respect to ni. The thermodynamic potential to use just
depends on what we are holding constant during the differentiation: S, V if
we use U ; T , V if we use F ; P , T if we use G. In mathematical terms we have:

µi =
∂U

∂ni

∣∣∣∣
S,V

=
∂F

∂ni

∣∣∣∣
T,V

=
∂G

∂ni

∣∣∣∣
P,V

(5.11)

The easiest way to see that this must be the case is to look at the corresponding
expressions for δU (Eq. 5.2) , δF (Eq. 5.5) and δG (Eq. 5.10).
In this class we are going to be working primarily with the Gibbs free energy. A
couple other statements about G and its relationship to the chemical potentials
is useful here. The first is that the chemical potential is equivalent to the partial
molar free energy. So writing the chemical potential as a derivative of the free
energy, we can sum up the potentials to get the free energy:

G =
∑
i

µini (5.12)

In differential form, we have:

dG =
∑
i

(µidni + nid)
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At equilibrium the chemical potentials must be equal. This is true even if the
pressure is not uniform throughout the system, a situation that is nearly al-
ways true in multiphase systems because of interfacial energy effects, as we
see below. In that case the appropriate thermodynamic potential is the Gibbs
free energy, because we need to be able to calculate the pressure-dependence
of the chemical potentials.

5.1.5 Grand Canonical Potential

Ω = U − TS − µAnA − µBnB

.

5.2 Interfacial Free Energy and the Dividing Surface

Interfaces have an energy associated with them. This is easiest to see in the case
where there is a big structural change across the interface (a solid-vapor inter-
face, for example). In the simple example illustrated in Figure 5.1 the atoms
at the surface have fewer bonds than the atoms in the bulk of the material.
The lower number of bonds implies that there is an excess energy associated
with atoms near the surface. In the simple nearest neighbor picture only those
atoms at the surface are affected. In most cases, however, many atoms near the
surface are affected, especially in cases where the density and/or structure of
the phases are very similar. For example, in a liquid/liquid system like the in-
terface between oil and water, structural changes across the interface are more
subtle, and the interface can be very wide on an atomic scale. If we plot the
concentration of one of the components across the interface between α and β
phases as shown schematically in Figure 5.2, we see that it transitions from
Cα to Cβ over an interfacial region that can in some cases be many atomic
dimensions wide.

3 bonds here4 bonds here

Figure 5.1: Reduced bonding at the free surface of a crystalline material.
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Figure 5.2: Interfacial profile between two phases (in this case a solid and liquid),
illustrating the existence of an interfacial region of width w.

The change in density across the interface means that the energy in the transi-
tion zone is different than the energy in either of the bulk phases. Even if the
structure is the same, for example a coherent interface between alloys of the
same crystal structure, the change in composition across the interface will lead
to a region of the material with a different energy.
How can we develop a generalized description of interfacial thermodynamics
that is valid for all types of interface (crystalline, amorphous, narrow, broad,
etc.)? Fortunately, this was done by Gibbs even before atoms were discovered
(c. 1880)! Our basic assumption is that all quantities vary across the interface
in a continuous manner, like the density plot shown in Figure 5.2. We need to
develop the corresponding condition for the inhomogeneous interfacial region
of finite width. We begin by considering the interface between two phases, α
and β. As shown in Figure 5.3 we can separate the system in to three regions:
α and β bulk phase regions where the properties are completely uniform, and
an interfacial region I , where the properties (S, ni, etc. are non-uniform).

{

Figure 5.3: Formal representation of the interfacial region between α and β phases.

At a planar interface, we still get the usual thermodynamic condition that the
temperature and chemical potentials are uniform everywhere at equilibrium.
But what about pressure effects? What if δV α ̸= 0? To answer these questions
we will make a relatively large conceptual leap and replace the real system
where the interfacial has some finite width with an equivalent model system
where the the interface is a true surface with no volume. This model system
is obtained by extending bulk phase properties all the way up to the fictitious
location of the dividing surface, Σ, where we have the two phases α and β in
our example directly in contact with one another.
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Figure 5.4: Conceptual representation of the replacement of a continuous concen-
tration gradient a single dividing surface, Σ, that has no width.

Once we specify the precise location of the dividing surface we can determine
the number of atoms that are associated with the interface. Once we know
where the dividing surface is, we also know the volumes of each phase, V α

and V β . Multiplying by the bulk phase concentration gives the total number
of atoms in each phase:

nα
i = Cα

i V
α

nβ
i = Cβ

i V
β (5.13)

In general, the total number of atoms of component i, ni, is not equal to nα
i +nβ

i .
The excess is associated with the interfaces, and is referred to as nΣ

i :

nΣ
i = ni − nα

i − nβ
i (5.14)

We commonly divide by the interfacial area, A, to get an interfacial excess of
component i per area, which we define as Γi:

Γi ≡ nΣ
i /A (5.15)

We can also define an interfacial energy (UΣ) and an interfacial entropy (SΣ)
in a similar way:

UΣ = U − Uα − Uβ (5.16)

We can also define an interfacial free energies, in a way that is analogous to the
definitions given in Section 5.1. Defining Gibbs and Helmholtz free versions
of the interfacial quantities gives the following:

FΣ
a = UΣ

a − TSαβ
a (5.17)

GΣ
a = UΣ

a + PV Σ − TSΣ
a (5.18)

Because the dividing surface is defined so that it has no volume (V Σ = 0),
these two versions of the interfacial free energy are equal to one another. We
define them as the interfacial free energy, γαβ :

γαβ = FΣ
a = GΣ

a = UΣ
a − TSΣ

a (5.19)
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The interfacial contribution to the interfacial energy obeys the following ver-
sion of Eq. 5.10:

δG = −SδT +
∑
i

µiδni (5.20)

dGΣ = −SdTΣ +
∑

µiδn
Σ
i + γαβδA

Σ (5.21)

5.3 Equilibrium Condition for a System with an Interface

We are interested in the effects of an interface on the equilibrium conditions
in a binary alloy, two-phase system. We shall assume that the bulk phases far
from the interface are uniform (no stress, gravity, electric field...). We can thus
use the dividing surface construction wherein the phases are taken uniform up
to a dividing surface. Thus the total number of atoms of components A and B,
nA, nB entropy, S and energy, U are given by the summing the contributions
arising from the individual phases and from the interface:

U = Uα + Uβ + UΣ

na = nα
a + nβ

a + nΣ
a

nb = nα
b + nβ

b + nΣ
b

S = Sα + Sβ + SΣ

V = V α + V β

(5.22)

In the last equation there is no V Σ since the dividing surface is of zero thick-
ness.
Since the phases are uniform, we can determine the number of A and B atoms
using the concentrations of A and B atoms in each phase, according to Eq.
5.13, with i = A, B. For the interface, use Eq. 5.15 to obtain the values of nA

and nB associated with the interface, so that we have the total numbers of A
and B atoms are given by the following:

nA = Cα
AV

α + Cα
AV

β + ΓAA
nB = Cα

BV
α + Cα

BV
β + ΓBA

(5.23)

Since the entropy and energy are uniform in the two phases, we can represent
the entropy of the α phase as, sα = sαvV

α, where sαv is the entropy per volume
of the α phase, similarly for β. We do the same for the energy in the alpha and
β phases, i.e. Uα = Uα

v V
α. For the interface defining the entropy per area as

sΣa and energy per area as UΣ
a . Thus the total entropy and entropy are given

as:

U = Uα
v V

α + Uβ
v V

β + UΣ
a A

S = Sα
v V

α + Sβ
v V

β + SΣ
a A

(5.24)

We need to determine the conditions that hold to give thermodynamic equilib-
rium. There are a number of energy functions that we could use. For example,
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we could use the Gibbs free energy, which is a minimum at equilibrium under
conditions of constant T , P . However, this assumes that T and P are constant
at equilibrium in a two-phase system with an interface, which we will find is
true for the temperature, but not necessarily for the pressure. So we will use
the energy function that does not make any assumptions the conditions of the
intensive variables at equilibrium, the internal energy U . For the system to be
at equilibrium (actually an extremum) the first variation of the energy has to
be zero subject to the constraints of constant total entropy, number of moles
and volume,

δU = 0 (5.25)

subject to

na = constant
nb = constant
S = constant

(5.26)

To enforce these constraints we use Lagrange multipliers. We do this be defin-
ing three Lagrange multipliers, λnA

, λnB
and λS , associated with each of the

contraints in Eq. 5.26 and then defining a new modified energy U∗ in the fol-
lowing way.

U∗ = U − λSS − λnA
nA − λnB

nB (5.27)

What we need is the extremum of this new energy:

δU∗ = 0 (5.28)

5.4 Use of Lagrange Multipliers

It seems magical that the Lagrange multipliers enforce constraints. Let’s look
at a simple example.[3] Say we have a function that we want to minimize
f(x, y) = x + y subject to the constraint that we can only use those values
of x and y that lie on the circle x2 + y2 = 1, (or x2 + y2 − 1 = 0). Figure 1
shows the plane f and the circle. It is clear that there are two extrema, one at√
2/2,

√
2/2 and the other at −

√
2/2,−

√
2/2.
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Figure 5.5: The plane showing the function to be minimized and the circle show-
ing the constraints, (from ref. [3]).

So, we need to minimize,

f∗ = f − λ(x2 + y2 − 1) (5.29)

The first variation of f∗ is,

δf∗ = δf − λ(2xδx+ 2yδy) = δx+ δy − λ(2xδx+ 2yδy) (5.30)

Since we are looking for an extremum,

(1− 2λx)δx+ (1− 2λy)δy = 0 (5.31)

For this to hold for any variations in x and y (i.e. for any values of δx and δy),
the following conditions must be met:

1− 2λx = 0
1− 2λy = 0

(5.32)

which implies

x = y =
1

2λ
(5.33)

Since we know that x2 + y2 = 1, substituting the values of x and y from the
above into the constraint yields λ = ±

√
2/2. Using these values of λ in Eq.

5.33 yields the location of the minima and maxima, x =
√
2/2, y =

√
2/2 and

x = −
√
2/2, y = −

√
2/2. In our case, it is not necessary to determine the

specific values of the Lagrange multipliers, as we will see.
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5.5 Determining the Equilibrium

Returning to the thermodynamic problem we are interested in, the equilibrium
solution must satisfy the following equation:

δU∗ = δU − λT δS − λnaδna − λnb
δnb = 0 (5.34)

Using Eq. 5.1 and the previous expressions for U and S (5.24), and nA and nB

( 5.23) we obtain the following:

δU = V αδUα
v + Uα

v δV
α + V βδUβ

v + Uβ
v δV

β + UΣ
AδA+AδUΣ

A

δS = V αδSα
v + Sα

v δV
α + V βδSβ

v + Sβ
v δV

β + SΣ
AδA+AδSΣ

A

δnA = V αδCα
A + Cα

AδV
α + V βδCβ

A + Cβ
AδV

β + ΓAδA+AδΓA

δnB = V αδCα
B + Cα

BδV
α + V βδCβ

B + Cβ
BδV

β + ΓbδA+AδΓb

(5.35)

5.6 No Change in Location or Shape of the Interface

This is the case we did in 314. Since the interfacial area and the volumes of the
two phases do not change we have δV α = δV β = δA = 0 and 5.35 simplifies
to the following:

δU = V αδUα
v + V βδUβ

v +AδUΣ
A

δS = V αδSα
v + V βδSβ

v +AδSΣ
A

δnA = V αδCα
A + V βδCβ

A +AδΓA

δnB = V αδCα
B + V βδCβ

B +AδΓb

(5.36)

Substitution of these expressions into Eq. 5.34 for δU∗ gives:

δU∗ =
(δUα

v − λSδS
α
v − λnA

δCA − λnB
δCB)V

α+
(δUα

v − λSδS
α
v − λnA

δCA − λnB
δCB)V

β+(
δUΣ

a − λSδS
Σ
a − λnA

δΓA − λnB
δΓB

)
A

(5.37)

In the bulk α and β phases we have the following:

δUα
v = TαδSα

v + µα
AδC

α
A + µα

BδC
α
B

δUβ
v = T βδSβ

v + µβ
AδC

β
A + µβ

BδC
β
B

(5.38)

For the interface we have something very similar:

δUΣ
a = TΣδSΣ

a + µΣ
AδΓA + µΣ

BδΓB (5.39)

Subsitution of 5.38 and 5.39 into 5.37 gives:

δU∗ =

[(Tα − λS) δS
α
v + (µα

A − λnA
) δCA + (µα

B − λnB
) δCB ]V

α+[(
T β − λS

)
δSβ

v +
(
µβ
A − λnA

)
δCA +

(
µβ
B − λnB

)
δCB

]
V β+[(

TΣ − λS

)
δSΣ

a +
(
µΣ
A − λnA

)
δΓA +

(
µΣ
B − λnB

)
δΓB

]
A

(5.40)
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At equilibrium, δU∗ = 0 for all potential variations in CA, CB , ΓA, ΓB , Sα
v , Sβ

v

and SΣ
a . This is only possible when the following equilibrium conditions are

satisfied.

λS = Tα = T β = TΣ

λna
= µα

a = µβ
a = µΣ

a

λnb
= µα

b = µβ
b = µΣ

b

(5.41)

In this way we obtain the usual equilibrium conditions of constant tempera-
ture and chemical potential for a system at equilibrium.

5.7 Changes in Location or Shape of the Interface

Now we examine the cases where we let the volumes of α and β change. Since
the case we just did will hold in this case too, we just have to examine the terms
that involve the variations in the volumes and area of the interface. Thus, from

δU = Uα
v δV

α + Uβ
v δV

β + UΣ
AδA (5.42)

δS = Sα
v δV

α + Sβ
v δV

β + SΣ
AδA

δna = ραa δV
α + ρβaδV

β + ΓaδA

δnb = ραb δV
α + ρβb δV

β + ΓbδA

Thus we must minimize U∗,

δU∗ = δU − λT δS − λnaδna − λnb
δnb (5.43)

Using the values of the Lagrange multipliers,

δU∗ = δU − TδS − µaδna − µbδnb (5.44)

Using Eq. 5.42,

δU∗ = (Uα
v − TSα

v − µaρ
α
a − µbρ

α
b ) δV

α +(
Uβ
v − TSβ

v − µaρ
β
a − µbρ

β
b

)
δV β +(

UΣ
A − TSΣ

a − µaΓ
Σ
a − µbΓ

Σ
b

)
δA (5.45)

The terms in the brackets is a less well known energy function, the Grand
Canonical free energy. The Grand Canonical free energy, Ω = U−TS−µAnA−
µBnB . Since U = TS−µAnA−µBnB−PV , Ω = −PV , so on per volume basis,
Ωv = −P . Since Ωv = Uv − TSv − µAρA − µBρB ,

δU∗ = (Ωα
v ) δV

α +
(
Ωβ

v

)
δV β + (σ) δA (5.46)

where the ΩΣ
A = σ. So the interfacial energy is the excess Grand canonical

energy per area associated with the interface. The variations in the volumes
and areas shown in are not independent.
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5.7.1 Application to a Planar Interface

Consider a planar interface, illustrated in Figure 5.6. If the volume of α in-
creases the volume of β decreases. So, for a planar interface, δA = 0, and
δV β = −δV α.

δU∗ =
(
Ωα

v − Ωβ
v

)
δV β = 0 (5.47)

Thus at equilibrium, Ωα
v = Ωβ

v , or Pα = P β .

old interface
position

new interface
position

Figure 5.6: Displacement of a flat interface between α and β phases.

5.7.2 Application to a Curved Interface

Assume a spherical particle of β in a matrix of α, as shown in Figure 5.7. We
use the following relationships between the radius, interfacial area, and vol-
ume of the β precipitate:

V β =
4

3
πR3 (5.48)

AΣ = 4πR2 (5.49)

old interface
position

new interface
position

Figure 5.7: Displacement of a flat interface between α and β phases.

If R changes by a small amount δR, this leads to the following for δV β and
δAΣ:

δV β = 4πR2δR (5.50)

δAΣ = 8πRδR (5.51)
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We are working in a system with total fixed, i.e., δV = δV α + δV β = 0. From
this we obtain:

δV α = −δV β = −4πR2δR (5.52)

Now we can now use these expressions for δV β , δAΣ and δV α in Eq. ?? for δU
in order to obtain the following:

Pα4πR2δR− P β4πR2δR+ γαβ8πRδR = 0 (5.53)

After some rearrangement we obtain the Laplace pressure equation for a ma-
terial with an isotropic surface energy:

P β − Pα =
2γαβ
R

(5.54)

Note that this pressure equation is an additional equilibrium condition, in ad-
dition to those already obtained (constant temperature and constant chemi-
cal potential). Note that at equilibrium the chemical potentials are uniform
everywhere, even in conditions where the pressure is non-uniform. For sys-
tems with curved interfaces we need to account of the effect of pressure (and
hence, the interface curvature) on the chemical potential. These pressure-
induced chemical potential differences drive a variety of important processes
in microstructure development in materials, including coarsening and grain
growth.

5.7.3 Chemical Potential Expressions

5.7.4 A practical example

Semiconductor nanowires provide a useful illustration of the importance of
thermodynamics in modern materials synthesis, and on effects that emerge
when the relevant length scales become very small. A schematic representa-
tion of Si nanowires is shown in Figure 5.8, along with an illustration of the
growth process. Growth occurs at the interface between a gold liquid phase
(where the Si solubility is quite high) and a solid Si phase (which has a negli-
gible solubility for the gold. The Si-Au phase diagram is obviously relevant to
this problem, and is shown in Figure 5.9. The problem is that this phase dia-
gram is for bulk materials, and will somehow be affected by the fact that the
length scales are very small. Nanowire diameters are typically in the range of
tens of nm, and we expect that things might behave differently at this length
scale. This is is one of the issues addressed in this section.
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(a)

(b) (c) (d)vapor
(silane)

liquid
(Au)

solid
(Si)

Figure 5.8: Schematic representation of Si nanowires (a) and their growth by
the vapor-liquid-solid (VLS) mechanism. In this method growth occurs as Si-
contaning precursor molecules react to form silicon that dissolves into a gold drop
that is placed on a Si surface (b-d). The supersaturation of Si in the liquid phase
causes Si to grow at the liquid/solid interface.

Figure 5.9: Si-Au phase diagram.

