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1 Catalog Description (316-1,2)

Principles underlying development of microstructures. Defects, diffusion,
phase transformations, nucleation and growth, thermal and mechanical treat-
ment of materials. Lectures, laboratory. Prerequisite: 315 or equivalent.

2 Course Outcomes

At the conclusion of 316-2 students will be able to:
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3 INTRODUCTION

1. Predict nucleation rates from thermodynamic data

2. Describe where precipitates are likely to form in a multicomponent ma-
terial

3. Design processing histories to obtain a desired microstructure

4. Correctly use and interpret TTT diagrams

3 Introduction

Much of this class is concerned with the appearance and growth of a new
phase, referred to as β in Figure 3.1, from a matrix phase, α. In many cases
the process can be divided into the following two phases:

1. A nucleation phase, where individual very small (typically in the
nanometer range) β precipitates are observed.

2. A growth phase where the β precipitates grown in size.

Figure 3.1: Schematic Representation of Nucleation and Growth.

The process is actually much more interesting than one might think by looking
at the simple example shown in Figure 3.1. Consider, for example, the images
of snowflakes shown in figure 3.2.
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3 INTRODUCTION

Figure 3.2: Snowflake images .

Figure 3.3: Morphology diagram for snowflakes .

If you are not motivated by snowflakes, plenty of modern technological ex-
amples exist that illustrate the concepts developed in this course. Silicon
nanowires illustrated below are one excellent example.
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3 INTRODUCTION

Figure 3.4: Two examples of silicon nanowires .

Figure 3.5: Generic eutectic phase diagram. A solid phase appears from the liquid
as the temperature is cooled along the path indicated by the arrow.

The simplest example of these concepts is the freezing of pure water. The
equilibrium phase at a given temperature is the one with the lowest molar
free energy, Gm. A schematic representation of these free energies is shown
in Figure 3.6. The free energies cross at 0 ◦C, with the liquid having a lower
free energy at higher temperatures and the solid having a lower free energy at
lower temperatures.

Figure 3.6: Schematic representation of the molar free energies of the solid and
liquid phases of water.

Of course if we cool water below 0 °C, ice is not formed immediately - the so-
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3 INTRODUCTION

lidification process takes time. Under appropriate conditions, it can be possi-
ble to maintain a liquid below its equilibrium melting point indefinitely, with-
out ever seeing a solid. The ability to supercool a liquid is related to the fact
that the interface between the solid and the liquid contributes a positive con-
tribution to the overall free energy of the system.

Thermodynamics can be used to calculate the properties of equilibrium
phases, including unstable equilibrium phases like the critical nucleus. The
difference between a stable equilibrium (absolute minimum in free energy),
a metastable equilibrium (local minimum in the free energy) and an unstable
equilibrium (local maximum in the free energy) is illustrated in Figure 3.7.

Unstable

Metastable
Stable

E

r

Figure 3.7: Energy as a function of nucleus size, illustrating stable, metastable and
unstable states.

We need to compare the appropriate thermodynamic potentials for the cases
where a critical nucleus is present and where it is absent. As illustrated
schematically in Figure 3.8, we assume that the critical nucleus is spherical,
with a radius of R∗.

Final
state

No critical
nucleus

Initial
state

Critical nucleus
Volume:
Surface area:

Figure 3.8: Initial and final states for the calculation of the work to form a critical
nucleus.

Because of Laplace pressure, the pressure inside the critical nucleus is not
equal to the pressure outside the critical nucleus. The correct thermodynamic
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4 HOMOGENEOUS NUCLEATION IN UNARY SYSTEMS

potential to use is called the omega potential. The omega potential is relevant
when a region of fixed volume is transformed from one phase to the other,
in conditions where atoms are freely exchanged between the two phases. We
consider this situation in more detail in the following section.

4 Homogeneous Nucleation in Unary Systems

Consider solidification of a pure compound from its melt as an example for a
phase transformation L → β in a unary system. Let’s assume that the liquid
phase L is homogeneous, i.e. there are no foreign objects or other surfaces in
the system (such as container walls). We would like to understand the for-
mation of a very small volume V β∗

of the solid phase, i.e. the nucleus, from
the liquid. Note that we use β∗ to indicate the nucleus (Figure 4.1). This is to
remind ourselves that the composition of the nucleus is not necessarily identi-
cal to that of the final phase β at equilibrium (this is for the general case; in
a unary system the composition cannot change). We will further assume that
the nucleus shall be spherical with radius R∗.

nucleus

parent phase

Figure 4.1: Homogeneous nucleation in a unary system. Initially, the system only
consists of the parent phase, here the liquid phase L. After nucleation, one in-
finitesimally small, spherical nucleus β∗ is present also, surrounded by the parent
phase L.

Before the formation of the nucleus, our system only contains L, at temperature
TL and pressure PL. After, we also have to consider the temperature T β∗

and
the pressure P β∗

of the nucleus.

The solidification shall be isothermal. Therefore,

TL ≡ T β∗
(4.1)

What about the pressure? There is an interface between the nucleus and the
liquid phase. The creation of this interface requires energy. As a consequence,
the pressure in the nucleus is higher than in the liquid.

P β∗
> PL (4.2)

8



4 HOMOGENEOUS NUCLEATION IN UNARY SYSTEMS

As an analogy, consider inflating a rubber balloon against atmospheric pres-
sure. Because of the energy stored in the stretched rubber membrane, the pres-
sure on the inside of the balloon is higher than that on the outside.

We therefore need to determine the pressure differential

∆P = P β∗
− PL (4.3)

We will use the grand canonical (aka Landau, Omega) potential in the deriva-
tion of the free energy of the nucleus.

In our system, the grand canonical potential of the final state can be written as
the sum

Ω = Ωβ∗

bulk +Ωexc +ΩL, (4.4)

where Ωβ∗

bulk is contribution from the bulk of the nucleus, Ωexc is the surface
excess free energy, i.e. the contribution from the interface, and ΩL is the con-
tribution from the liquid phase.

We can write the following:

Ωexc = γLβ∗ALβ∗ , (4.5)

where γLβ∗ is the interfacial free energy, with units [γ] = J
m2 , of the interface

between the nucleus and the liquid phase, and ALβ∗ is the interfacial area.

Recall that:
Ω = −PV (4.6)

We can therefore write Eq. 4.4 as

Ω = −P β∗
V β∗

− PLV L + γLβ∗ALβ∗ (4.7)

Generally speaking, we can see in Eq. 4.7 that the free energy of a small cluster
(embryo) of the newly formed phase consists of negative terms that favor the
formation, and positive terms that oppose the formation. The negative terms
scale with the volume of the embryo, whereas the positive ones scale with the
surface area. Therefore, if the surface-to-volume ratio is large, the embryo is
unstable with respect to L. This means that it is much more likely to shrink
than to grow. Conversely, if the surface-to-volume ratio is small, the embryo
is stable with respect to L, and it is more likely to grow than to shrink. There
is a critical size, at which the embryo is in unstable equilibrium, meaning that
both shrinking and growing will reduce the free energy. This critical embryo
is called the nucleus. In Figure 4.2, the free energy of an embryo of liquid
water formed from water vapor is plotted against the radius. Note that this
represents the condensation of a vapor rather than the solidification of a melt.
Regardless, the thermodynamics are the same.
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4 HOMOGENEOUS NUCLEATION IN UNARY SYSTEMS

Figure 4.2: Free energy change as a function of the radius of an embryo of the
new phase (here: spherical embryo of liquid water condensing from water vapor
at a supercooling of 10 K). Free energy is released as the volume of the embryo in-
creases. This component scales with −R3 (red line). However, energy is required
to create the interface between the embryo and the parent phase. This term scales
with +R2 (green line). The latter term dominates at small R. Consequently, the
sum of the two terms (blue line) goes through a maximum at the critical radius,
R∗.

Because the nucleus is in unstable equilibrium,

dΩ

dR

∣∣∣∣
R∗

= 0 (4.8)

Performing this differentiation on Eq. 4.7,

−P β∗ dV β∗

dR

∣∣∣∣
R∗

− PL dV L

dR

∣∣∣∣
R∗

+ γLβ∗
dALβ∗

dR

∣∣∣∣
R∗

+
dγLβ∗

dR

∣∣∣∣
R∗

ALβ∗ = 0 (4.9)

We now make the very important assumption that the interfacial free energy γ
does not change with the radius. In other words, that the interfacial free energy
of the infinitesimally small nucleus is the same as that of a macroscopic inter-
face. This assumption, known as the “capillarity assumption”, is convenient,
and very likely wrong. How wrong, we do not know. So, with dγLβ∗

dR

∣∣∣
R∗

= 0,
we write

−P β∗ dV β∗

dR

∣∣∣∣
R∗

− PL dV L

dR

∣∣∣∣
R∗

+ γLβ∗
dALβ∗

dR

∣∣∣∣
R∗

= 0 (4.10)
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4 HOMOGENEOUS NUCLEATION IN UNARY SYSTEMS

The total volume of our system is constant. Therefore, any increase in the
volume of the nucleus must equal the decrease in volume of the liquid (Figure
4.3).

Figure 4.3: Volume conservation during nucleation. As the radius of the nucleus
increases by dR, its volume increases by dV

dR
. Because the total volume of the

system is constant, the volume of the parent phase L shrinks by the same amount.

This allows us to rewrite Eq. 4.10,

−P β∗ dV β∗

dR

∣∣∣∣
R∗

+ PL dV β∗

dR

∣∣∣∣
R∗

+ γLβ∗
dALβ∗

dR

∣∣∣∣
R∗

= 0 (4.11)

⇔ −
(
PL − P β∗

) dV β∗

dR

∣∣∣∣
R∗

= γLβ∗
dALβ∗

dR

∣∣∣∣
R∗

(4.12)

⇔ ∆P = γLβ∗

dALβ∗

dR

∣∣∣
R∗

dV β∗

dR

∣∣∣
R∗

(4.13)

Using the assumption that the nucleus is spherical, we can write

V β∗
(R) =

4

3
πR3 ⇒ dV β∗

dR

∣∣∣∣
R∗

= 4πR∗2 (4.14)

ALβ∗(R) = 4πR2 ⇒ dALβ∗

dR

∣∣∣∣
R∗

= 8πR∗ (4.15)

With this,

∆P = γLβ∗
8πR∗

4πR2
=

2γLβ∗

R∗ (4.16)

This pressure differential is called the Laplace pressure for the spherical nu-
cleus (see also course notes for MSE 316-1). Note that for the derivation, we
need not have assumed that the nucleus is spherical until solving Eqs. 4.14 and
4.15. For nuclei of different geometries, one could define a convenient critical
length scale, L∗, instead. The Laplace pressure for such a nucleus would then
follow from evaluating the differentials in Eqs. 4.14 and 4.15 at L∗.
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4 HOMOGENEOUS NUCLEATION IN UNARY SYSTEMS

Another way to evaluate the Laplace pressure for any interface is by consider-
ing the Laplace theorem

∆P = γ

(
1

R1
+

1

R2

)
(4.17)

, where R1 and R2 are the principle radii of curvature.

Returning to the description of the nucleus, we can determine the reversible
work of nucleation, W ∗

r , as the difference between the free energy of the system
at R = R∗ and the free energy at R = 0, where the volume and area of the
nucleus vanish.

W ∗
r = Ω(R = R∗)− Ω(R = 0) (4.18)

= −P β∗
V β∗

+ γA− PLV L −
(
−PLV L

0

)
, (4.19)

where V L
0 = V L + V β∗

is the volume of L at before a nucleus forms, i.e. at
R = 0. Plugging in, and collecting terms in two steps

W ∗
r = −P β∗

V β∗
+ γA− PL

(
V L − (V L + V β∗

)
)

(4.20)

= −
(
P β∗

− PL
)
V β∗

+ γA (4.21)

= −∆PV β∗
+ γA (4.22)

Assuming again that the nucleus is spherical,

W ∗
r = −∆P

(
4

3
πR∗3

)
+ γ

(
4πR∗2) (4.23)

Using Eq. 4.16, we write the critical radius R∗ as a function of the Laplace
pressure

R∗ =
2γ

∆P
(4.24)

substitute into Eq. 4.23, and simplify

W ∗
r = −∆P

(
4

3
π

(
2γ

∆P

)3
)

+ γ

(
4π

(
2γ

∆P

)2
)

(4.25)

= −32π

3

γ3

∆P 2
+

48π

3

γ3

∆P 2
(4.26)

⇔ W ∗
r =

16π

3

γ3

∆P 2
(4.27)
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4 HOMOGENEOUS NUCLEATION IN UNARY SYSTEMS

With this, we have determined the critical radius and reversible work of the
spherical nucleus as a function of the Laplace pressure. It would be more con-
venient if we could replace this pressure, which is difficult to measure, by some
other expression that we can evaluate. We will do this in the next section.

Recall that the nucleus is in unstable equilibrium with the parent phase, i.e. the
phase that it formed from. At some temperature T , we can therefore write the
following equality

Gβ∗

m (T, P β∗
) = GL

m(T, P
L) (4.28)

Let’s consider a phase transformation that occurs as the temperature is low-
ered, such as a solidification from the melt. Let ∆T = Tm − T be the su-
percooling below the melting point Tm. We expect that the solidification is
spontaneous if ∆T > 0. Recall also that ∆P = P β∗ − PL.

The molar Gibbs free energies in Eq. 4.28 are energy surfaces of two variables.
To simplify things, let’s approximate Gm as a linear function in both T and P .
We do this by writing the Taylor expansion of Gm and terminating it after the
1st order terms. Because we know something about the equilibrium state, let’s
develop the Taylor expansion around the equilibrium point (Tm, P

L).

Gm (T, P ) ≈ Gm

(
Tm, P

L
)
+

∂Gm

∂T

∣∣∣∣
Tm

· (T − Tm) +
∂Gm

∂P

∣∣∣∣
PL

·
(
P − PL

)
(4.29)

Recall that

∂Gm

∂T
= −Sm (4.30)

∂Gm

∂P
= Vm (4.31)

Let’s now write the l.h.s. and r.h.s. of Eq 4.28 in terms of the Taylor expansion
given in Eq. 4.29, and substitute the thermodynamic relationships given in
Eqs. 4.30 and 4.31:

Gβ∗

m

(
T, P β∗

)
= Gβ∗

m

(
Tm, P

L
)
− Sβ∗

m (T − Tm) + V β∗

m

(
P β∗

− PL
)

(4.32)

GL
m

(
T, PL

)
= GL

m

(
Tm, P

L
)
− SL

m (T − Tm) + V L
m

(
PL − PL

)
(4.33)

Note that by using Eq. 4.31, we assume that the molar volume Vm is a con-
stant, and does not change with changing pressure. This assumption of an
incompressible nucleus is oftentimes reasonable in condensed matter, but can
fail miserably when considering vapor phases.

Note that the third term on the r.h.s. of Eq. 4.33 vanishes. Further, because
(Tm, P

L) is the point of equilibrium, the first term on the r.h.s. of Eq. 4.32 is

13



4 HOMOGENEOUS NUCLEATION IN UNARY SYSTEMS

equal to the first term on the r.h.s. of Eq. 4.33. Finally, with the definitions for
∆P and ∆T , we rewrite Eq. 4.28 as:

Sβ∗

m ∆T + V β∗

m ∆P = SL
m∆T (4.34)

⇔V β∗

m ∆P =
(
SL
m − Sβ∗

m

)
∆T (4.35)

Note that
SL
m − Sβ∗

m = ∆S◦
m (4.36)

where ∆S◦
f,m is the molar standard entropy of fusion (melting), i.e. the en-

tropy gain associated with the opposite of the phase transformation that we
are considering. This is simply the way the signs work out. When considering
other phase transformations, for example melting, pay particular attention to
getting the signs right in this step.

We substitute Eq. 4.36 into Eq. 4.35 and rearrange:

∆P =
∆S◦

m

V β∗
m

∆T (4.37)

Recall that at equilibrium,

∆G◦
m (Tm) = 0 (4.38)

⇔∆H◦
m − Tm∆S◦

m = 0 (4.39)

⇔∆S◦
m =

∆H◦
m

Tm
(4.40)

This allows us to rewrite Eq. 4.37:

∆P =
∆H◦

f,m

V β∗
m Tm

∆T (4.41)

Equations 4.37 and 4.41 therefore allow us to estimate the Laplace pressure for
any unary system for which we know the molar standard entropy of fusion,
or the molar standard enthalpy of fusion and the melting temperature. These
values are available for many pure phases. We can now express the critics
radius and the reversible work of nucleation for a spherical, incompressible
nucleus, using the capillarity approximation, as follows:

14



4 HOMOGENEOUS NUCLEATION IN UNARY SYSTEMS

R∗ =
2γ

∆P
(4.42)

=
2V β∗

m

∆S◦
m

γ

∆T
(4.43)

=
2V β∗

m Tm

∆H◦
f,m

γ

∆T
(4.44)

W ∗
r =

16π

3

γ3

∆P 2
(4.45)

=
16π

3

(
V β∗

m

∆S◦
f,m

)2
γ3

∆T 2
(4.46)

=
16π

3

(
V β∗

m Tm

∆H◦
f,m

)2
γ3

∆T 2
(4.47)

How do the Laplace pressure, critical radius, and the reversible work of nucle-
ation depend on supercooling? Consider their graphs in Figure 4.4.

As an example, consider the condensation of water vapor at ∆T = 10 K. In
this case, the parent phase is the vapor phase (vap), and the nucleus is the
liquid phase L. In Eq. 4.43 and Eq. 4.46, we further have to replace the entropy
of fusion by the entropy of vaporisation. Keep in mind that we also replace
the melting point by the boiling point.

R∗ =
2V L

m

∆S◦
vap,m

γ

∆T
(4.48)

W ∗
r =

16π

3

(
V L
m

∆S◦
vap,m

)2
γ3

∆T 2
(4.49)

We find the following values in the literature: γ = 72mJ
m2 , ∆S◦

vap,m =

118.19 J
mol·K , Tb = 373.16 K. The molar volume of the nucleus at the boil-

ing point can be determined from the density of water at 372.16 K, ρH2O
373.16K =

0.95805 g
cm3 , and the molecular weight of water, Mw = 18 g

mol . We find the
molar volume as:

V L
m =

Mw

ρH2O
373.16K

=
18 g

mol

0.95805 g
cm3

=
18 · 10−6

0.95805

m3

mol
≈ 1.879 · 10−5 m3

mol
(4.50)
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4 HOMOGENEOUS NUCLEATION IN UNARY SYSTEMS

Plugging in,

R∗ =
2V L

m

∆S◦
vap,m

γ

∆T
(4.51)

=
2 · 1.879 · 10−5 m3

mol

118.19 J
mol·K

0.072 J
m2

10 K
(4.52)

= 2.2891 · 10−9 m (4.53)
≈ 2.3 nm (4.54)

(4.55)

W ∗
r =

16π

3

(
V L
m

∆S◦
vap,m

)2
γ3

∆T 2
(4.56)

=
16π

3

(
1.879 · 10−5 m3

mol

118.19 J
mol·K

)2 (
0.072 J

m2

)3
(10 K)

2 (4.57)

= 2.1954 · 10−17 J (4.58)

≈ 2.20 · 10−17 J (4.59)

Let’s also calculate the Laplace pressure for this case. Plugging into Eq. 4.37:

∆P =
∆S◦

f,m

V β∗
m

∆T (4.60)

=
118.19 J

mol·K

1.879 · 10−5 m3

mol

10 K (4.61)

= 6.2900 · 107 J

m3
(4.62)

≈ 6.29 · 107Nm

m3
= 62.9 MPa (4.63)

Let’s run a quick sanity check on the assumption that the nucleus is incom-
pressible. The bulk modulus of water is K = 2.15 GPa. Using the definition of
K and assuming linear bulk elasticity

K = −dP

dV
V0 (4.64)

⇒ K = −∆P

∆V
V0 (4.65)

⇔ ∆V

V0
= −∆P

K
(4.66)

(4.67)
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4 HOMOGENEOUS NUCLEATION IN UNARY SYSTEMS

Plugging in, we find the volumetric strain

∆V

V0
= −62.9 MPa

2.15 GPa
(4.68)

= −0.0293 (4.69)
≈ −3% (4.70)

Therefore, we would expect that assuming that the nucleus is incompressible,
and ignoring the dependency of Vm on pressure will introduce only a small
error into our calculation. Obviously, if the bulk modulus is higher, or the
Laplace pressure lower, the error will have less of an impact.
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4 HOMOGENEOUS NUCLEATION IN UNARY SYSTEMS

Figure 4.4: Scaling of the Laplace pressure ∆P , the critical radius R∗, and the re-
versible work of nucleation W ∗

r , with supercooling ∆T . Graphs shown here corre-
spond to the formation of a nucleus of liquid water from water vapor. A) Note the
linear increase of the Laplace pressure with supercooling. At ∆T = 0, i.e. T = Tb,
∆P = 0. This means that the interface is flat (infinite radius of curvature). B)
The critical radius is inversely proportional to ∆T . From this follows that small
radii are expected at high supercooling, i.e. for temperatures far below the equi-
librium temperature (here: Tb). At low supercooling, the critical radius increases
quickly and approaches infinity as ∆T → 0. An infinite radius is equivalent to a
flat interface, but also means that nucleus is the size of the entire system. C) The
reversible work is inversely proportional to ∆T 2 and shows the same qualitative
behavior as the critical nucleus. Because of the higher exponent, the effects are
more pronounced. Close to the equilibrium temperature, W ∗

r , which is an ener-
getic barrier, becomes very large. Nucleation is therefore unlikely/very slow. The
barrier quickly drops with increasing supercooling. In (D), the reversible work is
expressed in units of kT .
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5 KINETICS OF HOMOGENEOUS NUCLEATION IN UNARY SYSTEMS

5 Kinetics of Homogeneous Nucleation in Unary
Systems

Microscopically, one of the assumptions of classical nucleation theory is that
embryos of the new phase grow by addition of one monomer unit at a time,
and shrink by dissociation of one monomer unit. In other words, embryos do
not interact with each other. For an embryo with n monomer units, we can
define forward and backward rates for these processes, as shown in Figure 1.
At any given time t in our system, we can then count the number of embryos
of size n and divide by the total volume to get the number density ρ(n, t).

Figure 5.1: Embryos are assumed to grow by addition, and shrink by dissociation
of one monomer unit. The monomer unit could be a metal atom, a water molecule,
or a protein. This is reasonable as long as the density of embryos is so low that they
do not encounter one another. For each embryo comprised of n monomer units, a
forward (growth) rate f(n) and a backward (shrinkage) rate b(n) is defined.

The number of embryos of size n that are formed per unit time and volume,
can the be expressed as

J(n) = ρ(n− 1) ·A(n− 1) · β(n− 1)− ρ(n) ·A(n) · α(n), (5.1)

where A is the surface area of the embryo, β is the total flux of monomers
towards the embryo, and α is the evaporative flux, away from the embryo.
These fluxes depend on the forward and backward rates.