Example: Magnitude of the Laplace pressure
How large is the Laplace pressure

5.7.5 Effects of Interfacial Curvature on the Melting Transition

How does the melting point of a pure material depend on its size? We’ll
assume that the solid material has a radius of R, and that the solid/liq-
uid interfacial free energy is γ. As illustrated schematically in Figure 5.10
P s ̸= P ℓ soT ̸= Tm.
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Flat Interface Curved Interface

S S

Figure 5.10: Solid/liquid equilibrium at flat and curved interfaces.

The equilibrium condition between the solid and liquid is obtained by equat-
ing the chemical potentials in the solid and liquid phase. For a single com-
ponent system, the chemical potential on a molar basis (energy per mole of
atoms as opposed to energy per atom) is equivalent to the molar free energy,
Gm. What we need to do is find the temperature where the molar free energy
of the material in the solid phase, Gs

m is equal to the molar free energy in the
liquid phase (Gℓ

m):
Gs

m(T, P s) = Gℓ
m(T, P ℓ) (5.55)

Note that we are interested in the case where the temperature is not necessarily
equal to the equilibrium melting temperature (T ̸= Tm). This temperature
difference arises from the fact that the pressure in the solid and liquid phases
differs by an amount given by the Laplace pressure difference, P s − P ℓ =
2γsℓ/R. We assume that the differences between T and Tm and between P s

and P ℓ are small, so we can get away with retaining only the first derivative
terms in Taylor series expansions for Gs

m and Gℓ
m:

Gs
m(T, P s) = Gs

m(Tm, P ℓ) +
∂Gs

m

∂T

∣∣∣
P ℓ,Tm

(T − Tm) +
∂Gs

m

∂P

∣∣∣
P ℓ,Tm

(PS − P ℓ)

Gℓ
m(T, P ℓ) = Gℓ

m(Tm, P ℓ) +
∂Gℓ

m

∂T

∣∣∣
PL, Tm

(T − Tm)

(5.56)
Now we can use the following thermodynamic definitions:

∂Gs
m

∂T
= –Ss

m,
∂Gℓ

m

∂T
= –Sℓ

m,
∂Gs

m

∂P
= V s

m (5.57)

Combination of Eqs. 5.56 and 5.57 gives the following:{
Gs

m(T, P s) = Gs
m + (Tm, P ℓ)–Ss

m(T − Tm) + V s
m(P s − P ℓ)

Gℓ
m(T, P ℓ) = Gℓ

m(Tm, P ℓ)–Sℓ
m(T − Tm)

(5.58)

60



5.7 Moving Interface 5 INTERFACE THERMO

For a planar interface (R = ∞): P ℓ = P s, and the liquid and solids are at
equilibrium at T = Tm:

Gℓ
m(Tm, P ℓ) = Gs

m(Tm,P
ℓ) (5.59)

We define the differences, ∆Hm, ∆Sm, ∆T in the following way:

∆Hm ≡ Hℓ
m−HS

m,∆Sm ≡ Sℓ
m − Ss

m, ∆T ≡ Tm − T (5.60)

Now we combine Eqs. 5.55, 5.58, 5.59, 5.60 to obtain the following for the
temperature difference:

Tm − T =

(
P s − P ℓ

)
V s
m

∆Sm
(5.61)

The enthalpy of melting, ∆Hm, is a more intuitive quantity than the entropy
of melting, and is more directly measured experimentally. At equilibrium for
an interface between solid and liquid with a planar interface (so the pressure
is the same in both phases), the free energies of the solid and liquid are equal
to one another. This fact is generally used to write thermodynamic quantities
in terms of ∆Hm instead of ∆Sm. We begin by recognizing that the free energy
change between solid and liquid phases is zero at T = Tm :

∆Gm(Tm) = ∆Hm − Tm∆Sm = 0 (5.62)

We can use this equation to write the entropy of mixing in terms of the en-
thalpy of mixing and the equilibrium melting temperature:

∆Sm =
∆Hm

Tm
(5.63)

Equation 5.61 for the melting point depression can therefore be rewritten in
the following way:

Tm − T =

(
P s − P l

)
V s
mTm

∆Hm
(5.64)

Finally, with P s − P ℓ = 2γsℓ/r we have:

Tm − T =
2γsℓV

s
mTm

r∆Hm
(5.65)

So how large is this effect? To understand this, we need to put in some real
numbers. Let’s consider the case for gold with a particle radius, R of 5 nm:

• γ (solid/liquid interfacial free energy for gold): 0.177 J/m2.

• V s
m (molar volume of solid gold): 197 g

mole · cm3

17.3 g · 10−6 m3

cm3 = 1.14x10−5 m3

• ∆Hm (molar heat of fusion): 1.25x104 J/mole
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• Tm (equilibrium melting temperature): 1064 ◦C (1337 K)

• R (droplet radius): 5x10−9 m

Putting all these numbers into Eq. 5.65 gives Tm−T = 86 K, which is certainly
a significant effect.
We conclude this section with a useful graphical interpretation of the effect of
pressure.

Figure 5.11: Graphical representation of the effect of the particle size on the melt-
ing temperature.

By taking only the first term in the Taylor expansion, we are assuming that the
plots of Gm vs T are straight, i.e. we are neglecting any temperature depen-
dence of the entropy. We are also assuming that ∂Gm/∂P is constant, which
means we are saying that the molar volume is independent of the pressure (the
system is assume to be incompressible). This is generally a reasonable approx-
imation for most solid and liquid materials, but will fail miserably if one of the
phases is a gas.

5.7.6 Size-dependent solubility

Another consequence of the increased pressure within a small precipitate is
that small precipitates are more soluble in their surroundings than large pre-
cipitates.

Figure 5.12: Eutectic phase diagram.

62



5.7 Moving Interface 5 INTERFACE THERMO

1) General Concepts At temperatures below the eutectic temperature,
solid α and solid β are in equilibrium with one another. For flat interfaces,
(R = ∞) the phase compositions are given by the solvus lines, and are equal to
Xα

B (∞) and Xβ
B (∞). How does this change if the interface is curved? Suppose

we are in the A-rich portion of the phase diagram, where small β precipitates
of radius r exist in a matrix of α.

Figure 5.13: A β precipitate of radius R in a matrix of α.
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Figure 5.14: Shift of the free energy curves and equilibrium phase compositions
due to curvature effects.

∂Gβ
m

∂P
= V β

m (5.66)

If we assume that β is incompressible, then V β
m does not change with pressure

and we have:

Gβ
m

(
P β

)
= Gβ

m (Pα) + V β
m

(
P β − Pα

)
(5.67)

With P β − Pα = 2γαβ/R, where γαβ is the interfacial free energy for the inter-
face between α and β phases, we have:

Gβ
m

(
P β

)
= Gβ

m (Pα) +
2V β

mγαβ
R

(5.68)

From the construction in Figure 5.14 we see that Xα
B and Xβ

B are both functions
of r. More specifically, we have the following inequalities:

Xα
B (r) > Xα

B (∞)

Xβ
B (r) > Xβ

B (∞)
(5.69)

To develop expressions for Xα
B (r) and Xβ

B (r), we just need to equate the
chemical potentials for A and B atoms in each phase:

µα
i (Xα

B , P
α) = µβ

i

(
Xβ

B , P
β
)
: i = A, B (5.70)

where P β = Pα + 2γαβ/r . In general Eq. 5.70 is a set of two, nonlinear
equations (obtained by setting i to A or B) that must be solved numerically in
order to obtain Xα

B and Xβ
B , the compositions of the α and β phases that re in

equilibrium with one another. Note that because XA = 1−XB we can use the
single composition variable, XB to describe the compositions.
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2) Activity Coefficients In general the chemical potential of species i is re-
lated to its activity coefficient, ai:

µi = µ0
i +RT ln (ai) (5.71)

Here R is the gas constant (8.314 J/mole·K) T is the absolute temperature and
µ0
i is the chemical potential in it’s standard state (which we’ll take at a pres-

sure of Pα). We’ll define the standard state chemical potentials as zero, so the
chemical potentials for P = Pα are simply:

µi (P
α) = RT ln (ai) (5.72)

3) Effect of Pressure In the beta phase, we need to account for the fact that
pressure in the β phase, P β , is no longer equal to the reference pressure, Pα:

µi

(
P β

)
= RT ln ai +

∂µβ
i

∂P

(
P β − Pα

)
(5.73)

The pressure derivatives appearing in these equations can be replaced by the
partial molar volumes of the A and B components in the β phase, defined as
follows:

∂µi

∂P
= V̄i (5.74)

where V̄i is the partial molar volume of component i. We can therefore right
the chemical potential in the following generalized form, which accounts for
its dependence on both composition (XB) and pressure (P β). and pressure
concentration and pressure dependence:

µi

(
XB , P

β
)
= RT ln ai (XB) + V̄i

(
P β − Pα

)
(5.75)

4) Expression for Xα
B (r) in the dilute regime. In order to illustrate how

this is done, we’ll consider the simplest possible case, where the α phase is
nearly pure A and the β phase is nearly pure B. If component i is very dilute
( Xi ≪ 1), we are in the Henry’s law regime where the activity coefficient
increases linearly with the concentration:

ai = HiXi (Rault′s Law) (5.76)

where Hi is the Henry’s law coefficient. Similarly, if Xi ≈ 1 (so that the phase
of interest is nearly pure i), the activity coefficient is also proportional to the
concentration, but with a slope of 1 (Rault’s law):

ai = Xi (5.77)
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Flat Interface R → ∞: For a flat interface the pressures in both phases are
equal to the standard pressure of Pα. The chemical potential of B in the beta
phase is given by combining Eq. 5.75 (with Pα = P β and XB = Xβ

B (∞)) and
Eq. 5.77 (Rault’s law) to obtain:

µβ
B = RT lnXβ

B (∞) ≈ 0 (5.78)

We know that µβ
B is close to zero because Xβ

B (∞) is close to one. Component
B is dilute in the the alpha phase, so we are in the Henry’s law regime. The
chemical potential is given as follows:

µα
B = RT ln aαB = RT [lnHB + lnXα

B (∞)] ≈ 0 (5.79)

We know that µα
B = µβ

B ≈ 0, which is why we can set µα
B to zero in Eq. 5.79.

With µα
B = 0 we have:

lnHB = − lnXα
B (∞) (5.80)

Curved interface - finite R: The chemical potentials are now modified by
the pressure contribution to the molar free energy of the beta phase, and are
no longer zero. One consequence of this is that the equilibrium compositions
are changed. Because the α phase pressure is taken as our reference pressure,
the equations for the chemical potentials in this phase are unchanged. We just
need to specify that r is no longer infinite:

µα
B (r) = RT [lnHB + lnXα

B (r)]

Now we can develop some analytic expressions that are useful in the dilute
limit. We’ll Eq. 5.74, along with the fact that P β − Pα = 2γαβ/r to simplify
some of the expressions. We’re specifically interested in the increase in the
minority phase fraction when r becomes very small. In other words, how large
is Xα

B (r) compared to Xα
B (∞)? Requiring that µβ

B (r) = µα
B (r) gives:

RT [lnHB + lnXα
B (r)] = RT lnXβ

B (r) +
2γαβV̄B

r
(5.81)

Eq. 5.80 holds in the alpha phase, which is assumed to be nearly pure A, so
we can replace lnHB with − lnXα

B (∞). Similarly, the β phase is assumed to
be nearly pure B, soln

(
Xβ

B

)
≈ 0 and we have:

RT ln

(
Xα

B (r)

Xα
B (∞)

)
=

2γαβV̄
β
B

r
(5.82)

The molar volume of the β precipitate is related to the partial molar volumes
in the following way:

V β
m = Xβ

AV̄
β
A +Xβ

BV̄
β
B (5.83)
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we have Xβ
B ≈ 1 so we can replace V̄ β

B with V β
m. Also, since the β is nearly

pure B, V β
m is really just the molar volume of B. Now we can rearrange Eq. 5.82

to obtain the following expression for Xα
B (r):

Xα
B (r) = Xα

B (∞) exp

[
2γαβV

β
m

RTr

]
(5.84)

For small x, exp (x) ≈ 1 + x. If r is not too small (generally the case) we can
use this expansion for the exponential function to write Xα

B (r) as follows:

Xα
B (r) = Xα

B (∞)

[
1 +

2γαβV
β
m

RTr

]
(5.85)

We see that the surface free energy term makes small precipitates more sol-
uble in the matrix than larger precipitates. This increased solubility drives
the coarsening of the microstructure over time, giving larger precipitates over
time. We’re not going to do much more with this specific equation in 316-1,
but it is very important when we start talking more about the evolution of
microstructure in 316-2. It is given here largely as an illustration of the impor-
tance of the interfacial free energy.

6 Two Dimensional Defects in Crystals: Surfaces
and grain boundaries.

Dislocations are one dimensional defects in a crystalline structure. We now
consider crystal interfaces, which can be viewed as two-dimensional crystal
defects. We’ll consider three kinds of interfaces:

1. Free surfaces

2. Grain boundaries

3. Interphase interfaces

All of these interfaces have an interfacial energy, given by the energy required
to create extra interfacial area:

γ =
∂U

∂A
(6.1)

One of the unique features of crystalline materials is that γ is no longer
isotropic. Certain crystal facets have a lower interfacial energy than other
facets. This is why natural crystals like quartz (see Figure 6.1) have beautiful
shapes and are not boring solid blobs. In the following sections we’ll investi-
gate some of the features that give rise to the anisotropy in γ, and will see how
this anisotropy determines the equilibrium crystal shape.
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Figure 6.1: Naturally-formed quartz crystals.

Crystal surfaces with the lowest surface energies tend to be ones with rela-
tively high densities of atoms within the plane. For FCC crystal structures,
these include the {111}, {200} and{220}, with hard sphere representations of
these surfaces shown in Figure 6.2. Note that the {100} and {200} surfaces are
identical, as are the {110} and {220} surfaces. We use the non-reduced notation
so that we obtain the correct interplanar spacing for identical planes. For a
cubic crystal structure d is given by the following expression:

dhkl =
a

(h2 + k2 + ℓ2)
1/2

(6.2)

here h, k and ℓ are the Miller indices [?] and a is the lattice parameter.

Figure 6.2: Representations of the the {100}, {110} and{111} crystal surfaces for an
FCC material.
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Miller indices: If you need a refresher on Miller indices, the Wikipedia
page (https://en.wikipedia.org/wiki/Miller_index) is very helpful.
Here we include a reminder of the notation used to indicate planes
and directions.

• Specific planes: We use round brackets - (hkℓ)

• Class of planes: To indicate all planes that are crystallographi-
cally identical, we use curly brackets - {hkℓ}

• Specific direction: We use square brackets - [hkℓ]

• Class of directions: To indicate all directions that are crystallo-
graphically identical, we use angle brackets - ⟨hkℓ⟩

6.1 Surface Energy of a Close-Packed Plane

We can use the ’missing bond’ picture of crystalline surfaces to estimate the
surface energy for a close packed plane of atoms. Consider, for example a
{111} surface in the FCC crystal structure. The FCC crystal structure consists
of ABC stacking of these close-packed planes, as shown in Figure 6.3.

1 2

3

45

6
7 8

9

10

1112

Middle Layer (B) Top Layer (C) Bottom Layer (A)

Figure 6.3: Packing of the close packed planes in an FCC crystal structure.

Consider an atom within one of the ’B’ planes within the bulk crystal structure.
Each atom within this close-packed plane has 12 nearest neighbors: 6 in same
’B’ plane, 3 in the ’A’ plane below, 3 in the ’C’ plane above. Now suppose that
this ’B’ plane represents the crystal surface. We have removed the three bonds
to the atoms in the ’C’ layer, so that we have lost the energy associated with
3 of the 12 nearest neighbor bonds. Now suppose the energy per bond is ϵ.
The bond energy/atom is ϵ/2 (since the bond energy is shared between the
two atoms). This means that every surface atom has an excess energy of 3ϵ/2
compared to the energy of an atom in the bulk of a material. All we need now
is an estimate of ϵ. The easiest way to get this is to look at the molar heat of
sublimation, Lm, which is the energy required to convert one mole of atoms
from the solid to the vapor. (This is also referred to as the heat of vaporization,
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and is included in the Wikipedia entries for the different elements.) If one mole
of atoms is vaporized, then zNav/2 bonds are broken, where z is the number
of nearest neighbors for a given atom (12 in our case) and Nav is Avogadro’s
number. For z = 12 we have:

Lm = 12Nav
ϵ

2
= 6Navϵ (6.3)

Rearrangement of this equation gives:

ϵ = Lm/6Nav (6.4)

so the surface energy per atom is Lm/4Nav . There is also an excess entropy as-
sociated with the surface due to changes in the vibrations of the surface atoms,
configuration entropy due to surface vacancies, but this is typically a small
contribution to the overall surface free energy and is ignored in our treatment.
The surface energy is obtained by multiplying the excess surface energy per
atom by the surface density of atoms on the plane of interest, Σs:

γsv =
3ϵΣs

2
(6.5)

When calculating Σs, it is easier to think in terms of its inverse, As, the area per
surface atom in the plane of interest. The situation for a close-packed plane
is shown in Figure 6.4, where we show the two dimensional unit cell for a
hexagonal lattice. We obtain the following for Σs for a close-packed plane of
atoms:

Σs =
1

As
=

1

2r2
√
3

(6.6)

where r is the atomic radius.

Figure 6.4: The two dimensional unit cell for a hexagonal lattice. The area per unit
cell is the area per atom, As.

Combination of Eqs. 6.4, 6.5 and 6.6 gives:

γsv =
Lm

8r2
√
3Nav

(6.7)

In addition to having a higher value of γsv , we also expect that materials with
a higher value of Lm will have higher melting points (Tm). Values for Tm and
γsv are listed in Table 6.1.
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Table 6.1: Melting temperatures and solid/vapor interfacial free energies.