Becker and Döring used this approach to determine the change in the number
density of clusters over time and found that

∂ρ(n, t)

∂(t)
= J(n)− J(n+ 1) (5.2)

While a detailed analysis of this problem is beyond the scope of this class, a
useful outcome is that for many systems relevant to us, it can be shown that a
steady state is reached within ∼ 1 µs. Without going into detail, we will use
the following formula for the steady state nucleation current

ṄV = Z ν Anuc ρ e−
W∗

r
kT , (5.3)

[ṄV] =
1

s · cm3
(5.4)
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5 KINETICS OF HOMOGENEOUS NUCLEATION IN UNARY SYSTEMS

where Z is the dimensionless Zeldovich factor, i.e. the probability that a nu-
cleus will become supercritical, ν is the impingement rate of monomers on the
surface of the nucleus ([ν] = 1

s·cm2 ), Anuc is the surface area of the nucleus
([Anuc] = cm2), and ρ is the number density of monomers in the parent phase
([ρ] = 1

cm3 ). Because of the strong dependence of the reversible work of nu-
cleation, and therefore the entire exponent, on temperature, we can frequently
approximate the prefactor as a constant independent of temperature. In many
unary (!!) condensed matter systems, ZνAnuc ≈ 1011 1

s and ρ ≈ 1022 1
cm3 . We

can therefore use the following approximation in many cases:

ṄV ≈ 1033
1

s · cm3
e−

W∗
r

kT (5.5)

A technically useful nucleation current, i.e. a nucleation current that leads to a
phase transformation in a “reasonable” amount of time, is ṄV ≥ 1 1

s·cm3 . Using
eq. 5.5, what is the maximum value that the reversible work of nucleation can
take?

ṄV ≈ 1033
1

s · cm3
e−

W∗
r

kT ≥ 1
1

s · cm3
(5.6)

⇔e−
W∗

r
kT ≥ 10−33 (5.7)

⇔W ∗
r

kT
log10 e ≤ 33 (5.8)

⇔W ∗
r

kT
≤ 33

log10 e
(5.9)

⇔W ∗
r ⪅ 76 kT (5.10)

This means that the barrier to nucleation, i.e. the reversible work, in a unary
system, generally needs to be smaller or equal to 76kT (at the relevant temper-
ature) in order to occur at a rate that is ’reasonable’, i.e. of some technical use.
We can use this value to quickly estimate whether we can expect to observe
nucleation or not. Consider for example the condensation of water from its
vapor for ∆T ⪆ 20 K will W ∗

r < 76kT. Please note that this quick-and-dirty
approach is only valid for unary systems.

It is instructive to consider the nucleation current ṄV as a function of ∆T . We
can attempt to do so analytically, by considering all temperature-dependent
variables in eq. 5.5, or numerically, e.g. using realistic values for all materi-
als properties.For the analytical approach, write ṄV in a way that makes the
temperature dependence more apparent:

ṄV ≈ 1033
1

s · cm3
exp

(
−W ∗

r

kT

)
(5.11)

⇒ ṄV ∝ exp

(
− const

∆T 2 · T

)
(5.12)
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5 KINETICS OF HOMOGENEOUS NUCLEATION IN UNARY SYSTEMS

Note that we have ignored small effects, such as the dependence of the molar
volume (of a solid or liquid!) on temperature. Using the definition of ∆T =
Teq − T ,

⇒ ṄV ∝ exp

(
− const

∆T 2 · (Teq −∆T )

)
(5.13)

We are interested in the interval from ∆T = 0 (T = Teq) to T =
0 K (∆T = Teq). By sketching out the terms in the denominator of the ex-
ponent, we can quickly get an idea of the overall shape of the graph of ṄV

(Figure 5.2).

Figure 5.2: Sketching the graph of ṄV as a function of ∆T , Eq. 5.13. a) The
denominator of the fraction in the exponent consists of two terms, Teq−∆T (green)
and ∆T 2 (blue). The denominator is the product of these terms (red). The product
goes to zero at both side of the ∆T interval and has a maximum in between. Note
that the each of the functions was sketched on a different y-axis. b) Next, we sketch
the negative reciprocal of the product in (a). Note that the graph goes to negative
infinity on either side of the ∆T interval and has a maximum at a negative value
in between. c) Finally, we sketch Eq. 5.13, and find that ṄV goes to zero at either
end of the interval, and goes through a maximum in between.

Using an appropriate graphing software, we can explore a specific example,
for example the condensation of liquid water from vapor at ambient pressure
(Figure 5.3).
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5 KINETICS OF HOMOGENEOUS NUCLEATION IN UNARY SYSTEMS

Figure 5.3: Nucleation of liquid water from its vapor. Nucleation current ṄV is
plotted on the x-axis, supercooling ∆T on the left y-axis, and the absolute temper-
ature T on the right y-axis. Note that in b) and d) the very strong dependence of
ṄV on temperature was made more apparent by plotting on a log scale. a) and b)
show the entire physically relevant temperature range. c) and d) show the range
in which ṄV passes through 1 s−1cm−3. Note that ṄV → 0 for ∆T → 0; this is be-
cause the reversible work of nucleation, W ∗

r ∝ ∆T−2, goes to infinity as T → Teq .
Also, ṄV → 0 for T → 0, because even a small barrier becomes insurmountable
as the thermal energy of the system goes to zero. Finally, there is a pronounced
maximum in ṄV, here at ∆T ≈ 250 K. At this temperature (T ≈ −150◦C), we
would also have to consider direct nucleation of solid ice. This plot was created
using Lecture_04_Fig3.m.
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6 HETEROGENEOUS NUCLEATION IN UNARY SYSTEMS

6 Heterogeneous Nucleation in Unary Systems

In this section, we will consider the impact of heterogeneity in the system.
Specifically, we will assume the presence of a flat surface of some substrate σ.
As before, we will look at the formation of a nucleus (phase: β∗) from a parent
phase L. The major difference to the homogeneous case is that the shape of a
nucleus formed at the interface between σ and L is generally not spherical. In
addition, when determining the excess excess free energy of the nucleus, we
will also have to consider interfacial free energies other than γLβ∗ . Let’s first
consider the shape of the nucleus.

Figure 6.1: Force balance at the triple line phase boundary for a small (axisymmet-
ric) volume of the phase β∗ at the interface between σ L. a) General case in which
both horizontal and vertical forces are considered. b) Assuming an infinitely stiff
substrate σ, vertical forces are ignored and β∗ takes the shape of a spherical cap
with contact angle θ.

Recall from MSE316-1, that the equilibrium shape at a triple line phase bound-
ary (L− σ − β∗) results from the balance of the vector surface tension of the
L− σ, σ − β∗, and L− β∗ interfaces (Figure 1A). If we assume that σ is in-
finitely stiff, we can ignore the vertical force balance (Figure 1B). In the latter
case, β∗ takes the shape of a spherical cap with radius R∗ and contact angle θ.

We find θ by considering the horizontal force balance only

γLσ = γσβ∗ + γLβ∗ cos θ (6.1)

⇔ cos θ =
γLσ − γσβ∗

γLβ∗
(6.2)

To find the reversible work of heterogeneous nucleation, we consider the
change in the grand canonical potential as we go from the initial to the final
state

W ∗,het
r = Ωf − Ωi (6.3)

= −∆PV β∗
+ γLβ∗ALβ∗ + γσβ∗Aσβ∗ − γLσALσ, (6.4)

where V β∗
is the volume of the nucleus, ALβ∗ is the interfacial area between

the nucleus and L, and Aσβ∗ is the area of the interface between the substrate
and the nucleus. While both these areas are created during nucleation, the area
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6 HETEROGENEOUS NUCLEATION IN UNARY SYSTEMS

Figure 6.2: 3D rendering of a nucleus of the phase β∗ in the shape of a spherical
cap, at the interface between substrate σ and the parent phase L.

of the interface between the substrate and L, ALσ , is removed in the process.
Therefore, it enters into Eq. (3) as a negative term. Note that Aσβ∗ = ALσ

(Figure 2).

By writing the volume and area terms in Eq. (3) as functions of θ, one can show
that

W ∗,het
r = W ∗

r · S(θ), (6.5)

where W ∗
r is the reversible work of nucleation for the homogeneous case and

the structure factor S(θ) is defined as

S(θ) =
1

4
(2 + cos θ) (1− cos θ)

2 (6.6)

Inspection of Eq. (6) and its graph (Fig. 3A,B) reveals the following properties

• θ → 0◦ ⇒ S(θ) → 0, meaning that with decreasing contact angle (good
wetting), the reversible work of nucleation is reduced substantially . For
example, the structure factor is 10−1 for θ = 52.5◦, 10−2 for θ = 28.1◦, and
10−3 for θ = 15.6◦ (see Fig. 3C-E). Good wetting means that cos θ → 1,
which, looking back at Eq. (2), requires that γLσ > γσβ∗ , i.e. that the free
energy of the interface between nucleus and the substrate is lower than
that between the liquid and the substrate.

• θ = 90◦ ⇒ S(θ) = 1
2 , meaning that even for mediocre wetting, there is

a substantial reduction in the barrier to nucleation (Fig. 3F). Mediocre
wetting, where cos θ ≈ 0, occurs when γLσ ≈ γσβ∗ .

• θ → 180◦ ⇒ S(θ) → 1, meaning that for poor wetting the reversible
work of heterogeneous nucleation approaches that of homogeneous nu-
cleation. For example, the structure factor is 0.9 for θ = 127.5◦ and 0.99
for θ = 164.5◦ (Fig. 3 G,H). Poor wetting means that cos θ → −1, which
requires that γLσ < γσβ∗ .

Note that the critical radius R∗ is the same in both homogeneous and hetero-
geneous nucleation and can be calculated as discussed earlier. However, the
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6 HETEROGENEOUS NUCLEATION IN UNARY SYSTEMS

volume and surface area of the spherical cap are generally smaller.

R∗,het = R∗,hom = R∗ (6.7)

Using an approach similar to the one discussed in the homogeneous case, the
heterogeneous nucleation current can be shown to be

Ṅhet
V = Z ν Anuc ρ e−

W∗
r

kT S(θ) (6.8)

However, shape of the nucleus and the substrate impact the terms of the pref-
actor. We can frequently estimate Ṅhet

V in unary condensed matter systems
as

Ṅhet
V ≈ 1026

1

s · cm2

Aσ
tot

Vtot
e−

W∗
r

kT S(θ), (6.9)

where Aσ
tot is the total area of the nucleating surface, and Vtot is the total vol-

ume of the system. In a simple case, this area could simply be the total area of
the container walls, and the volume that of the container (and therefore, L be-
fore the transformation). However, nucleators could also be finely dispersed
in the volume itself. Finally, in most real systems we would have to at least
consider that there may be a distribution of nucleators of different potency
(i.e. differing contact angle) on the container walls and dispersed in the bulk.

The structure factor also depends strongly on the assumptions we make re-
garding the shape of the substrate. For example, if we consider a nucleus
forming in a v-shaped scratch in the surface (Fig. 4), we find that one can
write the reversible work of nucleation as

W ∗,het
r = W ∗

r f(α, θ), (6.10)

where α < 90◦ is the angle between the side walls and the horizontal plane,
and θ is the contact angle. While f(α, θ) looks too intimidating to be shown
here, its behavior is really very interesting:

α → 0 ⇒ f(α, θ) → S(θ) (6.11)
α > 0 ⇒ f(α, θ) < S(θ) (6.12)

θ − α → +0 ⇒ f(α, θ) → 0 (6.13)
θ < α ⇒ f(α, θ) = 0 (6.14)

This means that any scratch in a surface is a better nucleator than the smooth
surface. Furthermore, if there are many scratches with a wide distribution of
α in the substrate, and the contact angle θ is smaller than 90◦, there will be
at least a few for which the structure factor becomes vanishingly small. As a
consequence, the reversible work of nucleation will become very small, and
nucleation will occur quickly at these sites. As only one nucleus is in principle
sufficient to initiate phase transformation (if growth is reasonably fast, which
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is not necessarily the case in solid state transformations), the most powerful
nucleators can play an important role. It is therefore generally true that rough
or porous substrates are more efficient nucleators.

However, if scratches or pores set in a smooth surface get very small, nuclei
may not be able to grow out of them and into the bulk. Why? Hint: Consider
the radius of curvature of the newly formed phase as it grows out of the scratch
and compare it to the critical radius.
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Figure 6.3: Plot of the structure factor for the spherical cap, S(θ), vs. the contact
angle θ using normal (a) and logarithmic (b) scaling of the y-axis.

Figure 6.4: Heterogeneous nucleation in a v-shaped scratch. The angle enclosed
by the sidewalls of the scratch and the xy plane is given by α. Note that the
nucleus here takes the shape of a segment of a cylinder with radius R∗.
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7 NUCLEATION IN BINARY SYSTEMS

7 Nucleation in Binary Systems

In the next couple of sections, we will take a look at nucleation in binary sys-
tems. Consider a typical precipitation in the solid state (Figure 1A). In this
eutectic system with components 1 and 2, and the terminal solutions α (rich in
component 2) and β (rich in component 1), we start with α at some initial mole
fraction X i

1 and cool through the solvus line into the two-phase field, then hold
at some temperature T . We are therefore considering the phase transformation
α → α+β. For now, let’s pretend the system is homogeneous. From the phase
diagram, we find the undercooling ∆T = Teq − T (here, the relevant equilib-
rium temperature is given by the solvus line at X i

1). Drawing the tie-line at
T , we find the equilibrium mole fraction of component 1 in α, Xα

1,eq , and the
equilibrium mole fraction of component 1 in β, Xβ

1,eq . The supersaturation of
undercooled α at T is ∆X = X i

1 −Xα
1,eq .

Next, let’s first look at the driving force for phase transformation. For this,
consider the GX diagram corresponding to temperature T that underlies the
TX (phase) diagram (Figure 1B). The free energy of the α phase as a func-
tion of the mole fraction of component 1 at temperature T and pressure Pα

is given by Gα
m(T, P

α, X1), that of β by Gβ
m(T, P

α, X1). The initial state of
the system is that of a homogenous, but supersaturated/undercooled α with
Gα

m(T, P
α, X i

1) (point I). To reduce the free energy, β precipitates enriched in
component 1 form from the matrix α, depleting the matrix of component 1
in the process. Equilibrium is reached where X1 = X i

1 intersects the com-
mon tangent (point F). In this state, the mole fraction of component 1 in α is
that of the point of tangency, Xα

1,eq , and that in β is Xβ
1,eq . The free energy

of the system in this state can be calculated by calculating the weighted sum
XαG

α
m(T, P

α, Xα
1,eq) + XβG

β
m(T, P

α, Xβ
1,eq), using the lever rule to determine

Xα and Xβ . The change in free energy associated with the phase transforma-
tion, ∆Gα→α+β

m , is identical to the negative distance FI . Note, however, that
we consider here both phases at the same pressure Pα. This means that the
Laplace pressure and the curvature of the interface is zero. This corresponds
to complete phase separation as shown in Figure 1C.
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A

B

C

I

F

Figure 7.1: Phase transformation in a binary system. a) Generic binary eutectic
phase (TX) diagram. b) GX diagram for the system at temperature T in (a). The
free energy change ∆Gα→α+β

m corresponds to the energy per mole of α converted,
i.e. the overall driving force. c) Schematic drawing that corresponds to the initial
and final equilibrium states referenced in (a) and (b). Note that the α−β interface
has no curvature, therefore ∆P = 0!
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Instead of looking at the free energy change for the overall phase transforma-
tion, we need to consider the free energy change associated with the formation
of the nucleus from the parent phase (Figure 2). Let’s assume the nucleus is
spherical with radius R∗ and incompressible.

nucleus

parent phase parent phase

Figure 7.2: Schematic drawing showing the initial state of the homogeneous α
at (T, Pα, X i

1), and the unstable equilibrium of one very small, spherical nucleus
β∗ with radius R∗ at (T, P β∗

, X ′
1) with the surrounding matrix α. Note that the

transformation is isothermal and the nucleus so small that its formation does not
change the composition of α.

Recall that if we assume incompressibility,

∂Gm

∂P
= Vm (7.1)

⇒∆Gm

∆P
= Vm (7.2)

⇔Gm(T, P
f , X1)−Gm(T, P

i, X1)

(P f − P i)
= Vm (7.3)

⇔Gm(T, P
f , X1) = Gm(T, P

i, X1) + Vm∆P (7.4)

This means in the GX diagram, increasing the pressure from an initial value P i

to a final value P f for any given phase simply shifts the free energy to higher
energy by the amount Vm∆P , where ∆P = P f − P i.

For the nucleus, this means that

Gβ
m(T, P

β∗
, X1) = Gβ

m(T, P
α, X1) + V β

m∆P (7.5)

V β
m∆P ≥ 0 is therefore the contribution of the interface to the molar free en-

ergy of the nucleus. In unstable equilibrium, this must be exactly balanced
by the free energy released when a solid of the composition of the nucleus is
formed from the matrix. One way to think about this scenario is to consider
the corresponding GX diagram (Fig. 3).

The major difference between Fig. 3 and Fig. 1B is that we now also consider
the unstable equilibrium of the matrix at composition X i

1 with the nucleus. We
know that there must be a common tangent between the free energy curves for
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the matrix and the nucleus. One of the points of tangency is Gα
m(P

α, X i
1) and

the slope of the tangent is equal to the slope of Gα
m at X i

1. A priori, we do not
know what value P β∗

takes, but really all we need to do is shift Gβ
m(P

α, X1)
vertically until there is a point of tangency to the tangent in Gα

m. The vertical
shift is then exactly equal to V β

m∆P and the point of tangency indicates the
composition of the nucleus, X ′

1.

Figure 7.3: Schematic GX diagram for a binary system at temperature T similar
to the one in Fig. 1A. The molar free energy for α is given for Pα (purple line). For
β, molar free energies at Pα (green dashed line) and P β∗

(green line) are given;
the latter is shifted to higher free energy by V β

m∆P . The first of two common
tangents is for the final equilibrium between matrix α at composition Xα

1,eq and
pressure Pα, and precipitate β at composition Xβ

1,eq and pressure Pα (cyan dashed
line), similar to the common tangent in Figure 1B. The second is for the unstable
equilibrium between the matrix α with composition X i

1 and pressure Pα, and
nucleus with composition X ′

1 and pressure P β∗
(red dashed line).

By inspection, we find that

Gβ
m(P

α, X ′
1) + Vm∆P −Gα

m(P
α, X i

1) =
∂Gα

m

∂X1

∣∣∣∣
Xi

1

(X ′
1 −X i

1) (7.6)

⇔− Vm∆P = Gβ
m(P

α, X ′
1)−Gα

m(P
α, X i

1)−
∂Gα

m

∂X1

∣∣∣∣
Xi

1

(X ′
1 −X i

1) (7.7)

Now let’s see whether we can show that the r.h.s. of Eq. (7.7) is indeed the
molar free energy change for the formation of a nucleus, i.e. the Gibbs free
energy change associated with the formation of an infinitesimal amount of
material with a composition X ′

1 that is different from the initial composition
X i

1. This amount shall be so small that the mole fractions of the componenta

31



7 NUCLEATION IN BINARY SYSTEMS

1 and 2 in the matrix shall not change. We can then calculate the Gibbs free
energy change by

• removing a small amount of material of composition X ′
1 from a large

amount of material of composition X i
1.

• forming the same small amount of material of composition X ′
1.

Note that the free energy required to remove material is not equal to the free
energy gained because the system is closed and the total number of atoms is
fixed.

Step 1. The free energies of the initial and final states of the matrix α are then

Gα,i = Gα(ni
1, n

i
2) (7.8)

Gα,f = Gα(nf
1, n

f
2) (7.9)

, where the number of atoms of component j in the initial state is given by ni
j

and that in the final state given by nf
j .

For a very small number of atoms n′
j = nf

j − ni
j removed, we can expand Gα,f

around Gα,i to first order only. At constant T and Pα,

Using the definition of the chemical potential µj =
∂G
∂nj

, the free energy change
can be written as

∆Gr = Gα,f −Gα,i (7.10)

= µα
1

(
X i

1

) (
nf
1 − ni

1

)
+ µα

2

(
X i

1

) (
nf
2 − ni

2

)
(7.11)

= −µα
1

(
X i

1

)
n′
1 − µα

2

(
X i

1

)
n′
2 (7.12)

To find the molar free energy change associated with the removal from the
matrix, we divide by the total number of moles of removed, n′

tot = n′
1 + n′

2.

∆Gr
m = −µα

1

(
X i

1

)
X ′

1 − µα
2

(
X i

1

)
X ′

2 (7.13)

Step 2. The free energy of formation for an infinitesimal amount of material of
composition X ′

1 is simply its molar free energy.

Gβ
m(X

′
1) = µβ

1 (X
′
1)X

′
1 + µβ

2 (X
′
1)X

′
2 (7.14)

Step 3. The total free energy change for removal and formation of material of
composition X ′

1 from a matrix of composition X i
1 is then the sum of Eq. (7.13)

and Eq. (7.14).

∆Gα→β∗

m = ∆Gr
m +Gβ

m(X
′
1) (7.15)

=
[
µβ
1 (X

′
1)− µα

1

(
X i

1

)]
X ′

1 +
[
µβ
2 (X

′
1)− µα

2

(
X i

1

)]
X ′

2 (7.16)
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7 NUCLEATION IN BINARY SYSTEMS

This is a very general result that can be used even if the difference in mole
fractions is large, as long as only a small amount of β∗ is made.

But for our purposes, we just substitute Eq. (7.13) in Eq. (7.15)

∆Gα→β∗

m = Gβ
m(X

′
1)− µα

1

(
X i

1

)
X ′

1 − µα
2

(
X i

1

)
X ′

2 (7.17)

Separately, we express Gα
m

(
X i

1

)
in terms of the chemical potentials, rearrange

to
0 = −Gα

m

(
X i

1

)
+ µα

1

(
X i

1

)
X i

1 + µα
2

(
X i

1

)
X i

2 (7.18)

, and then add the l.h.s. of Eq. (7.17) to the l.h.s of Eq. (7.18) and the r.h.s. of
Eq. (7.17) to the r.h.s of Eq. (7.18)

∆Gα→β∗

m = Gβ
m (X ′

1)−Gα
m

(
X i

1

)
+ µα

1

(
X i

1

) (
X i

1 −X ′
1

)
+ µα

2

(
X i

1

) (
X i

2 −X ′
2

)
(7.19)

Substituting X2 = 1−X1

∆Gα→β∗

m = Gβ
m (X ′

1)−Gα
m

(
X i

1

)
+
[
µα
1

(
X i

1

)
− µα

2

(
X i

1

)] (
X i

1 −X ′
1

)
(7.20)

Finally, with we can express the change in free energy in terms of the Gibbs
free energies

As we fixed the pressure at Pα, this is identical to

Finally, comparison of Eq. (??) and Eq. (7.7) reveals that the right hand sides
are identical. This means that the left hand side must also be identical

One can further show that for small ∆X = X i
1 −Xα

1,eq

Using the definition of the supersaturation and substituting into Eq. (??) ,
where C is (nearly) constant

With this, we can calculate the critical radius for the spherical, incompressible
nucleus, and the reversible work of nucleation for the binary case.