Crystal Tm (◦C) γsv
(
J/m2

)
Sn 232 0.68
Au 1063 1.39
W 3407 2.65

6.2 Orientation Dependence of the Surface Energy

In order to understand the faceting of single crystals we need to understand
the anisotropy of the surface energy. The existence of this anisotropy is one
of the key differences between a liquid and a solid. We can use simple bond
counting arguments to understand where this anisotropy comes from, using
drawing shown in Figure 6.5. This figure shows a square lattice of atoms with
an exposed surface tilted by an angle θ with respect to one of the crystal axes.
The only way to get this tilted surface is to add a series of atomic steps, each
of which leaves a broken bond at the top and left surfaces. Consider surface
of length ℓ along the surface of the material. The projection of this length onto
the horizontal axis is ℓ cos θ and the projection onto the vertical axis is ℓ sin θ.
Along each of these directions the distance between broken bonds is a, so the
total number of bonds is along the length ℓ is (ℓ/a) (cos θ + sin θ). The number
of bonds along the width of the sample (the direction perpendicular to the
plane of Figure 6.5) is simply w/a, where w is the sample width. The number
of bonds per unit area, Σs is:

Σs =
1

a2
(cos θ + sin θ) (6.8)

The surface energy is obtained multiplying by the energy per bond, ϵ/2 :

γsv ≈ ϵ

2a2
(cos θ + sin θ) (6.9)

The equation is approximate because we have not accounted for any entropic
contributions to the surface free energy. Also, the model of just adding up
the contributions from ’missing’ bonds neglects the tendency for the atoms
at the surface to reorganize into structures that lower the overall free energy.
These surface reconstructions play an important role in the surface science of
materials
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Figure 6.5: Schematic representation of broken bonds at a stepped surface.

Equation 6.9 is valid for values of θ between 0 and 90◦, where sin θ and cos θ
are both positive. These sin and cos terms came from the projected length of
the tilted surface along the [100] and [010] directions. A

γsv ≈ ϵ

2a2
(|cos θ|+ |sin θ|) (6.10)

(Note that the equation here is approximate because we have neglected en-
tropic contributions to surface free energy). There’s no derivative at θ = 0, so
the free energy function must have a cusp. (show plot). How can we represent
γsv as a function of θ? Describe in terms of θn (angle of normal of a plane with
respect to the x axis). So we can plot γsvon a polar plot. In MATLAB we use
the ’polar’ command to do this. We’ll give an example when we illustrate the
Wulff construction in the following section.

6.3 Equilibrium Shape of Crystals

We know that γ is a function of the angle, but what are the implications on the
equilibrium shape of the crystal? We need to minimize the total surface energy
subject to volume conservation.

ˆ
A

γds

If γ is a constant (independent of the angle), then we just need to minimize the
overall surface area for a fixed volume. We get a sphere in this case. Now we
have γ = f (θ). Suppose we have two facets with surface free energies of γ1
and γ2.

Gt = γ1A1 + γ2A2

So how do we minimize this? We use the Wulff construction to provide the
shape with the lowest energy. The construction was proposed in 1901, but
it was not proved mathematically until 1953. We won’t attempt to show the
proof here, but will instead focus on the use of the construction itself. The
procedure is as follows:

1. Draw γ = γ (θ)
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2. Draw line from origin to γ curve for a given value of θ

3. Draw perpendicular to this line.

4. Repeat for all values of θ.

5. Inner envelope is equilibrium shape.

Here’s a MATLAB script that does this for the surface energy expression given
in Eq. 6.10:

1 close all
2 gamma=@(alpha) abs(cos(alpha))+abs(sin(alpha));
3 r=@(theta ,alpha) gamma(alpha)/cos(theta -alpha);
4 alpha=linspace (0,2*pi ,200);
5 polar(alpha ,gamma(alpha),'r-');
6 title('\gamma=|cos\theta |+| sin\theta|', 'fontsize ', 16)
7 hold on % plot all subsequent curves on existing axes
8 for alpha=linspace (0,2*pi ,17) % this is the loop that draws all

the lines
9 theta (1)=alpha +2*pi/5; % specify two angles on either side

of alpha
10 theta (2)=alpha -2*pi/5;
11 rvals (1)=r(theta (1),alpha); % use the equation provided to

get r for each
12 % of the specified angles
13 rvals (2)=r(theta (2),alpha);
14 polar(theta ,rvals) % plot lines connecting the two points we

just defined
15 end
16 set(gcf ,'paperposition ' ,[0 0 5 5],'papersize ' ,[5 5])
17 print(gcf ,'../ figures/matlabwulffenergyexample.eps', '-depsc2 ') %

save the eps file

The resulting construction is shown in Figure 6.6.
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Figure 6.6: Wulff construction for the the surface free energy function given by Eq.
6.10.

7 Grain Boundaries

In the two dimensional Wulff construction the interface surface of interest is
specified by a single variable, θ. For a true, three-dimensional crystal the Wulff
circle becomes a Wulff sphere, and we need two different angles to specify the
the orientation on this sphere. In other words, we have two degrees of freedom
in specifying a specific surface of a three-dimensional crystal. We commonly
specify a surface by using the normal vector, n̂, that is perpendicular to that
surface. This surface has three components, n1, n2 and n3, in the x, y and z
directions, respectively:

n̂ = (n1x̂+ n2ŷ + n3ẑ) (7.1)

Because n̂ is a unit vector with n2
1 + n2

2 + n2
3 = 1, only two of the three compo-

nents of n̂ are independent, so we again come to the conclusion that there are
two degrees of freedom associated with the specification of a crystal surface.
In order to fully describe a grain boundary between two crystals we need to
specify three additional degrees of freedom, so there are five degrees of free-
dom altogether. In order to illustrate these degrees of freedom, we can con-
sider the following conceptual procedure for producing a grain boundary.

1. Cut the crystal along a plane specified by the unit normal to the plane, n̂.
Two degrees of freedom are associated with the specification of n̂.

2. Rotate one of the two halves of the crystal by θ about an axis directed
along the unit normal, ĉ.
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Two additional degrees of freedom are used in the specification of ĉ, just as we
use two degrees of freedom to specify n̂. The fifth and final degree of freedom
is the the rotation angle, θ.
The fact that 5 different parameters are needed to specify a grain boundary
within a given crystal means that it is impossible for us to be exhaustive in our
treatment of the different possibilities. Instead, we’ll consider the following
three cases:

1. Twist boundary: Twist boundaries correspond to rotation about an axis
that is perpendicular to the plane. In terms of ĉ and n̂, they correspond
to the case where these unit vectors are parallel to one another:

ĉ ∥ n̂

2. Tilt boundary: Tilt boundaries correspond to the opposite limiting case,
where ĉ and n̂ are perpendicular to one another:

ĉ ⊥ n̂

3. Twin boundary. This is a special type of low energy tilt boundary, where
lattice planes on either side of the boundary are in registry with one an-
other.

Examples of pure twist and pure tilt boundaries are shown in Figure 7.1. In
the following subsections we describe each of these boundaries in more detail.

Figure 7.1: Schematic representation of tilt and twist boundaries.

7.1 Tilt Boundaries

A low-angle tilt boundary can be produced by introducing a series of edge
dislocations along the grain boundary, as shown in Figure 7.2. The average
distance, d, between dislocation in a low-energy tilt boundary is given by the
following expression, which can be seen from Figure 7.2:

tan (θ/2) =
b/2

2 sin (θ/2)
(7.2)
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For very small values of θ, we can assume tan (θ/2) ≈ θ/2, so we have:

d ≈ b/θ (7.3)

d

b/2

Figure 7.2: A low angle tilt boundary.

The energy per unit length of a dislocation is Ts. For a low angle grain bound-
ary consisting of dislocations separated by a distance b, we expect the follow-
ing for the grain boundary energy, γgb:

γgb =
Ts

d
≈ Tsθ

b
(7.4)

where we have used Eq. 7.3 to approximate d. If we use Eq. 4.18 for the
dislocation energy (with Ts = Es/h), we have:

γgb =
Gbθ

4π (1− ν)
ln (rmax/r0) (7.5)

The simplest thing to do here is to let the upper cutoff, rmax, correspond to the
dislocation spacing d, which in our case is equal to b/θ. From this we get:

γgb = γ0θ (ln (b/r0)− ln θ) (7.6)

where we have defined γ0 in the following way:

γ0 =
Gb

4π (1− ν)
(7.7)

A more detailed treatment (the Read-Schockley model of low angle tilt bound-
aries) gives the following very similar form:

γgb = γ0θ (B − ln θ) (7.8)

where instead of B = ln (b/r0) as in Eq. 7.6 we have:

B = 1 + ln (b/2πr0) (7.9)
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Figure 7.3: Grain boundary energy and energy per dislocation as a function of tilt
angle according to the Read-Schockley model.

7.2 Twin Boundaries

Twin boundaries are special class of tilt boundaries with an exceptionally low
energy. They are basically just a disruption in the stacking of the stacking of
the layers in an FCC crystal structure, which is shown schematically in Figure
7.4. The point here is that if we look at one of the close packed {111} planes,
and designate the location of the atom centers as ’A’, we have two choices for
the location of the centers of the next layer, labeled as ’B’ and ’C’ in Figure
7.4. Suppose we place the centers of the second layer of atoms at ’B’. We don’t
know if the structure is HCP or FCC until we put the third layer down. We
have two choices:

1. The third layer goes above position ’A’, so that the repeating structure of
the stacking is ABABAB... This results in the FCC structure.

2. The third layer goes above position ’C’, so that the repeating structure
of the stacking is ABCABCABC... This stacking produces the FCC struc-
ture.

Figure 7.4: FCC crystal structure, illustrating the stacking of close-packed planes.

It is evident that there is actually a very small difference between the FCC
and HCP crystal structures, with the difference depending on the way atoms
interact with other atoms two layers away. In other words, there is not a big
difference between energies of HCP and FCC crystals, since the first nearest
neighbors are the same. We need to go to the second nearest neighbors to
find a difference. A consequence of this small energy difference is that there
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can often be small regions of HCP-like structure in an FCC crystal. A twin
boundary can be viewed as a case where three layers HCP stacking exist within
an FCC structure. An example from a recent application involving a solar cell
is shown in Figure 7.5.

C A B C A C B A

Coherent (111) twin boundaries

a
b

c

3D projection

B C A B

u

Figure 7.5: Example of a series of twin boundaries in an FCC crystal (from ref. [4],
Reprinted by permission from Macmillan Publishers Ltd.).

Now we can talk about twin boundaries in an FCC structure. In an untwinned
structure this is a regular, uninterupted of the stacking of the ’A’, ’B’ and ’C’
close-packed planes:

• Untwinned: ABCABCABC

At a twin boundary this stacking gets interrupted, as in the following example.

• Twinned: ABCAB|C|BACBA (twin indicated)

The twin plane is the ’C’ plane in the middle of this sequence. Note that the se-
quences on either side of the twin boundary are mirror images of one another.
The sequence of planes working out from the twin plane is ’BACBACBAC...’
in both cases. Twin boundaries have very low energies because there are no
broken bonds, dislocations, step edges, etc. The energy only comes from the
small unfavorable energy associted from second nearest neighbor interactions,
as described above.
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7.3 Twist Boundaries

Figure 7.6: Twist boundary.

7.4 Grain Boundary Junctions

At this point it is useful to make some general statements about the junctions
between different interfaces. We’ll start by simplifying things a lot by ignoring
the orientation dependence of the grain boundary energy and treating γαβ as a
constant. We’ll start by considering the expansion of a single interface between
α and β phases, as shown schematically in Figure 7.7. We want to figure out
the force that it takes to increase expand the interface and increase its area. The
work done to increase the sample width below by an amount dx is Fdx, where
F is the applied force. The increase in the free energy of the sample when we
do this is γαβdA = γαβℓdx. Equating the word done to the increase in free
energy gives γαβ = F/ℓ, so the interfacial free energy can be viewed as a force
per unit length that acts in the direction parallel to the interface. For a junction
between different interfaces, these forces must balance to keep the system at
equilibrium. For a junction between three different grains with the three grain
boundaries all being equal to one another (γ12 = γ23 = γ13), the situation is as
shown in Figure 7.8. The more general case where these energies are not equal
to one another is discussed in Section 8.

Figure 7.7: Equilibrium expansion of an interface.
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Figure 7.8: Forces acting on the interface between three different grains. We as-
sume that the grain boundary energy, γgb is the same for each of the grain bound-
aries in this case, in which case the force balance requires that the angles between
the different grain boundaries are all 120◦. In general the grain boundary energies
will not all bet the same, so these angles will be different from one another.

7.5 Thermally Activated Migration of Grain Boundaries

(General treatment is much more general than just grain boundaries)
Assume isotropic grain boundary properties.
In general, grain boundaries are not flat. As a result the boundaries are subject
to a force. Very similar to force exerted on a line by the line tension.
Recall the pressure dependence of the chemical potential:

µ
(
P 2

)
= µ

(
P 1

)
+

2Vmγ

r
(7.10)

∆µ

Vm
= ∆P=

force

area
(7.11)

Boundaries move toward their center of curvature.
Now we know the driving force - this comes from thermodynamics
Need to study the kinetics to understand if the grain will actually move in
response to this driving force.

(Transition State)

(Grain 1)
(Grain 2)

 

Figure 7.9
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Now plot free energy as a function of position. Draw at equilibrium. An acti-
vation barrier exists that has a high of ∆Ga.
What if the interface is curved so that the curvature is toward grain 1 (grain 1
is smaller).
Redraw curve - now grain one has higher energy than grain 2.
This decreases µ a bit smaller than it was before. Also, have a negative µ for
atoms going from grain 1 to grain 2. Now the fluxes in the two directions are
different. It’s clear now that there is a net flux of atoms from grain 1 to grain 2.
The actual flux from 1 to 2 is:

J1→2 = A2n1ν1 exp (−∆µ∗/RT ) (7.12)

A2 is the probability that the atom is accommodated in grain 2.
n1 the number of atoms that are able to make the jump (in molar units).
ν1= vibrational frequency.
The flux in the backward direction (from 2 to 1) is given by:

J2→1 = A1n2ν2 exp (− (∆µ∗ +∆µ) /RT )

= A1n2ν2 exp (−∆µ∗/RT ) exp (−∆µ/RT ) (7.13)

If ∆µ = 0, we have equilibrium and J1→2 = J2→1. A consequence of this is
that the following A2n1ν1 = A1n2v2.
If ∆µ > 0 the net flux is given by the difference:

Jnet = J1→2 − J2→1 = A2n1v exp

(
−∆µ∗

RT

)
(1− exp (−∆µ/RT )) (7.14)

Assume that the ∆µ ≪ RT , so we can use the approximation that exp (x) ≈
1 + x for small x. The expression for Jnet then reduces to the following:

Jnet = J1→2 − J2→1 = A2n1v exp

(
−∆µ∗

RT

)
∆µ

RT
(7.15)

Now we can get an expression for the velocity of the grain boundary:

v = JnetVm = A2n1Vmv exp

(
−∆µ∗

RT

)
∆µ

RT
(7.16)

Can substitute this and get an expression for v. (expand exponential for small
argument).
Now we define an interface mobility in the following way:

v =
M∆µ

Vm
(7.17)

Break things down into enthalpy and entropy:
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∆µ∗ = ∆H∗ − T∆S∗ (7.18)

M =
A2n1ν1V

2
m

RT
exp

∆S∗

R
exp

[
−∆H∗

RT

]
(7.19)

What are the factors affecting M:

• Temperature

• Structure of the boundary (low angle vs. high angle boundary)

• Impurities (alloying elements)

Show Fig. 3.27
Impurities have a huge effect on grain boundary mobility. Grain boundaries
are like garbage dumps for impurities. Structure also plays a role. Tricks used
in the heat treatment of high temperature superconductors.
Effect of impurities - Langmuir-Mclean model for grain boundary segregation.
XgB= fraction of a monolayer adsorbed on the boundary(

X

1−X

)
gb

=

(
X

1−X

)
bulk

exp

[
∆Gb

RT

]
Here ∆GB > 0 for an element that adsorbs to the boundary.

• Strongly temperature dependent

• more dilute elements adsorb more (show figure)

• segregation affects the mobility of the boundaries

Show grain boundary composition vs. atomic solid solubility.

7.5.1 Transformation kinetics (crystallization, recrystallization):

Crystallization occurs by a nucleation and growth process, where crystalline
regions nucleate from the parent and grow until they impinge on one another.
A schematic example for a material that forms spherical crystals that impinge
on one another to form individual grains is shown in Figure 7.10.

Figure 7.10: Schematic representation of a crystallization (or recrystallization) pro-
cess.
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What is time dependence of this type of transformation? We define the
progress of the transition in terms of the transformed fraction, f , which has
the sigmoidal time dependence illustrated in Figure 7.11.

f(t) =
fraction transformed at time t

final fraction transformed
(7.20)

Figure 7.11: Time dependence of transformation.

We can derive an expression for f (t) by assuming that nucleation occurs at a
uniform rate, Ṅv (nuclei formed per volume per time) that does not depend on
t. The volume of a single crystalline sphere of radius r is 4πr3/3. If the sphere
forms at t = 0 and r increases linearly with a growth velocity of v, we have:

V ol(t) =
4

3
πr3 =

4

3
π(vt)3 (7.21)

If nucleation does not occur until t = τ we have:

V ol(t, τ) =
4

3
πv3(t− τ)3 (7.22)

The number of individual nuclei formed per unit unit volume during some
time increment dτ is Ṅvdτ . Each of these have a volume given by Eq. 7.22. The
total volume of crystallized material is given by integrating over all possible
nucleus formation times:

f(t) = Ṅv

tˆ

0

V ol(t, τ)dτ = Ṅv
4

3
πv3
ˆ t

0

(t− τ)3dτ = Ṅv
π

3
v3t4 (7.23)

This equation is only valid for short times, since it neglects the fact that indi-
vidual crystalline regions stop growing once they impinge on one another. In

83



8 CONTACT LINES

reality, f(t) must reach an asymptotic value of 1 for t = ∞. A more detailed
solution to the problem gives the following expression:

f(t) = 1− exp
(
−π

3
Ṅvv

3t4
)

(7.24)

This is a specific example of the following more general expression, referred to
as the Johnson-Mehl-Avrami-Kolmogorov (JMAK) equation:

f(t) = 1− exp(−ktn) (7.25)

where n is an empirical constant obtained from experimental data that is found
to vary between 1 and 4. This is the simplest equation that has the basic be-
havior observed experimentally.

7.5.2 Relationship to Material Strength

Because grain boundaries impede dislocation motion, materials with a smaller
grain size have a higher yield stress. Over a relatively large range of grain
sizes, the relationship between the yield stress, σy , and the average grain size,
dg , is given by following relationship, referred to as the Hall-Petch relation-
ship.

σy = σ0 +
ky√
d

(7.26)

(See the Wikipedia page for more details)[?]