R∗ =
2Vm

C

γ

∆X
(7.21)

W ∗
r =

16π

3

(
Vm

C

)2
γ3

∆X2
(7.22)

These expressions resemble those we found for unary systems. Note how the
supersaturation ∆X replaces the undercooling ∆T , and C takes the places of
∆S◦

m. Because ∆T and ∆X are not independent variables, they can be used
interchangeably when discussing effects qualitatively.
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8 STRAIN EFFECTS IN NUCLEATION

8 Strain Effects in Nucleation

Some of the most interesting phase transformations in materials science occur
in the solid state. In this case, we need to consider the effect of strain at the
interface between the nucleus and the matrix. Recall that strain is unique to
solid-solid, coherent or semi-coherent interfaces. Strain is caused by lattice
mismatch across the interface and results in an elastic deformation of bonds.
We can define an elastic strain energy density, W el

V , that is equal to the total
strain energy divided by the volume of the nucleus

W el
V =

W el
tot

V β

[
W el

V

]
= J

m3 = Pa (8.1)

We can therefore write down the grand canonical potential of the system

Ω = −P βV β − PαV α + γαβA
αβ +W el

V V β (8.2)

In unstable equilibrium, for a spherical nucleus with critical radius R∗

Using

, and collecting terms

For the spherical nucleus, we substitute volume and area, differentiate, and
rearrange

R∗ =
2γαβ

∆P −W el
V

(8.3)

It is equally straightforward to show that

W ∗
r =

16π

3

γ3
αβ(

∆P −W el
V

)2 (8.4)

Therefore, both R∗ and W ∗
r increase with increasing W el

V . In other words, strain
makes it more difficult for nucleation to occur. Note that for W el

V → ∆P , R∗ →
∞ and W ∗

r → ∞, similar to what happens in strain-free systems when ∆T
(unary case) or ∆X (binary case) approach zero, i.e. when the state of the
system approaches the solvus line. Strain can therefore be thought as shifting
the solvus to lower temperature. For the unary case We introduce the effective
undercooling/supersaturation

unary ∆P −W el
V = Cu∆T eff (8.5)

⇔Cu∆T −W el
V = Cu∆T eff (8.6)

⇔∆T eff = ∆T − W el
V

Cu
(8.7)

binary ∆P −W el
V = Cb∆Xeff (8.8)

⇔∆Xeff = ∆X − W el
V

Cb
(8.9)
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8 STRAIN EFFECTS IN NUCLEATION

This allows us to define define the shift of the equilibrium temperature in the
unary case, and of the solvus line in the binary case (Figure 1).

unary ∆∆T =
W el

V

Cu
binary ∆∆X =

W el
V

Cb
(8.10)

One could conclude that the reversible work of nucleation for coherent,
strained nuclei should always be larger than that for incoherent nuclei, where
there is no strain. However, the interfacial free energy of the coherent interface,
γC, can be considerably smaller than that of the totally incoherent interface, γi.
We therefore have to compare

W ∗,c
r =

16π

3

γ3
C(

Cb∆X −W el
V

)2 (8.11)

W ∗,i
r =

16π

3

γ3
i

(Cb∆X)
2 (8.12)

Comparing the graphs of Eq. (8.11) and Eq. (8.12), it is apparent that the

asymptote of W ∗,c
r is shifted by ∆∆X =

W el
V

Cb
towards greater ∆X (Figure 2).

For small ∆X , therefore W ∗,i
r < W ∗,c

r , and we expect incoherent nuclei to form
faster. However, as ∆X is small, the nucleation current will be small. For
large ∆X , we can neglect the contribution of the strain energy density to the
denominator in Eq. (8.12). With γi > γC, we find that the barrier W ∗,i

r > W ∗,c
r ;

therefore coherent nuclei form more readily.

Q: Derive an expression for the supersaturation at which there is a crossover
between W ∗,c

r and W ∗,i
r . Discuss the dependence of ∆Xxo on the ratio of the

interfacial free energies and other relevant properties.

Q: Replot Figure 2 with the W ∗
r expressed in units of kT . Assume that the

solvus temperature at ∆X = 0 is 473 K, and that the solvus is linear with a
slope of 100 K. Discuss the expected nucleation rate for coherent and incoher-
ent nuclei as a function of ∆X .

If we assume that the nucleus is not only spherical and incompressible, and
that the capillarity assumption holds, but also that the interface between nu-
cleus (β) and matrix (α) is coherent and that both are elastically isotropic, the
elastic strain energy density has a simple form

W el
V = 18ϵ2

µαKβ

3Kβ + 4µα
, (8.13)

where Kβ is the bulk modulus of the nucleus, µα is the shear modulus of the
matrix, and ϵ is the misfit parameter.

We can then consider two limiting cases,
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8 STRAIN EFFECTS IN NUCLEATION

Figure 8.1: Effect of strain on the solvus in a binary system. a) Schematic GX
diagram. Elastic strain energy shifts Gβ

m to higher energy. Note that this shift is
addition to the shift ∆PVm that results from any curvature of the interface. As
a consequence, a new equilibrium is established and the equilibrium composi-
tions shift to new values, Xα,str

1,eq and Xβ,str
1,eq . b) In the phase diagram, the shift

of the equilibrium in the presence of strain is equivalent to a shift of the solvus
by ∆∆X = Xα,str

1,eq − Xα
1,eq . As a consequence the effective supersaturation is re-

duced.
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9 KINETICS OF NUCLEATION IN THE SOLID STATE
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Figure 8.2: Plot of the reversible work of nucleation for incoherent (blue line) and
coherent nuclei (red line), using γi = 0.5 Jm−2; γC = 0.2 Jm−2; W el

V = 2 GPa;
Cb = 50 GPa.

• a soft nucleus in a stiff matrix, µα ≫ Kβ

W el
V ≈ 18ϵ2

µαKβ

�
��3Kβ + 4µα

=
9

2
ϵ2�

�µαKβ

��µ
α =

9

2
ϵ2Kβ (8.14)

• a stiff nucleus in a soft matrix, Kβ ≫ µα

W el
V ≈ 18ϵ2

µαKβ

3Kβ +��4µα = 6ϵ2
µα��Kβ

��Kβ
= 6ϵ2µα (8.15)

Finally, if we assume that matrix and nucleus both have cubic structure

ϵ = 1
3

V β
m − V α

m

V α
m

(8.16)

ϵ ≈ aβ − aα

aα
, (8.17)

where Vm is the molar volume and a the lattice parameter.

9 Kinetics of Nucleation in the Solid State

The nucleation current for homogeneous nucleation in unary systems can be
written in the form of an Arrhenius law with several prefactors that, to first
order, we can approximate by a constant.

ṄV = Z ν Anuc ρ e−
W∗

r
kT ≈ 1033

1

s · cm3
e−

W∗
r

kT (9.1)
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9 KINETICS OF NUCLEATION IN THE SOLID STATE

Recall that ρ is the number density of monomer units and the product ZνAnuc

can be interpreted as the frequency at which monomer units attach success-
fully to the nucleus. In unary systems, we can get away with ignoring the
temperature dependence of this frequency. However, in binary and multicom-
ponent systems, where thermally activated diffusion becomes much more im-
portant, we write instead

ṄV = ωe−
∆Gd
kT ρe−

W∗
r

kT = ωρe−
∆Gd+W∗

r
kT , (9.2)

where ω is again an attachment frequency with units of [s−1], and ∆Gd is the
free energy of activation for the relevant diffusive processes. We can directly
see that all other things remaining equal, the nucleation rate decreases if ∆Gd

increases. We therefore expect nucleation to be more rapid where diffusion is
“easy”.

Previously, we found that the nucleation rate in unary systems increases with
increasing supercooling, because the reversible work of nucleation decreases
(W ∗

r ∝ ∆T−2), but eventually decreases again at very low temperatures be-
cause it becomes impossible for the system to overcome even a small (but fi-
nite) barrier (section 4, Figures 2 and 3). In binary systems, the reversible work
of nucleation instead is proportional to ∆X−2 (section XYZ). ∆T is of course a
function of ∆X , and for the sake of the following discussion let’s pretend this
function is linear. This is equivalent of assuming that the solvus is a straight
line. If so, then we only need to consider the impact of the additional exponen-
tial term in binary systems (Figure 1). The term e−

∆Gd
kT goes to unity at high

temperatures and decreases rapidly as the temperature decreases. Generally
speaking, this reduces the nucleation rate across the board, but especially so at
low temperatures. It also shifts the maximum rate to slightly higher tempera-
ture, i.e. lower supercooling.

It is often useful to determine in which of two similar systems nucleation
would occur at a higher rate. Consider for example the precipitation α → α+β
from a binary mixture with slightly different initial compositions, X1

0 and
X2

0 (Figure 2A). The solvus line indicates the equilibrium temperature, below
which nucleation of β may occur. From X1

0 > X2
0 follows that T 1

eq > T 2
eq . Let’s

first look at the case where we compare rates at the same absolute temperature.
Clearly, ∆T 1 > ∆T 2. As a consequence, the reversible work of nucleation is
lower, and the nucleation current is therefore greater for the mixture with the
higher initial mole fraction for most of the temperature range that is relevant
for processing (Figure 2B). At very low temperatures, where the nucleation
rate is attenuated by ’freezing out’ of the thermally activated processes, both
rates become nearly identical.

If we, however, consider the rates at identical undercooling ∆T , the reversible
work of nucleation is the same for both compositions. The barrier to diffusion
being independent of temperature, one might conclude that the rates should
be identical. However, the absolute temperature does go into the rate in form
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9 KINETICS OF NUCLEATION IN THE SOLID STATE

0
0

Figure 9.1: Dependence of the nucleation current ṄV (black line) on temperature
T . ṄV is proportional to the product of two exponential terms. One is depen-
dent on the reversible work of nucleation (blue dashed line), which itself is de-
pendent on temperature, and approaches zero for temperatures approaching the
equilibrium temperature (where the barrier is infinite) and absolute zero (where
the thermal energy is insufficient to overcome even a small, but finite barrier).
This term goes through a maximum between at an intermediate temperature. The
other term represents diffusive processes (red dashed line), which increase with
increasing temperature but are strongly attenuated at low temperature. The prod-
uct of the two terms, and therefore the nucleation current, has the same general
shape as the first term. However, the maximum is shifted towards higher T .

of the factor of (kT )−1 in the exponent. In the example shown in Figure 2C,
this results in a higher nucleation rate for the mixture with the lower initial
mole fraction at low supercooling, and a crossover near the maximum.

Clearly, the assumption that the solvus is a linear function breaks down even
for small supercooling. In many terminal solid solutions, the solvus ap-
proaches the the T -axis. How does this affect the argument made above?

Now consider a system at a fixed initial composition. How would strain im-
pact the graph of the nucleation rate vs. temperature?

Recall that we previously found that heterogeneous nucleation is frequently
much faster than homogeneous nucleation. However, it is important to re-
member that both can and will occur in any given system. In complex systems,
such as solid materials, there are many internal features that can serve as het-
erogeneous nucleators. Before we can address kinetics, we should develop at
least a qualitative picture of these. In principle, any inhomogeneity that lowers
the free energy of a nucleus can act as a nucleator.

Roughly in order of increasing free energy of formation of such defects, there
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9 KINETICS OF NUCLEATION IN THE SOLID STATE
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Figure 9.2: A. hypothetical binary phase diagram for precipitation in the solid
state. B. Comparison of the homogeneous nucleation current of two binary mix-
tures with initial compositions X1

0 and X2
0 as a function of the temperature. C.