8 Three-Phase Contact Lines

Two regions of space meet at a plane, and three regions of space meet at a
line. These lines are important in a variety of problems in materials science. In
Figure 8.1 we consider the most general case, where the 3 regions of space are
labeled 1, 2 and 3. The junction between these three regions may correspond
to three different material phases, or they may correspond to grain boundaries
within a single phase region. In either case we refer to 1, 2 and 3 as ’phases’,
and refer to the line at which they meet as a ’3-phase contact line’. The way
in which the three phases meet at this contact line are specified by two angles.
These two angles can be defined in a variety of ways, but we use the angles
defined in Figure 8.1 as θ1 and θ2, which give the orientation of the 1/3 and
2/3 boundaries with respect to the 1/2 boundary.
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x

y

Figure 8.1: Force balance along a three-phase contact line.

At equilibrium θ1 and θ2 are related to the interfacial free energies of the 3
phases that meet at the contact line. Because interfaces have a contribution to
the free energy that is associated with them, there is a thermodynamic driving
force for any interface to shrink in area. As a result an interface exerts a force
on the contact line along the direction of the interface, with a force per length
of equal to the relevant interfacial free energy. At the three phase contact line
three different forces, γ12, γ23 and γ13, are pulling on the contact line. At equi-
librium the net force on the contact line is zero. We can obtain θ1 and θ2 by
considering separate force balances in the directions parallel and perpendicu-
lar to the 1/2 interface:

• Horizontal force balance (x direction):

γ13 sin θ1 = γ23 sin θ2 (8.1)

• Vertical force balance (y direction):

γ12 = γ13 cos θ1 + γ23 cos θ2 (8.2)

These are coupled, nonlinear equations that generally need to be solved nu-
merically. An example procedure using MATLAB is given below in the section
on wetting.

8.1 Wetting

Wetting refers to the case where one of the three phases is either air or vac-
uum. As an example, consider an oil droplet on the surface of water, as shown
schematically in Figure 8.2. In order to determine the values of θ1 and θ2in this
case we need to know the following interfacial energies:

• γw: the surface free energy of water

• γo: the surface free energy of the oil

• γow: the interfacial free energy between oil and water
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Note that we refer to γw and γo as ’surface energies’ and not ’interfacial ener-
gies’ because one of the contact phases is air. We drop the subscript for air in
this case, which is the convention that is commonly used. The horizontal force
balance in this case can be written as follows:

γo sin θ1 = γow sin θ2 (8.3)

γw = γo cos θ1 + γow cos θ2 (8.4)

Figure 8.2: Force balance determining the shape of an oil droplet floating on the
surface of water.

Here’s a MATLAB script that solves the horizontal and vertical forces at the
contact line for γw = 72, γo = 30 and γow = 50. We give show the script here
because it is an excellent example of the use of the MATLAB fsolve command
to solve a series of coupled, nonlinear equations. (download link for script)

1 go=30; gow =50; gw=72; % specify the different interfacial
energies

2 verticalforce=@(theta) go*sind(theta (1))-gow*sind(theta (2)); %
this is the net force in the vertical direction

3 horizontalforce=@(theta) gw-go*cosd(theta (1))-gow*cosd(theta (2));
4 ftosolve=@(theta) [verticalforce(theta), horizontalforce(theta)];

% write the function so that it returns the two components of
the net force that both must be zero

5 thetaguess =[10 ,10]; % initial guess for theta1 and theta2
6 thetasolution=fsolve(ftosolve , thetaguess); % returns the

solution as thetasolution

The values that we end up with are θ1 = 33.9◦ and θ2 = 19.6◦. This situation
where the contact angles are greater than zero and the oil droplet forms a lens
is referred to as partial wetting. What if the value of the oil surface energy (γo)
is reduced so that the following inequality holds?

γo + γow < γw (8.5)

In this case there is not longer a solution to Eqs. 8.4 and 8.3, which means that
the force on the contact line is never zero. Instead a force is directed outward
so that the oil droplet spreads on the water surface, covering an enormous area
and becoming exceptionally thin.
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8.2 Grain Boundary Junctions

In this case the three phase contact line is actually a junction between grain
boundaries, as opposed to a place where three distinct phases come into con-
tact with one another. The important points are the following:

• If the three grain boundary energies for the boundaries meeting at the
contact line are all equal to one another, θ1 = θ2 = 60◦. In other words,
the interior angles between the different grains are all 120◦.

• As a corollary to the point above, the boundaries of grains with fewer
than 6 sides will be curved outward and the grain will tend to shrink,
whereas grains with more than 6 sides will have boundaries that are
curved and the grains will tend to grow.

8.3 Liquid Drop on a Solid Surface

A very common 3-phase contact line corresponds to the periphery of a liquid
droplet on a rigid, solid surface as depicted in Figure 8.3. Because the solid is
assumed to be very stiff, it doesn’t deform and is not affected by the vertical
contributions to the force acting on the contact line. The surface remains flat,
and we only need to worry about the horizontal force balance, which now
relates the single contact angle, θ, to the relevant surface and interfacial tension
values. This net horizontal force must sum to zero, resulting in the following
expression, commonly referred to as the Laplace-Young equation:

γℓ = γsl + γℓ cos θ (8.6)

Here γℓ is the liquid surface energy, γslis the solid/liquid interfacial energy
and γs is the solid surface energy.

Figure 8.3: Force balance determining the shape of an oil droplet floating on the
surface of water.

9 Interphase Interfaces

Interfaces between two coexisting phases can have three types of interfaces:
coherent, semicoherent and incoherent. Here we briefly describe these three
types of interface.
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9.1 Coherent Interfaces

Interfaces between different phases can be either coherent or incoherent. Co-
herent interfaces have atomic planes that are continuous across the interface as
shown in Figure 9.1. As a result there are no broken bonds, and the interfacial
energy, γαβ , is relatively low. It can be as low as 10−3J/m2, as in the case of an
α/κ interface in the Cu-Si system. In general, ≈ 10−100 mJ/m2 for coherent in-
terfaces. Even for a fully coherent interface, there is still a finite interfacial free
energy though, because of unfavorable interactions between different atomic
species that lead to phase separation in the first place. We refer to this inter-
facial energy as the coherent contribution, γcoherent, so for coherent interfaces
we have:

γcoherent = γch (9.1)

Figure 9.1: Schematic example of a coherent interface between two phases.

For interfaces between FCC and HCP crystal structures, only certain planes
are coherent. For all planes to be coherent, both phases have to have the same
crystal structure. However, they don’t have to have the same lattice parameter.
In this case elastic strains are generated.

9.2 Semicoherent Interfaces

Semicoherent interfaces are generally coherent interfaces with dislocations in-
troduced at the interface to accommodate a small mismatch between the spac-
ings of the atomic planes on either side of the interface as shown in Figure 9.2.
These dislocations have an energy associated with them, which we refer to as
γst, the structural component to the interfacial free energy. The total interfacial
free energy for the semicoherent interface is given by adding this structural
contribution to the chemical contribution.

γsemicoherent = γch + γst (9.2)
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Typical values for γsemicoherent are in the range of 0.1-0.5 mJ/m2. Note that

γst ∝ dislocation density

Figure 9.2: Example of a semicoherent interface.

9.3 Incoherent interfaces

If the lattice mismatch becomes too late, we the energy associated with all
of the required dislocations to make the interface at least partially coherent
is too high. Instead the interface becomes incoherent as shown in Figure the
dislocation cores begin to overlap. The interface becomes incoherent, with
γincoherent ≈ 500− 1000mJ/m2. γcoherent is relatively isotropic.

Figure 9.3: Example of an incoherent interface.

9.4 Case Study I: the Si-Ge system

A useful example of coherent and semicoherent interfaces is the silicon-
germanium (Si-Ge) system. Both of these materials have the diamond cubic
crystal structure, illustrated in Figure 9.4. The structure can be viewed as two
interpenetrating FCC lattices. The Burgers vector for the most energetically
favorable dislocation links atoms at the corner to the center of the face:

b⃗ =
a

2
⟨110⟩ (9.3)
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a

x

y

z

Figure 9.4: Diamond cubic crystal structure.

It makes sense that Si and Ge would have the same crystal structure, since the
properties of these elements are very similar, with Ge residing just below Si on
the periodic table. The lattice parameters are different however, and are given
as follows:

Si: aSi=5.431 Å

Ge: aGe=5.658 Å

This lattice parameter mismatch corresponds to a mismatch strain, δa, of 0.04
in this case, which we obtain from the relative difference between the lattice
parameters:

δa =
aGe − aSi

aSi
(9.4)

Heteroepitaxy is an important thin film growth process where one material
is deposited directly onto another material, with a coherent interface forming
between the deposited film and the substrate. Suppose we deposit Ge onto a
(010) surface of Si. The deposited Ge will have the same orientation, but will be
strained by an amount δ because of the lattice parameter mismatch. Because
Ge is larger than Si, we’ll have some missing planes of atoms in the Ge film.
The picture will look something like this:
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Figure 9.5: Dislocations in a semicoherent interface between materials with the
same crystal structure but different lattice parameters.

These missing planes in the x direction are the (200) planes, since the spacing
of these planes corresponds to the component of the Burgers vector that is in
the x direction. From Eq. 6.2 we have the following for the spacing of the 200
planes in the two different phases:

dSi200 =
aSi

(h2 + k2 + ℓ2)
=

aSi
2

Similarly, we have dGe
200 = aGe/2 =. The fractional difference in the interatomic

spacings is the same as the fractional difference in the lattice parameters:
Define lattice misfit, δ:

δ200 =
(
dGe
200 − dSi200

)
/dSi200 = δa (9.5)

We can rearrange this expression to get the following for dGe
200

dGe
200 = dSi200 + δad

Si
200 (9.6)

No we introduce a quantity D200 which is the average distance between dislo-
cations in the x direction. Within this distance there are n (200) Ge planes but
there are n+ 1 (200) Si planes, so we have:

D200 = ndGe
200 = (n+ 1) dSi200 (9.7)

From these two equations we obtain n = 1/δa.
For δa = 0.04 and dGe

200 = 2.82 Å , we have n = 25 and D200 = 70.5 Å. We also
have to account for the misfit in the other surface direction (the z direction in
our case). The same argument holds in this direction as well, so we’ll end up
with dislocation spaced by D002 in this direction with D002 = D200. Overall,
we get a grid of dislocations at the interface, as shown in Figure 9.6.
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x

z

Figure 9.6: Grid of dislocations across a semicoherent interface.

9.5 Case Study II: The Cu/Al system

info needed

9.6 Second Phase Shape

The shape of a second phase particle is given by the Wulff construction. If
the precipitate is fully coherent and the lattice parameters are very similar (no
stress), then the interfacial energy is relatively isotropic and the precipitates
are spherical. This situation is common in many precipitation hardened ma-
terials, like the Al-Cu system. In partially coherent precipitates the situation
is much different, because the coherent interfaces have a much lower interfa-
cial energy. In Figure 9.7 we show an example of the Wulff construction for
a case where the interfacial free energy is radially symmetric with the excep-
tion of two deep cusps corresponding to the orientations for which coherent
interfaces with the matrix can be formed. The coherent faces are flat, and the
incoherent interfaces are curved. In addition, the aspect ratio of an equilibrium
precipitate (length/width) is equal to the ratio of the incoherent interfacial free
energy to the coherent interfacial free energy.

Figure 9.7: Wulff construction for a precipitate particle with an isotropic incoher-
ent interfacial free energy, γI , and and a coherent interfacial free energy, γC .
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9.7 Elastic Effects

Precipitates may transition from coherent to incoherent as they grow because
of the elastic energy associated with the lattice distortions imposed by a lattice
parameter mismatch across the interface. Consider a spherical precipitate of
phase β in a matrix of phase α, as illustrated schematically Figure 9.8. We’ll
suppose for our case that α and β have the same crystal structure, and that
for small values of precipitate radius r the interfacial free energy is isotropic.
Because the interface is coherent it includes only a chemical component of the
interfacial free energy, which we refer to here as γch:

γαβ = γch (9.8)

Figure 9.8: Beta precipitate in a matrix of alpha.

If the lattice parameters of the α and β phases do not match exactly, which
will almost certainly be the case for any real system, there will be a positive
elastic strain energy, Wel that we need to consider. For a spherical, coherent
precipitate in an elastically isotropic medium, Wel is given by the following
expression:

Wel = V β

[
18δ2GαKβ

3Kβ + 4Gα

]
(9.9)

Kβ= bulk modulus of β phase: Kβ = V ∂P
∂V β

Gα= shear modulus of α phase: G = shear stress
shear strain

δ= misfit: δ = 1
3

[
V β
m−V α

m

V α
m

]
For cubic systems and for the small values of δ that are generally relevant here,
δ is also equal to the fractional mismatch in the lattice parameter:

δ =

(
aβ − aα

aα

)
(9.10)

To provide some more insight into the behavior of Eq. 9.9 we consider the
following three limiting cases:

1. compressible precipitate in a rigid matrix: Gα >> Kβ

Wel

V β
≈ 9δ2Kβ

2
(9.11)
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2. rigid precipitate in a deformable matrix: Kβ >> Gα

Wel

V β
≈ 6δ2Gα (9.12)

3. Precipitate and matrix with the same elastic properties.

An isotropic material is characterized by just two independent elastic
constants. It’s convenient to express K in terms of G and ν, using the
following expression (note that the Wikipedia page has a very useful
summary of the relationships between different elastic constants for an
isotropic material)

K =
2Gν

1− 2ν
(9.13)

As an example, we can take ν = 1/3, in which case we get K = 2G, and
Wel is given by the following expression.

Wel

V β
= 3.6δ2G (9.14)

In each of these cases the most important points to keep in mind are the fol-
lowing:

1. The elastic strain energy is proportional to the volume of the precipitate.

2. The elastic strain energy is proportional to the square of the lattice mis-
match.

We are now in a position to compare the overall free energy of coherent and
incoherent precipitates, and to see how each of these depend on the precipitate
size. For a coherent precipitate we just need to add the elastic strain energy to
the chemical contribution to the interfacial free energy:

Wcoh = 4πr2 (γch) +
4

3
πr3

Wel

V β
(9.15)

Incoherent precipitates have a larger value of γαβ because we also need to ac-
count for the structural component of the interfacial free energy that arises for
the dislocations that are present at the interface between the α and β phases.
However, the strain energy in the bulk is reduced to zero, so have the follow-
ing for Winc, the total excess free energy of an incoherent precipitate:

Winc = 4πr2 (γch + γst) (9.16)

For suitably small values of r, the contribution to the total free energy that
scales with r2 will always be more important than the contribution that scales
with r3. As a result Wcoh will always be less than Winc for sufficiently small
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values of r. As the precipitate grows and r increases, the contribution that
scales with r3 will become more important, and Wcoh will exceed Winc. The
two free energies are equal to one another at a critical radius, rcrit, which we il-
lustrate schematically in Figure 9.9. Precipitates will remain coherent for sizes
below rcrit and will become incoherent for sizes larger than rcrit. The value of
rcrit is the value of r for which Wcoh and Winc are equal to one another. From
Eqs. 9.15 and 9.16 we get:

rcrit = 3γst
V β

Wel
(9.17)

Figure 9.9: Size dependence of the overall excess free energies of spherical coher-
ent and incoherent precipitates.

9.8 Effects of Elastic Anisotropy

in reality, no crystalline material is completely isotropic. An FCC crystal, for
example, is generally stiffest along the [110] directions and softest along [100]
directions. This is because the linear density of atoms is highest along the [110]
direction, where in a hard sphere model of the crystal structure the atoms are in
contact with one another. As a result coherent precipitates end up with facets
perpendicular to the ’soft’ [100] directions. Faceting becomes more important
as the precipitates grow (assuming they stay coherent), since the elastic con-
tribution to the energy scales with the volume of the precipitate, whereas the
total surface area scales with the 2/3 power of the volume.

10 Surfactants

10.1 The Effect of Block Copolymers on Phase Behavior

Diblock copolymer molecules can act as macromolecular ’surfactants’, segre-
gating preferentially to the interface between the corresponding homopoly-
mers. In the schematic illustration below, A/B diblock copolymer molecules
segregate preferentially to the interface between A and B phases, thereby lim-
iting the ability of the morphology to coarsen by coalescence of the B domains.
An actual example of this for polystyrene/poly(methyl methacrylate) (PS/P-
MMA) system is illustrated here.
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B homopolymer
matrix phase phase

A homopolymer
 droplet phase

A copolymer
  block

B copolymer
  block

Figure 10.1: Phase behavior of block copolymers

11 Thin Film Growth

We can now consider wetting in solid systems, where elastic strain energy of-
ten plays a role. Here we consider the example of a thin, germanium film that
is deposited on a silicon substrate. Both of these elements have the diamond
cubic crystal structure, with a lattice parameter mismatch of about 4%. When
an element like germanium is deposited from the vapor phase, the atoms land
individually on the substrate as illustrated in Figure 11.1. If the atoms have
sufficient mobility, the resulting film will be determined by the structure that
minimizes the free energy. For the Ge/Si system, the equilibrium structure
consists of a thin, continuous wetting layer below isolated Ge islands.

Surface Step
Si Substrate

Ge Wetting LayerWire

Terrace
Nucleus

Diffusion

Island
Desorption

Ge Deposition

Figure 11.1: Schematic representation of Ge deposition on a single crystal Si sub-
strate.

To understand the full behavior of the system, it is useful to develop a plot of
the overall free energy per unit area of the system as a function of the Ge film
thickness, tGe, which we show in Figure 11.2. The following contributions to
the free energy need to be considered:

• γSi: The surface free energy of the Si substrate

• γGe: The surface free energy of Ge

• γCh: The chemical contribution to the free energy of the Si/Ge interface
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• γSt: The structural component to the free energy of the Si/Ge interface

• Wel/A: The strain energy per unit area within the Ge film.

The full thickness dependence of the free energy can be understood by inves-
tigating the way that these contributions contribute to the overall free energy
as the Ge film thickness increases:

• For tGe = 0 the free energy is simply γSi, the surface free energy of the
silicon substrate.

• For very thin Ge films the elastic strain energy within the Ge film does
not contribute significantly to the strain energy, so the overall value of
W/A is the sum of the energies of the Si/Ge and Ge/vapor interfaces.
Because the Si/Ge interface is fully coherent for sufficiently thin Ge films,
its interfacial free energy is just the chemical part, γch, so the overall free
energy for very thin Ge films is γGe + γCh. This free energy is less than
γSi, so the system is in the wetting regime.

• As the film thickness increases the Ge film remains coherent, but W/A
increases linearly with thickness, according to the thickness dependence
of Wel.

• When the elastic energy exceeds the structural component of the Si/Ge
interfacial free energy associated with the loss of full coherence, the Ge
film becomes incoherent. The elastic energy Wel is now large enough so
that it is energetically favorable for the Si/Ge interface to be less coher-
ent.

For film thicknesses larger than the thickness for which Wel is a minimum, a
thin Ge layer with a thickness corresponding to the thickness at the free energy
minimum will coexist with Ge droplets that are much thicker - the ’islands’
shown in Figure 11.1.

e

Figure 11.2: Free energy as a function of film thickness for an epitaxial Ge film on
a single crystal Si substrate.
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12 REVIEW QUESTIONS

12 Review Questions

12.1 Diffusion

1. What are the tracer, interdiffusion and intrinsic diffusion coefficients?
Which are purely kinetic quantities, and which involve thermodynam-
ics? How are these diffusion coefficients related to one another?

2. What is the Kirkendall effect? How can you figure out the direction of
vacancy motion?

3. What is the mechanism by which vacancies are either created or de-
stroyed?

4. Under what conditions will voids form, and where will they form (Lab
1)?

5. Where must dislocations be created or destroyed to maintain an equilib-
rium vacancy concentration?

12.2 Dislocations

6. Explain the physical origin of shear bands observed on the surface of a
plastically deformed metal.

1. What is the critical resolved shear stress? How is it calculated for a tensile
experiment?

2. What is the value of the ratio of the theoretical critical resolved shear
stress (in the absence of dislocations) to a typical experimental value of
this same quantity.

3. Define an edge and a screw dislocation in terms of their Burgers vectors
and the sense vectors.

4. What are the Burgers vectors of perfect dislocations in the simple cubic,
face-centered cubic and body-centered cubic lattices?: use a drawing to
illustrate the Burgers vectors. What are the magnitudes of these vectors.

5. Explain how to make pure edge or screw dislocations by cutting and
slipping operations.

6. Explain how to make a curved dislocation by cutting and slipping op-
erations. Demonstrate that its character varies from pure screw to pure
edge as one moves along the curved dislocation line.

7. Demonstrate carefully how the Burgers vector of an edge or a screw dis-
location is determined employing a Burgers circuit.
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12.2 Dislocations 12 REVIEW QUESTIONS

8. What is the difference between a right-hand and a left-hand screw dislo-
cation?

9. Given b⃗ and s⃗, how do you know where the slip plane is, and what di-
rection the dislocation will move in response to an applied shear stress.

10. Explain why a pure screw dislocation does not have a unique glide or
slip plane.

11. Explain why a pure edge dislocation has a unique glide or slip plane.

12. Explain the main differences between glide motion of a dislocation and
climb motion?

13. How does the temperature dependence of glide differ from the temper-
ature dependence of climb? Which is more important at lower tempera-
tures, and why?

14. Explain how climb of an edge dislocation can relieve a super- or subsat-
uration of vacancies or self-interstitial atoms.

15. Do pure screw dislocations cross-slip?

16. What are the physical origins of the energy of a dislocation line?

17. If no external stress is supplied to a dislocation loop, why does the loop
shrink until it disappears from a crystal?

18. Describe qualitatively the state of stress associated with a pure edge dis-
location and compare it with the state of stress associated with a pure
screw dislocation.

19. What is the physical significance of F τ
s and F r

s ?

20. Describe qualitatively the state of stress associated with a pure edge dis-
location and compare it with the state of stress associated with a pure
screw dislocation.

21. When do parallel edge dislocations move toward each other? Under
what conditions do they move away from each other?

22. When do parallel screw dislocations move toward or away from each
other?

23. How does a Frank-Read source work?

24. How does the stress need to be oriented to either expand or contract a
dislocation loop?

25. How does precipitation hardening work? What is the role of the pre-
cipitate spacing and of Frank-Read sources? Why does the precipitate
spacing matter?
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12.3 Solid/Liquid and Solid/Vapor Interfaces 12 REVIEW QUESTIONS

12.3 Solid/Liquid and Solid/Vapor Interfaces

26. Why does the surface energy of a crystal depend on the orientation?

27. How does the interfacial energy affect the melting temperature for a
small droplet?

28. How does the interfacial free energy affect precipitate solubility?

29. How can the surface energy be approximated from the crystal structure
and thermodynamic data?

30. What is the Wulff construction and how is it used?

12.4 Grain Boundaries

31. What are the 5 parameters needed to fully characterize a grain bound-
ary?

32. What special relationship exists between these parameters for twist and
tilt boundaries?

33. How are dislocations arranged for low angle twist and tilt boundaries?

34. How does the force balance at the triple junctions of grains affect grain
shape?

35. What happens to grains with different numbers of sides during grain
growth?

36. What is the role of curvature in grain growth?

37. Derive the expected time dependence of the grain size for grain growth
driven by curvature.

38. What is a twin boundary? For what crystal structures is it observed?

12.5 Interphase Interfaces

39. What is the general condition governing the equilibrium shape of a pre-
cipitate when there is no contribution from the elastic energy?

40. (a) What is the expression for the total elastic strain energy of a precipi-
tate, if the matrix is elastically isotropic? (b) Explain the physical signifi-
cance of each term in this equation.

41. How does the shape of a misfitting precipitate in an elastically
anisotropic system vary with particle size? Why is this variation ob-
served?
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12.6 Crystallization or Recrystallization 12 REVIEW QUESTIONS

42. (a) Derive an approximate expression for the critical radius at which a
spherical precipitate loses its coherency and become semi-coherent or
incoherent. (b) Explain why precipitates often exceed this calculated crit-
ical value.

43. Describe the nature of a solid-liquid interface and how it differs from a
solid-solid interface.

44. What is the significance of the chemical and structural components to the
interfacial free energy between solids?

45. Why do Ge films on Si form islands on top of a thin wetting layer?

12.6 Crystallization or Recrystallization

46. Make a plot of the volume fraction, f , transformed, 0 to 1.0, as a function
of time for a general phase transformation occurring by nucleation and
growth.

47. Derive for f (t) ≪ 1 the Johnson-Mehl-Avrami-Kolomogorov (JMAK)
equation for the volume fraction transformed as a function of time, f (t),
under the assumption that a specimen contains a number n of effec-
tive point heterogeneities per unit volume and nucleation occurs at all
of these points very quickly and that the nuclei have a spherical shape.
State any and all assumptions made.

48. Derive a JMAK equation, for f (t) ≪ 1 , for the case where all the nu-
clei do not form at time t = 0, but rather form randomly throughout a
specimen at a constant rate, which is N nuclei formed per unit volume
per unit time of untransformed material. State any and all assumptions
made.

12.7 MATLAB

49. How do I make plots suitable for publication when those plots generated
by Excel just aren’t good enough anymore?

50. How do I write arbitrary functions that can be plotted or compared with
experimental data?

51. How do I fit a user-defined function to experimental data?

52. How do I use fsolve to solve a system of coupled equations?

53. How can I run a write and run a simple simulation in MATLAB (like the
vacancy diffusion simulation)

54. What is a polar plot and how can I generate one?

55. How do I solve the Wulff construction numerically?
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13 316-1 PROBLEMS

13 316-1 Problems

Introduction

1) Send an email to Prof. Shull (k-shull@northwestern.edu) and Kyoung-
doc
(kyoungdockim2013@u.northwestern.edu) with the following information:

1. Anything about yourself (why you are interested in MSE, previous work
experience, etc., outside interests apart from MSE) that will help me get
to know you a bit (feel free to be brief - any info here is fine).

2. Your level of experience and comfort level with MATLAB. Be honest
about your assessment (love it, hate it, don’t understand it, etc.).

3. Let us know if you have NOT taken 314 or 315 for some reason.

Diffusion

2) Consider a diffusion couple with composition C1 as z → −∞ and C2 as
z → ∞. The solution to the diffusion equation is:

C (z, t) =
C1 + C2

2
− C1 − C2

2
erf

(
z

2
√
Dt

)
where erf (y) = 2

π

´ y
0
e−t2dt. Note that in the definition of the error function t

is a dummy variable of integration, thus the error function is a function of y.
Also, erf(0)=0, and erf( ∞)=1. You will determine if these boundary conditions
are correct.

1. Show that the boundary conditions at z = ±∞ are satisfied by the solu-
tion.

2. Does the composition at z = 0 vary with time? If not, what is its value?
Why do you think this is the case?

3. Write the solution in terms of η = z/t1/2.

4. Show that the solution satisfies the following diffusion equation that is
written in terms of η:

D
d2C

dη2
+

η

2

dC

dη
= 0

You will needed to take a derivative of the error function. Leibniz’s for-
mula for the differentiation of integrals will be helpful:

d

dz

ˆ g(z)

h(z)

f (t) dt =
dg (z)

dz
f (g (z))− dh (z)

dz
f (h (z))
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13 316-1 PROBLEMS

3) A diffusion couple including inert wires was made by plating pure cop-
per on to a block of α-brass with XZn = 0.3, as shown in Figure13.1. After 56
days at 785 ◦C the marker velocity was 2.6x10 −8 mm/s, with a composition at
the markers of XZn = 0.22, and a composition gradient, ∂XZn/∂z of 0.089 mm
−1. A detailed analysis of the data gives D̃ = 4.5x10−13 m2/s for XZn = 0.22.
Use these data to calculate DZn and DCu for XZn = 0.22. How would you
expect DZn, DCu and D̃ to vary as a function of composition?

Figure 13.1: Experimental Geometry for the Kirkendall experiment.

4) In class we developed an expressions for J ′
a. Show that J ′

a = −J ′
b. (Re-

call that these primed fluxes correspond to fluxes in the laboratory frame of
reference).

5) Consider two binary alloys with compositions Xb = X1 and Xb = X2,
shown in Figure13.2 along with the free energy curves for α and β phases
formed by this alloy. Draw the composition profile across the interface shortly
after the two alloys are brought into contact with one another, assuming that
the interface is in “local equilibrium”, i.e. the interface compositions are given
by the equilibrium phase diagram. Describe the direction in which you expect
the B atoms to diffuse on each side of the interface.

Figure 13.2: Free energy curves for a model A/B alloy.

103



13 316-1 PROBLEMS

6) The following MATLAB script runs the vacancy simulation shown in
class. It saves the data into a ’structure’ called output, which can be loaded
into MATLAB later. The file can be downloaded from this link:
http://msecore.northwestern.edu/316-1/matlab/vacancydiffusion.m

1 tic % start a time so that we can see how long the program takes
to run

2 n=30; % set the number of boxes across the square grid
3 vfrac =0.01; % vacancy fraction
4 matrix=ones(n);
5 map =[1 ,1 ,1;1,0,0;0,0 ,1]; % define 3 colors: white , red , blue
6 figure
7 colormap(map) % set the mapping of values in 'matrix ' to a

specific color
8 caxis ([0 2]) % range of values in matrix goes from 0 (vacancy) to

2
9 % the previous three commands set things up so a 0 will be white ,

a 1 will
10 % be red and a 2 sill be blue
11 matrix(:,n/2+1:n)=2; % set the right half of the matrix to 'blue

'
12 i=round(n/2); % put one vacancy in the middle
13 j=round(n/2);
14 matrix(i,j)=0;
15 imagesc(matrix); % this is the command that takes the matrix and

turns it into a plot
16 t=0;
17 times =[1e4 ,2e4 ,5e4 ,1e5];
18 showallimages =1; % set to zero if you want to speed things up by

not showing images , set to 1 if you want to show all the
images during the simulation

19

20 %% now we start to move things around
21 vacancydiff.matrices ={}; % makea blank cell array
22 while t<max(times)
23 t=t+1;
24 dir=randi ([1 4], 1, 1);
25 if dir==1
26 in=i+1;
27 jn=j;
28 if in==n+1; in=1; end
29 elseif dir==2
30 in=i-1;
31 jn=j;
32 if in==0; in=n; end
33 elseif dir==3
34 in=i;
35 jn=j+1;
36 if jn >n; jn=n; end
37 elseif dir==4
38 in=i;
39 jn=j-1;
40 if jn==0; jn=1; end
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41 end
42 % now we need to make switch
43 neighborix=sub2ind ([n n],in,jn);
44 vacix=sub2ind ([n n],i,j);
45 matrix ([vacix neighborix ])=matrix ([ neighborix vacix ]);
46 if showallimages
47 imagesc(matrix);
48 drawnow
49 end
50 if ismember(t,times)
51 vacancydiff.matrices =[ vacancydiff.matrices {matrix }]; %

append matrix to output file
52 imagesc(matrix);
53 set(gcf ,'paperposition ' ,[0 0 5 5])
54 set(gcf ,'papersize ' ,[5 5])
55 print(gcf ,['vacdiff ' num2str(t) '.eps'],'-depsc2 ')
56 end
57 i=in;
58 j=jn;
59 end
60 vacancydiff.times=times;
61 vacancydiff.n=n;
62 save('vacancydiff.mat','vacancydiff ') % writes the vacancydiff

structure to a .mat file that we can read in later
63 toc

1. Run the vacancy diffusion script, and include in your homework the .jpg
files generated for time steps of 1e4, 2e4, 4e4 and 1e5.

2. For the longest time step, develop a plot of average composition along
the horizontal direction.

Here is the MATLAB script that I used to do this (available athttp://
msecore.northwestern.edu/316-1/matlab/vacancyplot.m):

1 load vacancydiff % load the previously saved output.mat file
2 figure
3 figformat % not necessary , this is the standard

initialization script I use to standardize what my plots
look like

4 n=vacancydiff.n;
5 matrix=vacancydiff.matrices {4};
6 matrixsum=sum(matrix ,1); % sum of each column in the matrix
7 plot (1:n,matrixsum/n,'+b')
8 xlabel ('z')
9 ylabel ('C')

10 print(gcf ,'../ figures/vacancyplot.eps','-depsc2 ') % this
creates an .eps file , which I use for the coursenotes but
which may not be as useful for many of you as the jpg file

11 % saveas(gcf ,'vacancyplot.jpg') % this is what to do if you
just want to save a .jpg file
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Note that ’figformat’ is NOT a matlab command. This line calls another
file called names figformat.m that includes a few commands to standard-
ize plots that I am making for this class. Here’s what it looks like:

1 set(0,'defaultaxesbox ', 'on') % draw the axes box (including
the top and right axes)

2 set(0,'defaultlinelinewidth ' ,2)
3 set(0,'defaultaxesfontsize ' ,16)
4 set(0,'defaultfigurepaperposition ' ,[0,0,7,5])
5 set(0,'defaultfigurepapersize ' ,[7,5]')

3. In the previous problem set we obtained concentration profiles from the
MATLAB. Now we’ll take these concentration profiles and see if they are
consistent with the solution to the diffusion equation.

(a) For each of the 4 time points used in the simulation, plot the concen-
tration profile and fit it to the error function to the diffusion equa-
tion, using the interfacial width, w, (w = 2

√
Dt) as a fitting param-

eter:

C (z, t) =
C1 + C2

2
− C1 − C2

2
erf

( z

w

)
Note: This problem is a curve fitting exercise in MATLAB. The most
frustrating part is getting all the syntax right, but once you know the
proper format for the MATLAB code, it’s pretty straightforward.
Take a look at the section entitled ’Fitting a Function to a Data Set’
in the MSE MATLAB help file:
http://msecore.northwestern.edu/matlab.pdf
This section includes a MATLAB script that you can download and
modify as needed.

(b) Plot w2 as a function of the time (expressed here as the number
of time steps in the simulation). Obtain the slope of a line drawn
through the origin that best fits the data.

(c) When diffusion occurs by a vacancy hopping mechanism in a 2-
dimensional system like the one used in our simulation, the diffu-
sion coefficient is given by the following expression:

D = KXvΓa
2
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Here is the average hop frequency for any given vacancy and a is the
hopping distance. From the the slope of the curve of w vs. the total
number of jumps, extract an estimated value for K.

7) A region of material with a different composition is created in an in-
finitely long bar. The following plot shows the mole fraction of component A
as a function of position. Assume that the intrinsic diffusion coefficient of the
A atoms is twice as large as the intrinsic diffusion coefficient for the B atoms.

z

X
a
, 

X
b

0

0.2

0.4

0.6

0.8

1

1.2

X
a

X
b

1. Plot the flux of A and the flux of B relative to the lattice as a function of
position in the graph above.

2. Plot the vacancy creation rate as a function of position in the graph
above.

3. Plot the flux of A and B in the lab frame as a function of position in the
graph above.

4. Plot the lattice velocity as a function of position in the graph below. What
are the physical implications of this plot?

8) The values for the intrinsic diffusion coefficients for Cu and Ni in a bi-
nary Cu/Ni alloy are shown below on the left (note that Cu and Ni are com-
pletely miscible in the solid state). A diffusion couple is made with the geom-
etry shown below on the right.
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Inert Markers

1. What is the value of the interdiffusion coefficient D̃, for an alloy consist-
ing of nearly pure Nickel?

2. Will the markers placed initially at the Cu/Ni interface move toward the
copper end of the sample, the nickel end of the sample, or stay at exactly
the same location during the diffusion experiment.

3. The copper concentration across the sample is sketched below after dif-
fusion has occurred for some time.

4. Sketch the fluxes of Copper, Nickel and vacancies, defining positive
fluxes as those moving to the right.

5. Now sketch the rate at which vacancies are created or destroyed within
the sample in order to maintain a constant overall vacancy concentration
throughout.

9) An experiment is performed to determine the tracer diffusion coefficient
of metal A in a matrix of metal B. This is done by depositing a very thin film
of metal A onto the surface of metal B and measuring the concentration profile
of metal A into the depth of the material at different times. The concentration
profiles in the left figure below are obtained at two times, t1 and t2:

108



13 316-1 PROBLEMS
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1. Estimate the ratio t2/t1

2. Now suppose we measure the self diffusion coefficients of A and B. Per-
forming measurements at the same time and temperature gives the con-
centration profiles shown in the figure above to the right. Which element
(A or B) do you expect has the highest melting temperature, and why?

3. Now we’ll make a diffusion couple with element A on the right half and
element B on the left half. Assume that A and B are miscible at the dif-
fusion temperature, and form a one phase alloy. Mark up the following
diagram as directed on the next page:

B B
A

A

(a) Put an arrow labeled ’M’ on the diagram indicating the direction
that inert markers placed originally at the interface will move.

(b) Put an arrow labeled ’V’ on the diagram indicating the the net va-
cancy flux due to diffusion in the sample.