Comparison of the homogeneous nucleation current in the same system as (B),
but as a function of the supercooling ∆T .

are

• substitution defects and vacancies

• dislocations

• stacking faults and twins

• grain and interphase boundaries

• free surfaces

To better understand how defects can act as nucleators, consider the lattice
strain near a vacancy, substitutional defect, or an edge dislocation (Figure 3).

Figure 9.3: Lattice strain in the vicinity of defects. A. Vacancies result in tensile
(blue) strains. B. Depending on the radius, substitutional defects can result in
either compressive (here: red) or tensive strain. C. Edge dislocations are associated
with both tensile (blue) and compressive (red) strain. A nucleus with a molar
volume that is higher than that of the matrix would preferentially form in volumes
with tensile strain, whereas a nucleus with a smaller molar volume would find
more favorable conditions in a volume with compressive strain.
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9 KINETICS OF NUCLEATION IN THE SOLID STATE

In case of the vacancy, the absence of an atom creates a region of tensile strain
in the lattice. For a substitutional defect with an atomic radius that is larger
than the matrix, a compressive strain results. In an edge dislocation, the in-
sertion of a half plane results in regions with compressive strain and tensile
strain. If we assume that a phase β nucleates from α, and that the molar vol-
ume of the precipitate is greater than that of the matrix, i.e. V β

m > V α
m , then

we would expect that the free energy required to form a nucleus is lower in a
volume where there is tensile strain. Formation of the nucleus would not only
reduce the existing tensile strain, but also result in a lower final compressive
strain. We can express this in very general terms as

W ∗
r =

(
−∆P +W el

V

)
V β∗

m + γA−∆Gdefect, (9.3)

where ∆Gdefect represents the free energy gained from the interaction of the
defect and the nucleus. It can be rather tricky to accurately quantify this for
any given system.

We have previously treated nucleation at free surfaces, the simplest case of
heterogeneous nucleation on an infinitely stiff, flat surface, and found that the
nucleus takes the shape of a spherical cap (section 5; Figure 4A). A concep-
tually similar approach can be used to model nucleation at grain boundaries,
i.e. interfaces between single crystalline domains of the same phase, and inter-
phase boundaries, i.e. interfaces between single crystalline domains of differ-
ent phases.

Let’s consider the simplest case, a planar interface between two grains of ma-
trix α (Figure 4B). For simplicity, let’s further assume that the interface between
a nucleus of β and the matrix is totally incoherent with a surface free energy
γαβ , and independent of the nature of the α−α interface (with surface free en-
ergy γαα) that has five degrees of freedom. Under these conditions we expect
that the β nucleus will take a lentil shape that consists of two equal halves that
are each a spherical cap. Considering the force balance, we find for the contact
angle

cos θ =
γαα
2γαβ

(9.4)

We can write the reversible work of nucleation by considering the volume of
the nucleus and the interfacial areas generated and destroyed:

W ∗
r,gb = −∆P V β

m + 2γαβAαβ − γααAαα (9.5)

One can show that eq. 9.5 can be written as the product of the reversible work
of homogeneous nucleation and a structure factor that depends on θ.

W ∗
r,gb = W ∗

r,homSgb(θ) (9.6)
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9 KINETICS OF NUCLEATION IN THE SOLID STATE

Figure 9.4: Rendering of three-dimensional models of nuclei formed at a free sur-
face (A) and at grain boundaries (B-C). A. At a free surface (gray plane), the nu-
cleus takes the shape of a spherical cap with contact angle θ and radius R∗. B. At
an idealized grain boundary (gray plane) represented by one value for the surface
free energy, the nucleus has a lentil shape that consists of two spherical caps, again
with contact angle θ and radius R∗. C. At an idealized grain edge, i.e. the line of
intersection between three grain boundaries, the nucleus can be thought of as the
volume of intersection of three spheres of radius R∗. D. At an idealized grain cor-
ner, i.e. the point of intersection between four grain edges, the nucleus takes the
shape of volume of intersection of four spheres of radius R∗.

A similar argument can be made for nucleation at two-dimensional grain
edges (Figure 4C), where three planar grain boundaries meet (all dihedral an-
gles shall be 120◦), or at tetrahedral grain corners (Figure 4D) . We can now
compare the reversible work at different (idealized) grain boundaries (Figure
4B) and at free surfaces (Figure 4A) that we discussed previously:

W ∗
r,het = W ∗

r,homS(θ) (9.7)

W ∗
r,gb = W ∗

r,homSgb(θ) (9.8)

W ∗
r,ge = W ∗

r,homSge(θ) (9.9)

W ∗
r,gc = W ∗

r,homSgc(θ) (9.10)

, where S(θ) = 1
4 (cos θ+2)(1− cos θ)2. Without going into detail of the deriva-

tion and final form of the structure factors at grain boundaries, edges, and
corners, a comparison of the graphs is very informative (Figure 5). Note that
the contact angle for the free surface depends on three different surface ener-
gies, whereas the for all other cases, it only depends on γαα and γαβ∗ . It is

42



10 SOLIDIFICATION IN UNARY SYSTEMS

therefore not meaningful to plot the structure factor S(θ) on the same axes as
the other three.

Figure 9.5: Graph of the structure factors for an idealized grain boundary (red),
grain edge (green), and grain corner (blue) plotted on a linear (A) and logarithmic
(B) vertical axis against the contact angle on the horizontal axis. Note that the
structure factors all converge on 1 for θ → 90◦. At this contact angle, the nucleus
is spherical and thus identical to the nucleus formed by homogeneous nucleation.
For all angles smaller than 90◦, the reversible work of nucleation at a grain corner
is smaller than that at grain boundaries, and that at grain corners is smaller still.
Note that structure factors for grain edges and corners have vertical asymptotes,
meaning the go to zero for an angle greater than 0◦. This can be seen better in (B).
Why is that and what are the exact angles?

Imagine an idealized polycrystal of α, where all grains are identical in size, and
all grain boundaries, edges, and corners can be described using the assump-
tions we made above. What is the grain boundary area, grain edge length,
and number of grain corners (per unit volume) as a function of the grain size?
Where is nucleation β going to occur first? Is nucleation only going to occur
there? Briefly describe the sequence of nucleation events that you would ex-
pect in such a material.

10 Solidification in Unary Systems

In this section, we will look at solidification of pure phases, for instance the
solidification of a metal or polymer melt, or the freezing of water. We are par-
ticularly interested in what happens at the interface between the solid and the
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10 SOLIDIFICATION IN UNARY SYSTEMS

liquid. We differentiate two general cases, diffuse interfaces and (atomically)
flat interfaces (Figure 1).

Figure 10.1: Schematic drawing of idealized structure of atomic solid-liquid inter-
faces. A. Diffuse, atomically rough interface of crystalline solid (black) and liquid
(blue). B. Atomically flat interface.

Diffuse interfaces result when atoms or molecules in the liquid that attach to
the surface of the solid have a high probability of sticking to it. This results
in an atomically rough surface. Movement of the interface is then controlled
by how quickly atoms are transported to the interface by diffusion. A useful
rule of thumb is that if the entropy of fusion is small, ∆S◦

f ≤ 10 J
K , which is

true for many metals, diffuse interfaces form, and the process of solidification
is said to be diffusion-controlled. Atomically flat interfaces form when the
entropy of fusion is larger. In this case, atoms will stick only rarely, and if
they stick will migrate to ledges and kink sites to incorporate into the lattice.
This process results in rather flat surfaces and is said to be interface controlled.
For the remainder of the chapter, we will only consider diffusion-controlled
processes.

During solidification, the solid-liquid interface moves with a velocity v ([v] =
m
s ). As some liquid is converted into solid, heat is released. The amount of heat

released per unit volume is the latent heat of solidification, LV ([LV] =
J
m3 ),

which is related to the standard enthalpy of fusion ∆H◦
f .

In a unidirectional solidification, the amount of heat released per unit area of
interface and unit time is qi = vLV, ([qi] = J·m

m3·s = W
m2 ). This heat will increase

the temperature of the interface unless it is transported away. Heat transport
depends on the thermal conductivity k ([k] = W

mK ) and the temperature gradi-
ent dT

dx :

q = −k
dT

dx
(10.1)

For unidirectional solidification in the positive x-axis direction, we can then
write

ks
dTs

dx
= kL

dTL

dx
+ vLV (10.2)
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10 SOLIDIFICATION IN UNARY SYSTEMS

, where the subscript "s" indicates heat transport in the solid and the subscript
"L" indicates heat transport in the liquid.

Figure 10.2: Unidirectional solidification of a cold solid into a hot liquid. A. One
dimensional temperature profile across the interface. B. Two dimensional con-
tour map of the same scenario as in (A). Note that contour lines correspond to
isotherms. C. A small fluctuation in growth speed results in a protrusion (bump)
in the interface. Close to the bump, isotherm shape is affected, but further away
isotherms remain the same. D. Comparison of 1D temperature profiles across the
flat part of the interface (red/black) and across the bump (green). Note decrease
in interface velocity at the bump compared to flat interface.

Consider the scenario in Figure 2A. Here, the solid is cold and the liquid is
hot. There is a steep temperature gradient in the solid, and heat is moved
away from the interface. The temperature gradient in the liquid is shallower,
but heat is transported towards the interface. Under these conditions, we can
rewrite Eq. (2) to find the interface velocity

v =
ks

dTs

dx − kL
dTL

dx

LV
(10.3)

If the heat conductivities in the solid and the liquid are similar (ks ≈ kL), then
we can see that from dTs

dx > dTL

dx follows that the interface velocity is positive,
meaning that the solid grows at the expense of the liquid.

Now let’s consider the growth front in two dimensions (Figure 2B). An impor-
tant question is whether the interface will keep its flat (but not atomically flat)
shape during the solidification. A priori, the amount of heat removed through
the solid and the amount of heat delivered through the liquid are the same
all along the interface. We therefore expect that the velocity is constant every-
where. However, let’s assume that by some fluctuation, a small protrusion or
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10 SOLIDIFICATION IN UNARY SYSTEMS

"bump" forms on the interface (Figure 2C). This will result in a small change of
the isotherm shape in the vicinity of the bump, but we expect that the tempera-
ture contours far away from the bump will be identical to the case where there
is no bump. Inspecting Figure 2C or the one-dimension temperature profile
in Figure 2D, we can see that the temperature gradient in the liquid ahead of
the bump becomes steeper compared to the flat interface. At the same time,
the temperature gradient in solid becomes shallower. This means that more
heat arrives and less heat is removed at the interface. As a consequence, the
numerator in Eq. (3) and therefore the velocity of the interface of the bump
decreases. This means that the flat interface will catch up with the bump, and
the flat interface shape will be restored. We call this interface "stable".
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10 SOLIDIFICATION IN UNARY SYSTEMS

Now consider the case where the solid is hot and the liquid is supercooled
(Figure 3). This scenario describes a small piece of solid phase suspended in
the liquid phase. There is no temperature gradient in the solid, and heat is
transported away from the interface into the supercooled liquid (Figure 3A).
As before, let’s assume the growth velocity in the x-axis direction is uniform
and add another spatial dimension (Figure 3B). If by some fluctuation, a small
bump forms where the interface juts into the liquid (Figure 3C), we now find
the temperature gradient ahead of the bump is steeper than ahead of the flat
interface (Figure 3C&D). As a consequence, the numerator in Eq. (3) and there-
fore the interface velocity of the bump increases, further increasing the steep-
ness of the gradient, resulting in further increase of the growth speed. As a
consequence, the interface is not stable against small perturbations.