(c) Put a ’C’ on the region of the sample where you expect vacancies to
be created, and a ’D’ on the sample where you expect vacancies to
be destroyed, assuming that the total vacancy concentration must
remain at equilibrium.

(d) Two edge dislocations are also indicated in the diagram. Place ar-
rows on top of each dislocation to illustrate he directions you expect
these dislocations to move in order to create or destroy the vacan-
cies from part iii.
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Stress and Strain

10) A tensile stress, σ, is applied to a single crystal of zinc, which has an
HCP structure. The close packed planes of atoms (the slip plane for an HCP
material) is oriented with its surface normal in the plane of the paper, inclined
to the tensile axis by an angle ϕ as shown below, with ϕ = 30◦. Assume that
the critical resolved shear stress for motion of the dislocation is 50 MPa (5x10
7 Pa). The shear modulus of Zn is 43 GPa (4.3x10 10 Pa) and its atomic radius
is 0.13 nm.

directed out 
of paper

1. Is this an edge dislocation, a screw dislocation, or a mixed dislocation,
and how do you know?

2. Put an arrow on the drawing above to indicate the direction in which the
dislocation moves under an applied tensile stress.

3. Calculate the tensile yield stress for this sample.

4. Suppose that the slip plane is oriented so that b⃗ is still in the plane of
the paper, but that ϕ is increased to 60◦. Will the yield stress increase,
decrease or stay the same.

5. Suppose that the dislocation is impeded by pinning points (precipitates,
for example), that are uniformly spaced and separated by 1 µm (10 −6 m).
The resolved shear stress is determined by the stress required to move
the dislocation around these pinning points. Use the information given
in this problem to determine the energy per length of the dislocation.
Compare this to the expressions given for the energies of edge and screw
dislocations to see if it makes sense.

Dislocation Structure

11) A right handed screw dislocation initially located in the middle of the
front face of the sample shown below moves toward the back of the sample in
response to an applied shear stress on the sample.
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dislocation

slip plane

1. Sketch the shape of the sample after the dislocation has propagated
halfway through the sample, and again when it has propagated all the
way through the sample. Use arrows to specify the shear force that is
being applied.

2. Repeat part a for a left-handed screw dislocation.

12) Draw an edge dislocation and on the same figure dot in the positions
of the atoms after the dislocation has shifted by b⃗.

13) How can two edge dislocations with opposite Burgers vectors meet to
form a row of vacancies? How can they meet to form a row of interstitials?
Draw pictures of both situations.

14) Given a crystal containing a dislocation loop as shown in the following
figure:

final location of dislocation loop

Let the loop be moved (at constant radius) toward a corner until three-fourths
of the loop runs out of the crystal. This leaves a loop segment that goes in
one face and comes out the orthogonal face. Sketch the resultant shape of the
crystal, both above and below the slip plane.

15) Given a loop with a Burger’s vector that is perpendicular everywhere
to the dislocation line, determine the resulting surface morphology after the
loop propagates out of the crystal. Assume that the loop moves only by glide.
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16) Show that it is impossible to make a dislocation loop all of whose seg-
ments are pure screw dislocations, but that it is possible with edge dislocations.
For the case of the pure edge dislocation loop, describe the orientation of the
extra half plane with respect to the dislocation loop.

17) Draw the compressive and tensile regions surrounding an edge dislo-
cation.

18) Consider the dislocation loop shown below:

1. Circle the drawing below that corresponds to the shape of the material
after the dislocation has expanded and moved out outside the crystal.

2. Indicate in the spaces below the locations (a, b, c, or d) where the dislo-
cation has the following characteristics:

(a) It is a right handed screw dislocation:_____

(b) It is a left handed screw dislocation:_____

(c) It is an edge dislocation with the extra half plane above the plane of
the loop:_____

(d) It is an edge dislocation with the extra half plane below the plane of
the loop:_____

3. Add arrows to the illustration of the dislocation loop to show the orien-
tation of the shear stress that will most efficiently cause the dislocation
to loop to grow.
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Dislocation Interactions

19) If edge dislocations with opposite signs of the Burger’s vectors meet,
does the energy of the crystal increase or decrease? Defend your answer.

20) A nanowire is grown such that it is free of dislocations. Why would
the stress required to deform the nanowire be larger than a bulk material?

21) If an anisotropic alloy system has a nearly zero dislocation line tension,
would you expect the precipitate spacing to have a large effect on the yield
stress of the alloy? Explain your reasoning

22) Given an edge dislocation in a crystal, whose top two-thirds is under a
compressive stress σ acting along the glide plane (see figure below):

1. If diffusion occurs, which way will thee dislocation move? Explain why
and tell where the atoms go that leave the dislocation.

2. Derive an equation relating the stress, σ to b and the force tending to
make the dislocation move in the vertical plane.

3. If the edge dislocation is replaced by a screw dislocation, which which
way will the dislocation tend to move?
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23) Construct a plot of the interaction energy vs. dislocation separation
distance for two identical parallel edge dislocations that continue to lie one
above the other as climb occurs. Justify your plot qualitatively by explaining
how the strain energy changes with vertical separation.

24) Repeat the previous problem for edge dislocations of opposite sign.

25) On the following sketch of a dislocation, indicate the direction that it
must move in order for vacancies to be created.

26) Consider an isolated right-handed screw dislocation. Suppose a shear
force is applied parallel to the dislocation line, as illustrated below.

Stress into plane of paper on this surface

Stress out of plane of paper on this surface Stress out of plane of paper on this surface

Front View Top View

screw dislocation

screw dislocation

direction of
shear force

1. What is the direction of the force, F τ
s , that is applied to the dislocation as

a result of the applied stress.

2. Suppose the screw dislocation is replaced by a dislocation loop with the
same Burgers vector as the dislocation from part a, as shown below. Use
arrows to indicate the direction F τ

s at different points along the dislo-
cation loop. (The direction of F τ

s has already been indicated at the right
edge of the dislocation).
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Stress into plane of paper on this surface

Stress out of plane of paper on this surface

Front View
Top View

dislocation loop

direction of
shear force

dislocation loop

3. Describe how the magnitude of F τ
s changes (if at all) for different loca-

tions along the dislocation loop.

4. What to you expect to happen to the dislocation loop if you remove the
external applied stress (will the loop grow, shrink or stay the same size)?

5. Suppose the straight screw dislocation from is pinned by obstacles that
are separated by a distance d, as illustrated in the following figure.
Sketch the shape of the dislocation for an applied shear stress that is just
large enough for dislocation to pass around the obstacles.

Stress into plane of paper on this surface

Stress out of plane of paper on this surface Stress out of plane of paper on this surface

Front View Top View

screw dislocation

screw dislocation

direction of
shear forced

6. What do you expect to happen to the critical resolved shear stress of the
material if d is decreased by a factor of 2. (Will the critical resolved shear
stress increase, decrease or stay the same).
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Interfacial Thermodynamics

27) Consider the following:

1. Is the molar latent heat positive or negative?

2. Is the melting temperature , T , for a very small particle greater to or less
than the equilibrium value of Tm for a bulk material?

3. Must this always be the case?

4. For metals, what is the typical value of r for which a change in melting
temperature of 10K is observed. What about a change of 1K?

28) The molar enthalpy of a phase varies with temperature as

Hm (T )−Hm (T0) +

ˆ T

T0

Cp (T ) dT

where Cp is the molar heat capacity. Given this, at what temperature is the
latent heat appearing in expression for the melting point reduction evaluated?

29) Consider the case of a pure liquid spherical droplet embedded in a
pure solid. Create a graphical construction plotting the temperature depen-
dence of the free energy of the solid and liquid phases(similar to Figure5.11)
for this case, and use it to determine if the melting point above or below the
bulk melting temperature.

30) Consider the Co-Cu phase diagram shown below:

1. Plot the equilibrium activity of Cobalt as a function of composition across
the entire phase diagram at 900ºC.
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2. From the phase diagram, estimate the solubility limit of Co in Cu at
900 ◦C. Suppose the interfacial free energy for the Cu/Co interface is
300mJ/m2. For what radius of a Co precipitate will this solubility limit
be increased by 10%?

Surface and Interface Structure

31) Look up values for heats of sublimation for any of the materials in
Table 6.1 that have close-packed crystal structures (FCC or HCP). Compare the
estimated values of the surface free energy that you obtain from these heats of
sublimation to the tabulated values in Table 6.1.

32) Determine the equilibrium shape of a crystal. This should be done us-
ing a computer and your favorite program or language (most likely MATLAB).
The equation of a straight line in polar coordinates drawn from the origin of
the polar coordinate system is r cos (θ − α) = d, where (r, θ) locate the points
on the line, d is the perpendicular distance from the origin to the line and α is
the angle between the perpendicular to the line and the x-axis (see Figure13.3).

Figure 13.3: Representation of a line drawn a distance d from the origin.

1. Determine the equilibrium shape of a crystal where the surface energy is
given by γ = 1 J/m 2 (independent of α).

2. Determine the equilibrium shape of a crystal where the surface energy is
given by γ = 1+0.05 cos (4α) J/m 2 ( α in radians). Are there any corners
on the equilibrium shape?

3. Determine the equilibrium shape of a crystal where the surface energy
is given by γ = 1 + 0.07 cos (4α) J/m 2. Are there any corners on the
equilibrium shape?

4. Determine the equilibrium shape of a crystal where the surface energy
is given by γ = 1 + 0.6 cos (4α) J/m 2. Are there any corners on the
equilibrium shape? How is the shape shown in (c) different from that in
(d), and why (argue on the basis of the physics of the problem)?

As a headstart on this problem, here’s a MATLAB script that generates
polar plots of the γ as defined in the problem:
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1 close all
2 A=[0 ,0.05 ,0.07 ,0.6]; % these are the 4 values of A defined

in the problem
3 % define a function where the radius d is the surface energy

and alpha
4 % is the angle
5 d=@(A,alpha) 1+A*cos (4* alpha);
6 figure
7 for k=1:4
8 alpha=linspace (0,2*pi ,200);
9 subplot(2,2,k) % this makes a 2 by 2 grid of plots

10 polar(alpha ,d(A(k),alpha),'r-'); % poloar is the
command to make a polar plot

11 title (['A=' num2str(A(k))],'fontsize ' ,20) % label each
subplot

12 end
13 % adjust the print command as necessary to change the format

, filename ,
14 % etc.
15 print(gcf ,'../ figures/matlabwulffenergy.eps', '-depsc2 ') %

save the eps file

This generates the following polar plots for the four different functions
that are given (with A defined so that γ = 1 +A cos (4α)).
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33) Assume a simple cubic crystal structure with nearest neighbor interac-
tions. Calculate the ratio of the surface energies for the {110} and {100} surfaces.
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34) The octahedral particles of FCC golds shown below were created by
controlling the growth rates of the different crystal facets. For these crystals,
were the growth rates fastest in the ⟨100⟩ directions or in the ⟨111⟩ directions?
Provide a brief explanation of your answer.

35) The relationship between the the interfacial energy between α and β
phases and the pressure difference across a curved interface is obtained from
the following expression:

−PαδV α − P βδV β + γαβδA
Σ = 0

1. Use this expression to obtain the pressure difference between a cylinder
of β phase with a radius r and a surrounding α phase.

2. Repeat the calculation for a cube where the length of each side is a. As-
sume that the surface energy of each of the cube faces is the same.

Wetting and Contact Angles

36) Consider the an oil droplet that forms on the surface of water, as shown
schematically in the following Figure:

Determine θ1 and θ2 if the air/water interfacial free energy is 72 mJ/m 2, the
air/oil interfacial free energy is 30 mJ/m 2 and the oil/water interfacial free
energy is 50 mJ/m 2.
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37) Suppose a, hemispherical liquid Au droplet with a radius of curvature
of r is in contact with solid Si cylinder with the same radius as shown below.
Derive a relationship between the three interfacial energies that must be valid
in order for the equilibrium shape of the Au/Si interface to be flat, as drawn
in the picture.

Au

Si

Grain Boundaries

38) The surface energy of the interface between nickel and its vapor is 1.580
J/m 2 at 1100K. The average dihedral angle measured for grain boundaries in-
tersecting the free surface is 168 ◦. Thoria dispersed nickel alloys are made
by dispersing fine particles of ThO 2 in nickel powder and consolidating the
aggregate. The particles are left at the grain boundaries in the nickel matrix.
Prolonged heating at elevated temperatures gives the particles their equilib-
rium shape. The average dihedral angle measured inside the particle is 145
◦. Estimate the interfacial energy of the thoria-nickel interface. Assume the
interfacial energies are isotropic.

39) Consider a gold line deposited on a silicon substrate. The grain bound-
aries run laterally completely across the line, giving a “bamboo” structure as
shown in the figure below. The grain boundary energy of gold at 600K is 0.42
J/m 2 and the surface energy is 1.44 J/m 2. Assume all the interfacial energies
are isotropic.

Au
 

Si
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1. Compute the dihedral angle ( θ in the diagram above) where a grain
boundary meets the external surface.

2. Find the critical grain boundary spacing ℓc for which the equilibrium
grain shape produces a hole in the film, assuming h = 1µm. Note that
for a spherical cap, ℓ, h and ϕ are related to each other by the following
expression: tan (ϕ/2) = 2h/ℓ.

40) Why does the velocity of a grain boundary depend on tem-
perature? Assume that the driving force for grain boundary mo-
tion is independent of temperature.

41) Consider the following junction between three grains. Suppose that
the grain boundary free energy between grains 1 and 2, and between 1 and 3,
is 0.5 J/m 2. What is the grain boundary energy between grains 2 and 3?

grain 1

grain 2 grain 3

42) Consider the following image from the grain growth simulation:

x1
2

1. The boundary marked with an ’X’ separates grains 1 and 2. Do you ex-
pect this boundary to move toward grain 1 or grain 2 during the process
of grain growth?

2. Suppose that the interface marked above is the cross section through a
grain boundary in aluminum, and that this section of the grain boundary
has a spherical shape with a radius of curvature of 1 µm. Assuming a
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grain boundary energy of 0.25 J/m 2, calculate the chemical potential
difference, ∆µ between Al atoms on the ’1’ and ’2’ sides of the grain
boundary.

3. On the schematic below, indicate which grain is grain 1 and which one is
grain 2.

(Grain __)
(Grain __)

 

4. Suppose J1→2 is the rate at which Al atoms hop from grain 1 to grain 2,
and J2→1 is the rate at which atoms hop from grain 2 to grain 1. Calculate
the ratio, J1→2/J2→1 at T = 500K.

Transformation Kinetics

43) Does the time to 50% transformed increase or decrease
with an increase in nucleation rate? Defend your answer with-
out using any equations.

Interphase Interfaces

44) Consider a material with the orientational dependence of the surface
energy shown in each of the 3 plots below. For each of these three materi-
als, sketch the equilibrium shape that you would expect to obtain. On each
drawing, indicate any interfaces that you expect to be coherent.
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45) Consider the shapes of the particles in the simulations below of misfit-
ting particles in an elastically anisotropic system. The left column is the entire
system, whereas the right column is a magnification of a small region of the
figure in the left column. These are snapshots taken as function of time while
the particles are growing. Are these cuboidal shapes due to elastic stress, an
anisotropic interfacial energy, or both?

46) Explain the structure and energies of coherent, semicoherent and inco-
herent interfaces, paying particular attention to the role of orientation relation-
ships and misfit.

47) Explain why fully coherent precipitates tend to lose coherency as they
grow.

48) Why do very small precipitates tend to have coherent interfaces?

49) A thin film of Zn with an HCP crystal structure is deposited on a Ni
FCC substrate with a {111} orientation. Which plane of the HCP crystal would
you expect to contact the {111} Ni surface?
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50) Given an example of an interface between two crystals that that dis-
plays a very large change in free energy with a change in the orientation of the
interface.

51) Consider an FCC metal (metal A) with a surface energy of 1 J/m2. An
HCP metal (metal B) with a surface energy of 0.7 J/m2 is deposited onto the
{111} surface of metal A. Assume that the atomic diameter of the HCP metal
is 3% larger than the atomic diameter of the FCC metal, and that the chemical
component of the interfacial energy between the two metals is 0.2 J/m2.

1. For B layers that are sufficiently thin, do you expect that a coherent in-
terface will form between the A and B materials? Justify your answer.

2. How do you expect the interface between the A and B metals to change
as the thickness of the B layer increases?

3. Do you expect thick films to remain continuous, or will isolated drops of
B be formed on the surface. Describe any assumptions that you make.

52) Consider the vacancy shown below, for a simulation of ’red’ and ’blue’
atoms that are undergoing phase separation. Is the vacancy more likely to
move to the right or to the left? Justify your answer.

53) Consider the tilt boundary shown in the image to the left. On the axes
on the right, sketch the relationship between the grain boundary free energy
and the tilt angle that you expect to observe for values of theta between 0 and
10 ◦.
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(5

54) Suppose you need to apply a coating to a surface, and you want the
coating to spread as a smooth uniform film for all thicknesses. You have a
choice of three different coatings, which have the thickness-dependent free
energies shown below. Which material to you choose, and why?

F/A

t

F/A

t

F/A

t

14 316-1 Simulation Exercise: Monte Carlo Simula-
tion of Decomposition in a Binary Alloy

14.1 Background

14.1.1 Scientific problem

We want to analyze the thermodynamic evolution of a A-B alloy by simula-
tion. We assume that this system has the phase diagram presented in Figure
14.1. In this figure we see that for temperatures lower than TC , the A-B alloy
decomposes in two phases α and β with equilibrium concentrations Xα

B and
Xβ

B . The experiment that we want to model involves the following steps:

(1) We mix together the same number of moles of elements A and B to obtain
a homogeneous alloy at some temperature above Tc.

(2) The temperature is reduced to T0.
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(3) The temperature is held fixed at T0, and the system evolves to form two
different phases, with compositions Xα

B and Xβ
B .

Figure 14.1: A-B alloy phase diagram

14.1.2 Atomistic Monte Carlo Model

In this section, we introduce the Atomistic Monte Carlo model that we will use
to model the decomposition of the A-B alloy.

14.1.3 Atomistic model

In this model, we suppose that the two elements (A and B) have the same lat-
tice structure. This lattice is represented by a matrix with periodic boundary
conditions on its edges (see Figure 14.2). In 2 dimensions the left edge is con-
nected to the right edge and the upper edge is connected to the lower edge.
We reproduce the system evolution at the atomistic level: vacancies present
in the lattice migrate from site to site by exchanging their position with their
first nearest neighbors. The successive displacements of vacancies make the
system evolve toward its equilibrium state.