C

D
bump

flat

B

solid
interface

liquidA

Figure 10.3: Unidirectional solidification of a hot solid into a supercooled liquid.
A. One dimensional temperature profile across the interface. B. Two dimensional
contour map of the same scenario as in (A). Note that contour lines correspond to
isotherms. C. A small fluctuation in growth speed results in a protrusion (bump)
in the interface. Close to the bump, isotherm shape is affected, but further away
isotherms remain the same. D. Comparison of 1D temperature profiles across the
flat part of the interface (red/black) and across the bump (green). Note that the
interface velocity at the bump increases against the velocity of the flat interface.

A common consequence of growth conditions that result in instable inter-
faces is the development of a dendritic microstructure (Figure 4). Acceler-
ated growth of the initial protrusion results in a finger-like protrusion. The
side-walls of this primary arm are also affected by interface instability and
secondary arms can form. This process remains poorly understood. Never-
theless, secondary arm spacing in some systems provides information on the
thermal history of a material. Secondary arms can branch again, resulting in
tertiary arms. Of course, branching can and will occur in all three spatial di-
mensions. Very generally speaking, primary dendrites are oriented towards
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11 SOLIDIFICATION IN BINARY SYSTEMS

the steepest temperature gradient. However, as dendrites are single crystals,
orientation-dependent changes in growth speed affect the orientation of pri-
mary, secondary, and tertiary arms.

Figure 10.4: Development of dendritic microstructure.

11 Solidification in Binary Systems

In this section, we will extend our analysis of solidification to binary systems.
The concepts discussed are general, and apply to solidification of molten al-
loys, freezing of biological specimens, of the formation of microstructures from
polymer melts, as long as growth is diffusion controlled, i.e. occurs with a dif-
fuse interface.

Before we begin, let’s consider an idealized binary phase diagram (Figure 1)
in which the coexistence lines, and in particular liquidus TL(X) and solidus
Ts(X) lines are all linear functions.

Figure 11.1: An idealized binary phase diagram where coexistence lines are linear
functions of the composition X . Note that we drop the index for the component
for convenience.

We can then write

TL(X) = Tα
m + bLX (11.1)

Ts(X) = Tα
m + bsX, (11.2)
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11 SOLIDIFICATION IN BINARY SYSTEMS

where bL = dTL

dx is the slope of the liquidus and bs = dTs

dx is the slope of the
solidus.

For any given isotherm (tie line) in the α+L 2-phase field, the intercept of the
tie line with the solidus shall be at Xs and the intercept with the liquidus at
XL.

Therefore,

T = TL(XL) = Ts(Xs) (11.3)
⇔Tα

m + bLXL = Tα
m + bsXs, (11.4)

⇔bLXL = +bsXs (11.5)

⇔Xs

XL
=

bL
bs

≡ k (11.6)

where k is a constant that will become useful.

Consider now the solidification of L with initial composition X0 (Figure 2A).
Solidification will begin at TL(X0) and the first formed solid will have com-
position kX0. The last liquid to solidify will have composition X0

k and will
solidify at TL(

X0

k ). At some temperature T , where TL(X0) > T > TL(
X0

k ), the
equilibrium composition of the solid is Xs(T ) and that of the liquid is XL(T ),
where Xs(T )

XL(T ) = k.

0 0.2 0.4 0.6 0.8 1

interface 
@ T

A B

Figure 11.2: Solidification from the melt. A. Idealized phase diagram in which
liquidus and solidus are linear functions of composition. Solidification begins at
TL(X0) and ends at TL(X0k

−1). At any intermediate temperature T , the equilib-
rium composition of the solid is Xs(T ) and that of the liquid is XL(T ). B. Con-
centration profile across the interface in the direction of solidification, at some
intermediate temperature T .

If we assume that the system is at equilibrium at any time, we can draw the
concentration profile we expect to see for a system that solidifies unidirection-
ally (Figure 2B). For unidirectional solidification we can define the degree of
solidification, fs, as the volume fraction of solid that has formed. This is equiv-
alent to the x-position of the interface, xi, divided by the total length in the
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11 SOLIDIFICATION IN BINARY SYSTEMS

direction of solidification, xtot.

fs =
Vs

Vs + VL
=

xi

xtot
(11.7)

(11.8)

If we assume that the molar volume of the liquid and the solid are identical,
it is straightforward to determine fs for a given temperature using the lever
rule. At some temperature T between TL(X0) and TL(

X0

k ), the composition of
the solid will be Xs(T ) and that of the liquid XL(T ).

Let’s look at an example, where Tα
m = 1000 K, bL = −400 K, bs = −800 K,

and thus k = 1
2 . With X0 = 0.15, we find the temperature at which the first

solid forms to be TL(0.15) = 940 K, and the temperature which the entire
system is solid TL(2 · 0.15) = 880 K. The composition of the first-formed
solid is Xs(940 K) = 0.075 and that of the last bit of liquid is XL(880 K) = 0.3
(Figure 3A). Using the lever rule, we can determine fs for several temperatures
between the onset and end of solidification (Figure 3B). Using equations (1)
and (2), or by looking at the phase diagram, we can determine the composition
of the solid and the liquid at these intermediate temperatures (Figure 3C).

Figure 11.3: An example of a binary solidification with perfect mixing in the solid
and liquid phase. A. Idealized phase diagram where k = 1

2
. B. Plot of the tem-

perature of the interface as a function of the fractional degree of solidification (fs),
calculated using the lever rule. C. Plot of the equilibrium composition of the solid
and the liquid as a function of the fractional degree of solidification.

This then allows us to draw concentration profiles in the direction of the solid-
ification (Figure 4). It is a good exercise to find an analytical solution for the
dependence of fs on T and of the composition of the liquid and solid phases on
fs. This will allow you to reproduce the plots in Figures 3 and 4 using Matlab.
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11 SOLIDIFICATION IN BINARY SYSTEMS

Figure 11.4: Plots of the concentration profiles in the direction of solidification for
the system in Figure 3, at the very beginning and end of the solidification process,
and for several intermediate stages. Note that T and fs are interdependent as
shown in Figure 3B.

The assumption that the system goes to equilibrium at each temperature is un-
realistic. If a solidification occurs at a reasonable rate, diffusion in the solid is
not likely to have a major impact. Therefore, let’s assume there is no diffu-
sion in the solid, but perfect mixing, by convection and diffusion, in the liquid.
The Scheil equations, also known as the non-equilibrium lever rule, then de-
scribe the composition of the solid and the liquid as a function of the fractional
degree of solidification.

Xs = kX0(1− fs)
k−1 (11.9)

XL = X0(1− fs)
k−1 (11.10)

For a derivation of the Scheil equations, see P&E. The composition of the solid
and the liquid phases for the system in Figure 3A are shown in Figure 5. Note
that while the composition of the liquid changes with time, the composition
of the solid changes in space. The first formed solid, which precipitates at
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11 SOLIDIFICATION IN BINARY SYSTEMS

the highest temperature, has the lowest mole fraction of the minority compo-
nent. As the phase transformation progresses, and the temperature drops, the
rejected component accumulates in the liquid phase, and its concentration in
the solid slowly increases. Unlike the perfectly mixed sample discussed previ-
ously, the mole fraction of the minority component in the liquid can go to very
high values. Indeed, the model predicts that for k < 1, XL → ∞ as fs → 1.
This is clearly unphysical. Going back to the phase diagram in Figure 1, what
would you expect to happen instead?

0

0.5

1

0.2 0.4 0.6 0.8 1

liquid solid

Figure 11.5: Unidirectional solidification with no mixing in the solid and perfect
mixing in the liquid is described by the Scheil equations. Here, the composition of
the solid and the liquid as a function of the fractional degree of solidification are
plotted for the system described by Figure 3A.

Using the Scheil equations, or Figure 5, we can predict the shape of concentra-
tion profiles in the direction of solidification at different values for fs (Figure
6). Note that the prediction is unphysical for high fs.

Finally, let’s consider the scenario that there is no mixing in the solid, and
only diffusion, but no convection in the liquid phase. As before, the first solid
formed has composition kX0. (Figure 7A). Solute rejected from the solid en-
ters the liquid. It is transported away from the interface by diffusion. At the
interface, the mole fraction of the solute is higher than the initial value. This is
referred to a solute "pile-up". As a consequence of the pile-up, the temperature
has to drop before more solid can form. Once it does, the solid that precipi-
tates will have a higher mole fraction of solute. However, some solute is still
rejected, driving up the mole fraction of the solute in the liquid further. One
can show that after an initial transient, a steady state is established (Figure 7B).
At steady state, the mole fraction of the solute in the solid is X0, and that in
the liquid is X0k

−1. The temperature is the liquidus temperature TL(X0k
−1).

In steady state, the mole fraction of the solute on the liquid side of the interface
at steady state is decays from X0k

−1 right at the interface to X0 far from the
interface. One can show that the the composition of the liquid as a function
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0
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interface
@T= 940 K,
fs = 0% liquid solid

first solid

interface
@fs = 25%

interface
@fs = 50%

interface
@fs = 75%

interface
@fs = 100%

Figure 11.6: Concentration profiles in the direction of solidification for the system
in Figure 5. Note that the resulting solid is graded in terms of its composition.
However, the average concentration of the minority component in the solid, X̄s,
approaches X0 for high fs.

can be written as

XL(x) = X0

[
1 + 1−k

k e−
v
D x
]

(11.11)

= X0 +
[
X0

k −X0

]
e−

v
D x (11.12)

, where v is the interface velocity, D is the diffusivity of the solute in the liquid,
and x is the distance from the interface.

Having an analytical solution for the local mole fraction of the solute, or, in
other words, knowing the shape of the pile-up, allows us to predict the local
liquidus temperature, TL(x). The local liquidus temperature simply tells us at
what temperature we would expect solidification to be possible given the local
mole fraction of the solute. Using Eq. (1), we write
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0 10

liquid

pile-up

before steady state

in steady state

interface

initial transient

solid

pile-up

first solid

0

0.15
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0
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Figure 11.7: Concentration profile for a unidirectional solidification with no mix-
ing in the solid and diffusive transport only in the liquid. A. As solute is rejected
from the first-precipitated solid, it piles up on the liquid side of the interface. As
a result, the temperature needs to drop for further soldification to occur, and the
mole fraction of the solute in the solid increases during the initial transient. B.
After some time, a steady state is reached where the temperature of the interface
is constant, the composition of the solid is X0, and the composition of the liquid
in local equilibrium with the solid is X0k

−1.

TL(XL(x)) = Tα
m + bLXL(x) (11.13)

(11.14)

Using Eq. (12),

TL(x) = Tα
m + bLX0 + bL

[
X0

k −X0

]
e−

v
D x (11.15)

= Tα
m + bLX0 +

[
bL

X0

k − bLX0

]
e−

v
D x (11.16)

Note that Tα
m + bLX0 = TL(X0).

TL(x) = TL(X0) +
[
bL

X0

k − bLX0

]
e−

v
D x (11.17)

Next, let’s expand the square brackets by adding Tα
m − Tα

m = 0

TL(x) = TL(X0) +
[
Tα
m + bL

X0

k − (Tα
m + bLX0)

]
e−

v
D x (11.18)

Using Tα
m + bL

X0

k = TL(
X0

k ) and, once more, Tα
m + bLX0 = TL(X0), we rewrite

as

TL(x) = TL(X0) +
[
TL(

X0

k )− TL(X0)
]
e−

v
D x (11.19)

From Eq. 19, we see that the exponential decay in solute mole fraction with
in creasing distance x from the interface (Figure 8A) causes a corresponding
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increase in the local liquidus temperature (Figure 8B). At the interface, x = 0,
and TL(x) = TL(

X0

k ). Far from the interface, x → ∞ and TL(x) → TL(X0). If
the local temperature T (x) is below the local liquidus temperature, the system
is locally supercooled. Because this supercooling is a consequence of the local
concentration of the constituents (components) of the binary, this phenomenon
is referred to as constitutional supercooling.