14.1.4 Monte Carlo model

The thermodynamic evolution of the alloy is modeled with a Monte Carlo pro-
cess. The principle of Monte Carlo simulations is to model the A-B alloy evo-
lution in a statistic way. To understand this model we can consider individ-
ual jumps of a vacancy into one of the z nearest neighbor positions. Within
a certain specified time step, ∆t, these different possible jumps occur with a
probability Γµ where µ is an index that indicates which direction the vacancy
will move. In a simple cubic lattice, for example, z = 6, and the 6 values of µ
correspond to jumps in the positive and negative x, y and z directions. The
sum over all possible jump probabilities in the statistical time must sum to 1:
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Figure 14.2: Lattice with periodic boundary conditions. The blue and red dashed
lines represent bonds between sites induced by periodic boundary conditions.

z∑
µ=1

Γµ = 1 (14.1)

To figure out which direction the vacancy moves, we draw a random number
rn between 0 and 1. The jump performed by the system during the time ∆t is
the kth one such that the following condition holds:

k−1∑
µ=1

Γµ < rn ≤
k∑

µ=1

Γµ (14.2)

Probabilities of transitions Γµ are related to the energetic barrier associated
with vacancy motion, which we refer to as ∆Eµ. Because vacancy hopping is
a thermally activated process, we can use an Arrhenius rate expression:

Γµ = Γ0 exp

(
−∆Eµ

kBT0

)
(14.3)

where Γ0 is a constant, kB is Boltzmann’s constant and T0 is the temperature
of the system.
The energy barrier is the difference between the maximum energy of the sys-
tem during the jump (the position of the migrating atom at this maximum en-
ergy is called the saddle point) and the energy of the system before the jump.

∆Eµ = ESP − Eini (14.4)

Here the superscript SP refers to ’Saddle Point’ and ini means ’initial’, as
shown in Figure 14.3.
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Figure 14.3: Schematic representation of the evolution of the system energy during
a single atomic jump.

14.1.5 Energetic model

To compute the energy barriers of the different possible jumps ∆Eµ, we have
to use an energetic model. In Monte Carlo simulations, we usually use an Ising
model or Broken bond model. In this energetic model, we assume that the total
energy of the system is equal to the sum of interaction energies εij between
the different elements (atoms of type A and B and vacancies V) placed on the
lattice sites.

Eν = Σijεij (14.5)

With this energetic model, the migration barrier of an exchange between an
element X and the vacancy V becomes:

∆Eν =
∑
k

εSP
Xk −

∑
i

εXi −
∑
j

εV j (14.6)

where εSP
Ak are interaction energies between the atom migrating and its neigh-

bors at the saddle point, εAi are interaction energies between the atom migrat-
ing and its neighbors before the jump and εV j are interaction energies between
the vacancy and its neighbors before the jump. The indices i, j and k indicate
the following neighbors:

Index Meaning
i nearest neighbors of the migrating atom before the jump
j nearest neighbors of the vacancy before the jump
k nearest neighbors of migrating atom at the saddle point

In theory, the range of interaction distances between elements are unlimited.
In practice, we usually restrict these interactions to first and sometimes second
nearest neighbors.
For example, the system presented in figure 14.4 has:
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Figure 14.4: Example of configuration of atoms in the lattice. The red circles are A
atoms and the blue circles are B atoms. The square is the vacancy

• 3 A-V interactions

• 1 B-V interaction

• 3 A-B interactions

• 9 A-A interactions

• 12 B-B interactions

Therefore, Eν = 3εAV + 1εBV + 3εAB + 9εAA + 12εBB . If we suppose that the
vacancy exchange its position with the B atom on its left side, the configuration
of the system at the saddle point is the one presented in figure 14.5.

Figure 14.5: Configuration of the system at the saddle point if the vacancy echange
its position with the B atom on its left

In this configuration, the system has:
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• 2 B-B interactions at the saddle point

• 2 A-B ineractions at the saddle point

• 3 A-B interactions

• 9 A-A interactions

• 9 B-B interactions

so ESP = 2εSP
BB + 2εSP

BA + 3εAB + 9εAA + 9εBB . The migration barrier of this
jump is therefore:

∆Eν = 2εSP
BB + 2εSP

BA − 3εAV − 1εBV − 3εBB

14.1.6 Modeling of scientific problem

Here we assume that the two elements A and B have the same simple cubic lat-
tice. We model the A-B alloy as a matrix in 2D with nx rows and ny columns
and with periodic boundary conditions on its edges. To simplify the problem,
we introduce only one vacancy in the lattice (so 1 vacancy for nx × ny sites),
initially located in the middle of the matrix. As we only interest ourselves to
the thermodynamic evolution of the system (and not to its kinetic evolution),
we assume that the alloy evolves with normalized time steps of 1 until a max-
imum time tmax. At each time step, the vacancy exchanges its position with
one of its neighbors.
To simplify the energetic model we suppose that the sum of interaction ener-
gies between the atom migrating and its neighbors at the saddle point

∑
k

εSP
Xk

is a constant equal to 3 eV . In addition, we suppose that εAA = εBB = εAV =
εBV = 0 eV . The only interaction which can be different from zero is thus εAB .
The free enthalpy of the alloy is expressed by

∆Gmix = ΩXAXB − T∆Smix (14.7)

with Ω the ordering energy of the alloy and ∆Smix the configurational entropy
of mixing of the alloy given by :

∆Smix = −kB [XA lnXA +XB lnXB ] (14.8)

For a symmetrical miscibility gap, the ordering energy is

Ω = 2kBTC (14.9)

where TC is the critical temperature of the miscibility gap (TC = 1000K in this
study). In broken bond models with only first nearest neighbors interactions
we have:
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Ω = z

(
ϵAB − 1

2
(εAA + εBB)

)
(14.10)

where z is the number of first nearest neighbors for a given site.

14.1.7 Algorithmic scheme : Translation of problem in algorithm

In this section we translate the problem described previously in an algorithm
scheme. As we are modeling an evolution according to time, our code will
contain an initial state and an incremental loop on time which will start from
the initial time (t0) and finish at a final time (tmax). During the time loop (for
example between time tn and tn+1), the code will repeat the same operations
which will make the matrix go from the configuration at tn to the one at tn+1.
In this code we suggest that the system evolves with the following steps in the
time loop:

(1) Evolution of time from tn and tn+1

(2) Computation of jump frequencies of all possible jumps Γµ

(3) Drawing of a random number rn and choice of a jump according to Eq.
14.2.

(4) Completion of chosen jump: exchange of position between vacancy and
nearest neighbor chosen.

14.2 Exercise

Random walks
In this first work, we model the evolution of the system if the equilibrium con-
figuration of the alloy is an homogenized state. As we only interest ourselves
to the thermodynamic evolution of the system (and not to its kinetic evolu-
tion), we assume that the alloy evolves with normalized time steps of 1 until
a maximum time tmax. At each time step, the vacancy exchanges its position
with one of its neighbors. The vacancy can exchange its position with all its
first nearest neighbors X (and only its first nearest neighbors). The difference
is that in this section we suppose that all exchanges have the same jump fre-
quency ΓXV . This is called a“ random walk”.

14.2.1 Preliminary work

(1) Consider a vacancy located on the lattice site (xv, yv) as in Figure (14.6).
In this figure, identify the first nearest neighbors of the vacancy by num-
bers and give the coordinates of these neighbors according to (xv, yv).
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Figure 14.6: Identification of sites coordinates in the lattice and coordinates of a
vacancy (represented by a square)

(2) Suppose that all exchanges of the vacancy with its first nearest neighbors
have the same jump frequency. Using equation (14.1), give the probabil-
ity of a given jump Γµ.

14.2.2 Simulation

(3) Create a folder for this MATLAB project. Open a new script in Matlab
and save it in your folder as “part1.m”.

(4) We first write the initial state of the system in the file part1.m. Save the
matrix given in the file called ’matini.mat’ available from the following
link:

https://www.dropbox.com/s/y4o2q3v53ffwinw/matini.mat?dl=0

Load this matrix in part1.m as “matrix”. Define nx and ny as the number
of rows and column respectively of matrix. In this matrix, elements A are
identified by a number 1 and elements B are identified by a number 2.
Place a vacancy (identified by a 0) in the middle of the matrix:

• define in part1.m the coordinates (xv, yv) (where xv is the row and
yv the column of the vacancy position) as the coordinates at the
middle of the matrix.

• Place a 0 in the matrix at the appropriate coordinates (xv, yv) .

Initialize time t to 0.

(5) If the matrix has the configuration of figure 14.6, what does the matrix in
Matlab look like (with the numbers)? (Include a printout of the matrix).

132

https://www.dropbox.com/s/y4o2q3v53ffwinw/matini.mat?dl=0


14.2 Exercise 14 316-1 SIMULATION EXERCISE

(6) Create a loop on time t where time evolves by steps of 1 as long as t
remains lower than tmax. Place tmax = 10. We now have the part 1 in
the algorithm (see section 14.1.7). Attach part1.m that includes all of the
steps so far.

(7) We now have to create the next part of the algorithm: the computation
of the jump frequency of all possible jumps. (Remark: in this random
walk program, this part could be placed outside of the time loop since all
jumps have the same frequency. However, we include it in the time loop
to prepare the second part of the problem where we will have to compute
the ΓXV according to the environment). In the program, we call Gamma
the vector such that Gamma(i) is the jump frequency of the exchange
i. Use a “for” loop to compute the values of the different Gamma(i)
components.

(8) We now have to choose a jump amount the different possibilities. For
this, we suggest the MATLAB code shown below - just a single line that
results in a random integer between 1 and 4:

1 njump = randi ([1 4], 1, 1)

Run this command 5 times and write down the numbers you get for
njump. Does this make sense?

(9) For the chosen jump, identify in your code by (xn, yn) the coordinates
of the corresponding nearest neighbor according to (xv, yv). For this, we
suggest you to define a matrix (2× z) of the different possible evolutions

(for example
(

+1
0

)
or

(
0
−1

)
) and to write (xn, yn) according to

(xv, yv) and the column of the matrix corresponding to the jump.

(10) We use periodic boundary conditions in this model (see part 14.1.3). For
a site (x, y), verify that the following function enables to apply boundary
conditions presented in figure (14.2)

x = mod(x− 1, nx) + 1
y = mod(y − 1, ny) + 1

For this, respond to the following questions: what is the value of x re-
turned by this function if the x in input is between 1 and nx ? equal to 0?
equal to nx+ 1? Apply this function to xn and yn.
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(11) Exchange types of elements corresponding to the vacancy an the neigh-
bor migrating in the matrix.

(12) Update the vacancy coordinates to its new site.

(13) In this random walk model, what is the equilibrium state of the system?
(Help: the fact that all the Gamma(i) are equal induces that the migration
barriers for all possible jumps ∆Eµ are equal. From equation (14.6) it
induces that all saddle point interactions εSP

Ak and εSP
Bk are equal, all atom-

atom interations are equal and εAV = εBV . What is thus the value of the
ordering energy Ω in equation (14.10)? And the value of TC ? So at any
temperature, what is the equilibrium state of the system?)

(14) Test: Replace the initial matrix by a matrix of same size with all A atoms
on the half left side and all B elements on the half right side. Print an
image of this initial matrix. Make the code run until tmax = 106. What
do you observe? Print an image of the final matrix.

14.2.3 Introduction of alloy thermodynamic properties

We now have to introduce the alloy thermodynamic properties in the code. We
thus have to compute the jump frequency of possible exchanges between the
vacancy and its neighbors according to the alloy thermodynamic properties.

(15) We recall here that εAA = εBB = 0 eV . Express εAB according to the
ordering energy Ω and then to the critical temperature TC . Give a nu-
merical value of εAB in eV if TC = 1000K.

(16) We analyze the migration barrier of an exchange between a vacancy
V and one of its nearest neighbors X . We note NA the number of
X first nearest neighbors of type A and NB the number of X first
nearest neighbors of type B. How many first nearest neighbors does X
have (we do not count the vacancy)? Express equation (14.6) accord-
ing to NA, NB and εXAand εXB . Using that

∑
k

εSP
Xk = 3 eV and that

εAA = εBB = εAV = εBV = 0 eV , simplify the equation obtained if X is
an element A. Same question if X is an element B. We observe from these
calculations that, to compute the migration barrier of a jump, we need to
know the type of the element of the exchange (so the type of X) and the
type of all X first nearest neighbors (to compute NA and NB).
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(17) For a given vacancy position, we want to compute the jump frequency
of the jump i (so Gamma(i)). We note X the vacancy neighbor corre-
sponding to this jump. We start by computing NA and NB (the number
of X first nearest neighbors of type A and B). We note (xn, yn) the po-
sition of X and (xnk, ynk) the coordinates of X first nearest neighbor k
(k goes from 1 to 3, the vacancy position is excluded from these nearest
neighbors). We write(

xnk
ynk

)
=

(
xn
yn

)
+ nvec(k)

where nvec(k) is the column k of the 2 × 3 matrix of relative position
of (xnk, ynk) compared to (xn, yn). Graph 14.7 gives the position of

neighbors X compared to the vacancy.nvec =
(

1 0 −1 0
0 1 0 −1

)
0

row

column

1 2 3 4

Figure 14.7: Position of X corresponding to the different possible jumps

For each of these jumps, associate the matrix nveci of the relative position
of X first nearest neighbors.

(1)nneigh =

(
0 0 −1
+1 −1 0

)
(2)nneigh =

(
1 −1 0
0 0 1

)
(3) nneigh =

(
1 −1 0
0 0 −1

)
(4) nneigh =

(
0 0 +1
+1 −1 0

)
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(18) Inside the loop to compute Gamma(i) coefficients write the following
steps:

a define by (xn, yn) the vacancy neighbor corresponding to i (use the
nvec matrix). Apply periodic conditions to (xn, yn).

b Initialize NA and NB to zero. Compute NA and NB of the ex-
change by analyzing the type of element on all (xnk, ynk) sites. To
define the nveci matrix corresponding to the jump, you can distin-
guish the different cases with if-statements or you can use a struc-
ture with all the nveci matrices and load the one corresponding to
the jump. Don’t forget to apply boundary conditions to (xnk, ynk).

(19) Express the migration barrier of each jump depending on the type of the
neighbor X (located on (xn, yn)) and NA and NB. Compute the jump
frequency associated to this migration barrier (place the temperature to
an arbitrary value-don’t forget to define εAB in your code).

(20) Normalize the Gamma vector to 1 so that the sum of Gamma(i) is equal
to 1.

(21) Analytic calculation: Suppose that for a given position, the vacancy can
exchange it’s position with either of 2 different A atoms. One on them
is in a local configuration with NB=0 (the jump frequency of this ex-
change is noted ΓNB=0) and the other one is in a local configuration with
NB=3 (the jump frequency of this exchange is noted ΓNB=3). Compute
ΓNB=3/ΓNB=0 for T=100K and for T=2000K. Explain why these ratios
are consistent with the alloy phase diagram.

(22) Place the temperature to 100K. Run the simulation until tmax = 106.
What do you observe?

Nomenclature

ℓDi Diffusion length for component i (m)
γαβ Interfacial free energy between α and β phases (J/m2)
ŝ Unit vector directed along a dislocation core (dimensionless)
µi Chemical potential of component i (J/mole)
σ Tensile stress (Pa)
τ Shear stress (Pa)
τcrss Critical resolved shear stress (Pa)
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Nomenclature Nomenclature

τ0crss critical resloved shear stress in the absence of dislocations
τrss Resolved shear stress (Pa)
D̃ Interdiffusion coefficient (m2/s)
b⃗ Burgers vector (m)
n⃗d Vector cross product of s⃗ and b⃗ (m)
ai Activity coeffiienct for component i (dimensionless)
b Magnitude of b⃗ (m)
C0 Overall concentration of atoms
Ci Concentration of component i
Di Intrinsic diffusion coefficient for component i (m2/s)
D∗

i Tracer diffusion coefficient for component i (m2/s)
E Energy (J)
Es Dislocation Energy (J)
exy Shear strain in the x-y plane
Fs Force per unit length acting on a dislocation (N)
Fs Total force per unit length acting on a dislocation (N/m)
F τ
s Stress-induced force per unit length acting on a dislocation (N/m)

F r
s Curvature-induced force per unit length acting on a dislocation (N/m)

G Shear modulus (Pa)
Hi Henry’ law coefficient for component i (dimensionless)
Ji Diffusive flux of component i with respect to a cooridnate system fixed to

the lattice planes (atoms/m2/s)
J

′

i Diffusive flux of component i with respect to a cooridnate system fixed to
the external dimensions of the sample (atoms/m2/s)

kB Boltzmann’s constant (1.38x10−23 J/K)
Lm Molar heat of sublimation (Joules)
Mi Mobility of component i (units of velocity/force)
ni Total number of atoms of component i.
R Gas constant (8.314 J/mole· K)
r Particle radius (m)
SL
m Molar entropy of the liquid phase

SS
m Molar entropy of the critical nucleus

T Absolute temperature (K)
Ts Dislocation line tension (N or J/m)
V Volume (m3)
vℓ Velocity of the lattice planes with respect to a laboratory coordinate sys-

tem (m/s)
V S
m Molar volume of the solid phase

F Helmholtz free energy
G Gibbs free energy
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Index
Burgers circuit, 29
Burgers vector, 27

Climb (of a dislocation), 36
Contact angle, 87
Critical resolved shear stress, 21

limiting value in the absence of
dislocations, 24

Cross slip, 36

Diffusion equation, 4
Dislocation

Edge, 25
Dislocation density, 35
Dislocations

Screw, 28
Sense vector, 27
b⃗× s⃗ cross product, 32

Edge dislocation, 25
error function, 5

Fick’s first law, 4
Frank-Read source, 45

Gibbs free energy, 46
Glide, 35
Glide plane, 35

Hall-Petch relationship, 84
Heat of sublimation, 69
Helmholtz free energy, 46
Henry’s law, 65
Henry’s law coefficient, 65
Heteroepitaxy, 90

Interdiffusion coefficient, 14
Intrinsic diffusion coefficient, 4

Johnson-Mehl-Avrami-Kolmogorov
(JMAK) equation, 84

Lagrange Multipliers, 53
Laplace pressure equation, 58

Laplace-Young equation, 87

MATLAB
fsolve, 86
Function plot, 6
loading and plotting data from

.mat file, 105
polar plot, 117
setting plotting defaults, 106
Vacancy diffusion simulation, 9
Wulff Construction, 73

Miller indices, 68
mobility coefficient, 15

Partial wetting, 86

Resolved shear stress, 21

Screw Dislocations, 28
Sense vector, 27
Slip Plane, 25

Thin Film Growth, 96
Three phase contact lines, 84
Tilt boundary, 75
Twin boundaries, 77
Twin boundary, 75
Twist boundary, 75

Wulff construction, 72
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15 316-1 LABS

15 316-1 Labs

15.1 Laboratory 1: Diffusion in Substitutional Cu-Ni Alloys

15.1.1 Objectives

• To observe diffusion in a Cu-Ni diffusion couple.

• To determine if these observations are consistent with a composition-
dependent interdiffusion coefficient, expected for diffusion in substitu-
tional alloys.

• To begin to model the diffusion process using MATLAB.

15.1.2 Introduction

In the case of pack-carburization, we were able to make the assumption that
diffusivity of carbon in iron was independent of composition. For substitu-
tional alloys, this is not the case. The interdiffusion coefficient in this case
is composition dependent and related to the intrinsic diffusion coefficients as
follows:

D̃ = XaDb +XbDa

In addition, in situations where Da and Db differ from one another, there will
be a net vacancy flux in the material, giving rise to the motion of an inert set
of markers that can be observed experimentally.

15.1.3 Samples

Samples have been prepared using two techniques:

(1) electroplating of nickel layers onto copper, and

(2) welding Ni-Cu sandwich layers.

In both cases, Mo wires were placed at the interface, to mark the position of the
original interface; however in the case of the electroplated samples, these wires
sometimes shifted away from the surface during plating. After electroplating/
welding, the samples were sealed in evacuated quartz tubes to prevent oxida-
tion, and annealed at 1000°C for 4, 16, and 72 hours.

1) Laboratory Procedure Refer to the class notes in addition to the paper
describing the background and history of the Kirkendall effect [5]. Look at the
Cu-Ni samples (annealed at 4, 16 and 72 hours at 1000 °C) under the optical
microscope. Note that there are two types of sample: 1) copper strips wound
with Mo wire which were nickel-electroplated and 2) a welded "sandwich" of
nickel with outer copper layers and rolled molybdenum "marker wires" at the
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interface. Note that in (1) the Mo was not secured to the copper strip well-
enough to mark the original interface (this will be obvious in your observa-
tions). In (2) you will find enough pairs of wires that are nearly across from
each other to measure the distance between markers as a function of time at el-
evated temperature. (Unfortunately, the weld broke on the unannealed (time =
0) samples; but you should be able to assess the three remaining samples quan-
titatively or at least semi-quantitatively. Include these measurements with
your other observations, as well as a discussion of what you expected. Dis-
cuss whether or not your observations and measurements are consistent with
the Kirkendall effect. In future exercises we will be comparing these diffusion
profiles to what we would expect from published values of the relevant dif-
fusion coefficients. For now document your in-class observations, including
well labeled sketches and micrographs.
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15.2 Laboratory 2: Recovery, Recrystallization and Grain
Growth in Cold Worked 70/30 Brass

15.2.1 Objectives

To observe the phenomena of recovery, recrystallization and grain growth. To
understand the effect of processing on microstructure, specifically the effect of
amount of cold-work on recrystallization and final grain size. To understand
the time dependence of grain growth. To understand the predictions of the
Hall-Petch relationship.

15.2.2 General Procedure: Week 1

You will be provided with brass (70%Cu, 30% Zn) that has been heated to 700°
C for six hours, from the as-received state and then rolled to reductions of ~
15% and ~ 30%, as well as some brass that has not yet been rolled. Your groups
will cold-roll samples to similar reductions for the next group. The specified
amount of cold-work will be introduced using the rolling mill.

(1) Measure the thickness and the Rockwell hardness of your as-received
and rolled samples. Choose an appropriate Rockwell scale over which
you can anticipate measuring your sample after it is rolled – then subse-
quently annealed. Always check to make sure the load and indenter size
correspond to the correct scale. Use a standard to check the tester.

(2) As a group, roll two samples, using the rolling mill, one to a reduction
of ~ 30-40%, a second to a lesser reduction, e.g. 15-20%. Anticipate the
target thickness before you begin rolling. Calculate target thicknesses for
each reduction, assuming width does not change with rolling. Percent
reduction (or percent coldwork) is defined as:

%CW =
A0 −Ad

Ad
× 100 (15.1)

which may be re-written for this lab:

%CW =
t0 − td

td
× 100 (15.2)

where t0 is the starting thickness and td is the final thickness. Set aside for the
next group.

(1) Re-measure hardness after rolling. (Make sure to measure a flat region.
The sample should not deflect when the indenter is applied.)

(2) Section the rolled samples into about 8 pieces (~ 1cm long). Note that
we will be interested in observing the transverse sections, defined in the
figure below. Set aside a time = 0 sample; each of the other 1 cm long
“coupons” will be annealed at a specified time at the temperature as-
signed to your group
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Rolling Direction

Transverse section
Longitudinal sections

(3) Record the temperature assigned to your group. T=___ degrees C.

(4) samples that have been annealed from 2 minutes, 8 minutes, 32 min-
utes. . . .up to a week. You will be measuring and recording Rockwell
hardness on each of these samples, then mounting them for polishing
and etching.

(5) After reserving the time = 0 sample, place the remaining samples in the
furnace assigned to your lab group. (All samples of both reductions,
except t=0, should be annealed at the SAME TEMPERATURE

***Suggest (the entire group’s) annealing conditions by reviewing information
available in the Metals Handbook, and by discussion with your lab mates & in-
structor. You want to achieve conditions under which you will observe partial
to total recrystallization. Consider how you will need to vary the conditions
to test the Johnson-Avrami-Mehl equation.

2) General Procedure: Week 2

(1) Make sure you have measured the Rockwell hardness of each annealed
sample. Note that you should try to take all your hardness readings on
the same scale.

(2) Mount transverse cross-sections of each of the annealed samples, along
with an unannealed piece in an acrylic mount for polishing. Follow the
instructions for the auto-polisher. Wash your sample carefully and ul-
trasonic between each step to avoid contaminating the wheels. (These
are soft samples; it will be difficult to remove the scratches that are intro-
duced by such contamination!)

(3) Etch to reveal grains. (Be careful; the different reductions and different
temperatures of annealing may result in different etch rates.) Record a
photomicrograph of each sample at an appropriate magnification.

(4) From your micrographs, calculate the volume fraction of recrystallized
material, and the grain size of samples that are completely recrystallized.

(5) Measure the Vickers hardness of each sample (three indents, minimum,
on each sample.)
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15.2.3 In-Lab Questions DUE at the Beginning of Week 2:

Rolling, hardness testing and cutting will take some time. If you are waiting
you may use time in lab to answer the following. Make sure you define all
terms and cite sources:

(1) What equation describes the rate of grain growth?

(2) Refer to Chapter 3 of Shewmon and summarize the “Engineering Laws
of Recrystallization” relevant to this experiment. (You may summarize
all – then determine which you might be able to test vs. not able to test.)

(3) What equation describes the volume fraction of material recrystallized
with time?

(4) How can the rate of recrystallization at a given temperature be deter-
mined?

(5) What is the Hall-Petch equation? Discuss the equation and any limita-
tions.

15.2.4 Final Deliverable - Group PowerPoint Presentation

Your presentation will be judged on content, delivery (presentation style),
neatness, completeness. You must submit a hardcopy of your presentation
slides. Imagine you are presenting this to Prof. Voorhees and other MSE stu-
dents who were not in lab; they are familiar with terms like grain size and
hardness, but do not know the details of your sample preparation and what
you are testing (i.e. which of the Engineering laws of Recrystallization you
were able to test.) Length: 12 minutes. Each group member must participate.
Due: one week after completing in-class measurements.

(1) Refer to Chapter 3 of Shewmon; discuss whether or not the class data
substantiates the “Engineering Laws of Recrystallization,” i.e. how do
hardness, grain size, volume fraction of recrystallized material vary with
the amount of cold-rolling, and time of anneal? Plot hardness (Rockwell
is OK, here) as a function of annealing time for both reductions, includ-
ing time = 0 values. Explain changes in hardness by comparison with
micrographs.

(2) Estimate the recrystallization rate for your group’s annealing tempera-
ture: Rate = 1/(time for volume fraction transformed = 0.5).

Note: We will try to use the information from different groups to com-
pare recrystallization as a function of temperature. If you have enough
points (this is unlikely), you may be able to fit the Avrami (JMAK) equa-
tion:

y (fraction recrystallized) = 1− exp(−ktn) (15.3)
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(3) Make sure you use actual – not target reductions – when discussing your
results. Double-check that the reduction is, for example, 40%, not 70%.

(4) For samples in which complete recrystallization was observed – does
the Hall-Petch relationship hold? Assume that hardness is proportional
to yield strength (see next page). The Hall Petch equation states that the
yield stress, σy , is increases linearly with d−1/2, where d is the average
grain size:

σy = σ0 +
ky
d1/2

(15.4)

whereσ0 and ky are constants for a given material. Note that you do
not have to confine comparisons to a single recrystallization; use all the
samples available that have recrystallized. (It tends not to be valid for
very large or very small grains.)

(5) For completely recrystallized samples, is normal grain growth observed?
Measure grain sizes for recrystallized material at a given reduction and
determine the exponent for grain growth as a function of annealing time
at a given temperature:

dn − dn0 = Kt (15.5)

Solve to see if n is greater than or equal to 2, as expected. Note that at the
start of recrystallization, the grain size is infinitesimally small.

3) Heyn Procedure for counting lineal intercept length:[6]

(1) Estimate the average grain size by counting, on a micrograph, screen
or the specimen itself, the number of grains intercepted by one or more
straight lines sufficiently long to yield at least 50 intercepts. Select the
magnification such that this can be done in a single field.

(2) Make counts on 3-5 blindly selected, widely separated fields.

(3) Use a factor of 1.5 to determine the average grain size from the lineal
intercept length.

4) Hall–Petch determination:

(1) Measure Vickers hardness.

(2) Use hardness and grain size to determine if the Hall-Petch relationship
holds true for your data. (Plot HV vs. 1/

√
d)
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(3) You can use Vickers hardness to calculate the Yield strength of brass.
Assume 1/3 of the applied load in a Vickers Hardness test plastically
deforms the sample and use the appropriate conversion factor (CF ) to
convert to MPa:

σy =
HV (kg/mm3)

3
× CF

Q – Are your values of yield strength within a reasonable range? Compare to
typical values (Metals Handbook)

5) Empirical relationship between Rockwell B and Vickers hardness
(kg/mm2). Note that it is best to measure the Vickers hardness directly. The
following relationship between the Vickers hardness (HV ) and Rockwell B
hardness (Rb) is obtained from ASTM Standard E140 (table 4, Conversion data
for Cartridge brass), Annual Book of ASTM Standards, volume 3.01, 1989:

HV = 0.002R3
b − 0.0092R2

b + 0.8163Rb + 52.865 (15.6)
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15.3 Laboratory 3: Surface Energy and Contact Angles

15.3.1 Objectives

• To understand what aspects of liquid behavior are determined by surface
and interfacial energies.

• To understand how contact angles are used to characterize material sur-
faces.

15.3.2 Introduction

The properties of solid surfaces are often probed by measuring the ability of
liquids to spread over the surface of a material. The relevant property is the
contact angle, θ, illustrated in Figure 15.1a. If the droplet is small enough so
that it is not affected by gravity, the radius of curvature, R, of the droplet
is uniform, and shape of the droplet is a spherical cap, i.e., the portion of
a sphere that exists above a specified plane. The relationship between the
droplet height, h, the basal radius of the droplet, r, and the contact angle in
this situation is as follows:

tan

(
θ

2

)
= h/r (15.7)

At equilibrium, a horizontal force balance at the periphery of the object gives
the following expression for the equilibrium contact angle, θe and the relevant
surface and interfacial energies (Figure 15.1b):

γs = γsℓ + γℓ cos θe (15.8)

(a) (b)

Figure 15.1: a) Geometric parameters characterizing the shape of a small liquid
droplet on a solid surface. The b) Force equilibrium illustrating the origins of Eq.
15.8.

It is often useful to rewrite Eq. 15.8 in terms of the thermodynamic work of ad-
hesion, Wadh, which describes the energy required to remove the liquid from
the solid surface, replacing the solid/liquid interface with a liquid/air inter-
face and a air/solid interface (see Figure 15.2):

Wadh = γs + γℓ − γsℓ (15.9)
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Here γs is the solid surface free energy, γℓ is the liquid surface free energy and
γsℓ is the solid/liquid interfacial free energy. Note that for liquids, the surface
tension and the surface free energy are identical to one another, so we refer to
γℓ as either the liquid surface tension or surface free energy.

Figure 15.2: Separation of a liquid and a solid, illustrating the meaning of the
work of adhesion, Wadh, as the change in total free energy of the system when a
solid/liquid interface is replaced by a liquid/air and air/solid interfaces.

Combination of Eqs. 15.8 and 15.9 gives the following:

Wadh = γℓ (1 + cos θe) (15.10)

Equation 15.10 indicates that we can know the quantitative interaction be-
tween the liquid and the solid if we are able to measure the liquid surface
energy, γℓ and the equilibrium contact angle, θe. This purpose of this lab is
to measure both of these quantities in some model systems and to show how
these quantities can be easily modified. Before we do that, we need to talk
about two important issues:

• The actual contact angle you will measure is almost certainly not going
to be the equilibrium contact angle.

• Liquid surface energies are often measured by understanding the effect
of gravity on a relatively small drop.

6) Non-equilibrium effects: In reality, the situation is more complicated
than is implied by Eq. 15.8, and the contact angles you will measure depend
on a whole bunch of factors, in addition to the surface and interfacial energies.
Factors like surface roughness and surface inhomogeneities on the nanometer
scale cause the measured contact angles differ from the θe, and to depend on
the details of the way the experiment is done. When a droplet is originally ap-
plied to the materials surface and the droplet volume is increasing with time,
the contact angle is referred to an advancing contact angle, θa. The receding
contact angle, θr, corresponds to the opposite situation, where the droplet size
is shrinking. The advancing contact angle is larger than θe and the receding
contact angle will be less than θe:

θr < θe < θa (15.11)
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Generally you’ll want to report both advancing and receding angles in your
work. The difference between θa and θr is an important parameter referred to
as the contact angle hysteresis, and controls the tendency of droplets to stick
to an inclined surface.

7) The Effect of Gravity and the Measurement of γℓ : We know from ex-
perience that Eq. 15.7 can’t work for very large droplets. Eventually, gravity
flattens the droplet and the drop height, h, no longer continues to increase as r
gets larger and larger. This situation is as shown in the left part of Figure 15.3,
where we show the behavior of small and large droplets sitting on a surface
(sessile drops). The obvious question to ask here is ’how small is small’? and
what controls the maximum value of h that can be obtained? The answer to
this question is the capillary length, λc, which can be viewed as the radius of
the spherical droplet for which the Laplace pressure inside the drop (2γ/R)
is equal to the gravitational hydrostatic pressure at the bottom of the drop
(2ρgR, where g is the gravitational acceleration and ρ is the liquid density).
These pressures are equal to one another for R = λc, where λc is given by the
following:

λc =
√
γ/δρg (15.12)

solid

liquid

Sessile drops Pendant
drop

Figure 15.3: ’Small’ and ’Large’ sessile drops (left) and a pendant drop (right) used
for the quantitative determination of the liquid surface energy.

The capillary length determines the degree to which gravity distorts the
droplet the droplet from a spherical cap, with no noticeable distortion ob-
served for R ≪ λc. The measurement can done sessile drops like those in
the left part of Figure 15.3, but it is generally more accurately done for the pen-
dant drop geometry at the right of Figure 15.3. The pendant drop geometry
is used in this laboratory. The software automatically measures the shape of
the droplet and determines the capillary length from the shape, which is then
converted to a surface energy using Eq. 15.3 and a known value of the liquid
density. (Note that the experiment can also be used to measure the interfacial
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free energy between two immiscible liquids, in which case ρ is replaced with
the density difference between the liquids).
A reasonable estimate of the surface free energy can be obtained by continu-
ously injecting liquid through the syringe needle with the pendant drop geom-
etry and measuring the critical droplet volume, Vc, where a droplet detaches
and a new one is formed. Droplet detachment happens when the force corre-
sponding to the surface tension around the perimeter of the droplet (2πRmγℓ,
where Rm is the inner radius of the capillary) is equal to the gravitational force
exerted by the droplet (ρgVc). By equating these two forces we get the follow-
ing approximate expression for γℓ:

γℓ ≈
ρgVc

2πRm
(15.13)

If you are interested in a more complete treatment of the entire problem, take
a look at the first few pages of reference [7].

15.3.3 Samples

The following materials will be provided:

• Clean water

• A soap solution that can be added to the water to reduce it’s surface
energy

• A variety of materials expected to have different contact angles with wa-
ter

• Access to a UV-ozone cleaner for surface modification

8) Laboratory Procedure and Write-up

• First of all, answer the following questions and include a brief discussion
the following points in your lab report:

(1) Look up the surface energy of pure water and write down the value
of this quantity.

(2) Draw the shape of a sessile drop for θ = 90◦ and for θ = 180◦, and
show that Eq. 15.7 is correct in these two limits.

(3) What is the capillary length for water? Is this consistent with your
own experience with how water behaves? Give a couple examples.

• Measure the interfacial tension of pure water and of a soap solution, us-
ing the full drop shape analysis.

• Measure the interfacial tension for one of the solutions from the previous
experiment using the critical volume method, comparing the result you
get with drop shape analysis with the value you get from Eq. 15.13

149



15.3 Laboratory 3: Surface Energy and Contact Angles 15 316-1 LABS

• Measure the advancing and receding contact angles for at least 5 solid
surfaces, making an attempt to obtain the following:

(1) What surface/liquid combination gives the maximum value of θa?

(2) What surface/liquid combination gives the minimum value of θa?

(3) What surface/liquid combination gives the minimum contact angle
hysteresis, expressed as cos θr − cos θa?

In your writeup, describe potential applications where each of these sur-
faces would be useful.

• In your your writeup, describe the experimental protocol for measur-
ing the surface tension and contact angles in sufficient detail so that the
experiments could be repeated by other students, just be reading your
procedures.
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