Constitutional supercooling is a requirement for interface instability in binary
system. Consider a system where the actual temperature in the solid and liq-
uid is given by T (x). If the thermal conductivities are approximately equal,
we expect that the temperature gradient in the solid is a bit steeper than in
the liquid, resulting in a positive interface velocity. A protrusion that forms
on the interface may thus jut into liquid that has a lower local mole fraction of
solute than at the flat interface, a higher local liquidus temperature, and thus a
higher supercooling. The protrusion could then grow more rapidly, resulting
in an unstable interface. The only way to avoid constitutional supercooling
is my increasing the temperature gradient in the liquid such that it is steeper
than the slope of the local liquidus at the interface.

We can determine this slope from Eq. 19:

dT

dx

∣∣∣∣
crit

≥ dT (x)

dx

∣∣∣∣
x=0

=
TL(X0)− TL(

X0

k )
D
v

(11.20)

Note that the numerator is a characteristic of the phase diagram and initial
composition. The denominator is the characteristic thickness of the diffusion
layer on the liquid side of the interface, i.e. the length x over which the expo-
nential term falls from 1 to e−1.
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12 PRECIPITATE GROWTH

Figure 11.8: Constitutional undercooling in binary systems. A. Plot of local com-
position XL(x) of the liquid ahead of the interface (red line) in unidirectional so-
lidification in steady state. B. Plot of the local liquidus temperature TL(x) (blue
line) for the same system as in (A). If the actual temperature in the solid and liq-
uid is described by T (x) (green line), the local actual temperature is below the
local liquidus temperature in the shaded region. The system is said to be con-
stitutionally supercooled in this region. Constitutional supercooling can only be
avoided if the gradient of the temperature at the interface exceeds a critical value
(green dashed line).

12 Precipitate Growth

In this section, we will look at growth of a small precipitate of β phase that
shall be rich in component 2, from a matrix α that is rich in component 1. We
know that if growth is isothermal at some temperature T < Tsolvus, and the ini-
tial concentration of component 2 in α is C0, then we can find the equilibrium
concentration of component 2 in the matrix, Cα

eq , and that in the precipitate Cβ
eq

using a tie line in the phase diagram (Figure 1). We shall define the supersatu-
ration ∆C ≡ C0 − Cα

eq and the undercooling as ∆T ≡ Tsolvus(C0)− T .

Many precipitates are plate, disk, or needle shaped, with coherent interfaces
and incoherent interfaces. Because of strain at the the coherent interface, the
local supersaturation is lower and growth is typically slower than at incoher-
ent interfaces (Figure 2a).
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12 PRECIPITATE GROWTH

Figure 12.1: Phase diagram for β precipitate growing in α matrix with initial con-
centration C◦ at some temperature T .

Figure 12.2: A. Schematic drawing of a precipitate growing only in the direction
of the incoherent interface, i.e. the x-direction. The curvature of the interface
is ignored. The origin is in the center of the precipitate, and the position of the
interface at time t is given by h(t). B. Concentration profile for component 2 in the
x-direction. Note that mass conservation dictates that the shaded areas A1 and A2

are identical.

Consider the concentration of component 2 along a hypothetical line from the
midpoint of the precipitate in the growth direction. A plot of this concentra-
tion C2 versus the distance x is called a concentration profile (Figure 2B). From
x = 0 right up to the interface at x = h(t), we are inside the precipitate and
C2 = Cβ

eq . Just to the right of the interface, the matrix is in local equilibrium
with the precipitate, and C2 = Cα

eq . At large x, the concentration of compo-
nent two should approach the initial concentration C2 → C0. Thus, there is a
concentration gradient. Units of component 2 diffuse down this gradient un-
til the local concentration at the interface is larger than the equilibrium value.
This allows the precipitate to grow and return to local equilibrium. At any
given time, mass conservation dictates that the shaded areas in Figure 2B are
the same. Therefore,

h(t)(Cβ
eq − C0) =

ˆ ∞

h(t)

(C0 − C(x)) dx (12.1)

To simplify this a little bit, let’s assume we are in quasi steady state. This
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12 PRECIPITATE GROWTH

means that the concentration gradient on the right side of the interface is a
linear function of the distance (Figure 3A).

Figure 12.3: A. Concentration profile in quasi-steady state. B. To move the in-
terface by an infinitesimal amount dh to the right, an amount of component 2
corresponding to the shaded area has to diffuse down the concentration gradient.

Therefore,

h(t)(Cβ
eq − C0) =

1
2

(
C0 − Cα

eq

)
L = 1

2∆CL (12.2)

⇔ L =
2(Cβ

eq − C0)h(t)

∆C
(12.3)

To grow the precipitate by an infinitesimal volume element dV = Adh, where
A is the cross sectional area and dh the infinitesimal change in thickness, we
have to convert an volume element of the matrix α at Cα

eq to β at Cβ
eq . This

requires that the following number of units of component 2 enter the volume
of α from the right.

dN2 = −
(
Cβ

eq − Cα
eq

)
Adh (12.4)

Component 2 units arrive at the interface by diffusion down the concentration
gradient. In the general case, this number can be calculated if we know the
flux, the cross sectional area, and the infinitesimal amount of time dt that it
takes for the interface to move.

dN2 = J2Adt = −D
∂C

∂x
Adt (12.5)

Therefore,

−
(
Cβ

eq − Cα
eq

)
Adh = −D

∂C

∂x
Adt (12.6)

⇔dh

dt
=

D ∂C
∂x

(Cβ
eq − Cα

eq)
(12.7)

Assuming steady state, we can substitute ∂C
∂x = ∆C

L

⇔ dh

dt
=

D∆C

(Cβ
eq − Cα

eq)L
(12.8)
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Using Eq. (3),

⇔hdh

dt
=

D∆C

2(Cβ
eq − Cα

eq)(C
β
eq − C0)

(12.9)

⇔hdh =
D∆C

2(Cβ
eq − Cα

eq)(C
β
eq − C0)

dt (12.10)

⇒
ˆ

hdh =
D∆C

2(Cβ
eq − Cα

eq)(C
β
eq − C0)

ˆ
dt (12.11)

⇔ 1
2h

2 =
∆CDt

2(Cβ
eq − Cα

eq)(C
β
eq − C0)

(12.12)

⇒h =
∆C

√
Dt√

(Cβ
eq − Cα

eq)(C
β
eq − C0)

(12.13)

Most of the time, growth will occur at small supersaturation. Assuming

∆C → 0 (12.14)
⇔C0 − Cα

eq → 0 (12.15)

⇔C0 ≈ Cα
eq (12.16)

, we can replace the term (Cβ
eq−C0) in the denominator of Eq. 13 by (Cβ

eq−Cα
eq).

⇒ h(t) ≈ ∆C
√
Dt√

(Cβ
eq − Cα

eq)(C
β
eq − Cα

eq)
(12.17)

≈ ∆C
√
Dt

(Cβ
eq − Cα

eq)
(12.18)

Using this approximation, we can write the interface velocity

v(t) =
dh(t)

dt
≈ ∆C

2(Cβ
eq − Cα

eq)

√
D

t
(12.19)

With the final assumption that the molar volume Vm is independent of the
concentration of the components Ci, we can replace Ci with Xi.

h(t) ≈ ∆X
√
Dt

(Xβ
eq −Xα

eq)
(12.20)

v(t) ≈ ∆X

2(Xβ
eq −Xα

eq)

√
D

t
(12.21)

59



13 GROWTH AND CURVATURE

Note that the thickness of the interface h(t) ∝ ∆X
√
Dt, meaning that growth

is faster at higher supersaturation. However, for the thickness to grow to twice
its value, the time required increases by a factor of 4! For the interface velocity,

v(t) ∝ ∆X
√

D
t , meaning again that the velocity increases directly proportional

to the supersaturation. However, the growth speed decreases over time! This
is because the concentration gradient in the depletion zone gets increasingly
shallow. Finally, through the diffusivity, temperature has a very strong impact
on interface position and velocity.

Q. Sketch a plot of the temperature (y-axis) vs. the interface velocity (x-axis).
Which variables depend (strongly) on T ? What is the (approximate) propor-
tionality of the individual terms?

13 Growth and Curvature

In this section, we will consider the effect of curvature at the interface of a pre-
cipitate and the matrix. Curvature effects are universal and important both in
condensed matter and the gas phase. We will here only consider binary sys-
tems. We are interested in the equilibrium of a spherical particle with radius r
of phase β in a matrix α (Figure 1a). As before, we can describe this situation
in a GX diagram (Figure 1b).

BA

Figure 13.1: A. Schematic drawing of a β phase precipitate with radius r in equilib-
rium with the surrounding α matrix. The curved interface gives rise to a Laplace
pressure ∆P = P β − Pα. B. GX diagram of α in equilibrium with a β-precipitate
with a flat interface (r = ∞, blue common tangent) and in equilibrium with a β-
precipitate with a curved interface of radius r (red common tangent). The points
of tangency reveal the mole fraction of component 2 in the matrix and the precip-
itate for the two equilibria.

While the molar free energy of the α phase is described by Gα
m, that of β de-

pends on the radius of curvature. If β is incompressible, the molar free energy
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of a spherical particle with radius r is shifted towards higher free energy by

∆P Vm =
2γVm

r
(13.1)

Using the common tangent approach, we can determine the equilibrium mole
fraction of component 2 in the two phases, Xα

r , and Xβ
r . Note that for r → ∞,

the system goes to its final equilibrium. Therefore, Xα
∞ = Xα

eq and Xβ
∞ = Xβ

eq

and the nominal supersaturation is ∆X = Xα
r −Xα

∞.

Recall that for incompressible systems, the free energy of formation of a spher-
ical particle of phase β from a matrix α can be expressed as

∆Gα→α+β
m = − ∂2Gm

∂X2
2

∣∣∣∣
Xα

∞

∆X (Xβ
∞ −Xα

∞) (13.2)

Furthermore, we found that

∆Gα→α+β
m = −∆P Vm (13.3)

⇔2γVm

r
=

∂2Gm

∂X2
2

∣∣∣∣
Xα

∞

∆X (Xβ
∞ −Xα

∞) (13.4)

How can we evaluate the second derivative? Rewrite

∂2Gm

∂X2
2

=
∂

∂X2

[
∂Gm

∂X2

]
(13.5)

The first derivative of the molar free energy is the difference in chemical po-
tentials

∂2Gm

∂X2
2

=
∂

∂X2
[µ2 − µ1] (13.6)

=
∂

∂X2
[RT ln a2 −RT ln a1] (13.7)

, which can be expressed in terms of the activities of components 1 and 2. Now
if we consider ideal dilute solutions, we can use Rault’s law for the solvent

lim
X2→0

a1 = X1 = 1−X2 (13.8)

, and Henry’s law for the solute

lim
X2→0

a2 = ΓX2 (13.9)

, where Γ is the activity coefficient.
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Substituting (8) and (9) into (7),

∂2Gm

∂X2
2

=
∂

∂X2
[RT ln (ΓX2)−RT ln (1−X2)] (13.10)

= RT
∂

∂X2
[ln Γ + lnX2 − ln (1−X2)] (13.11)

Using limx→0 ln (1− x) = −x (why? write down Taylor expansion and you
will know), and differentiating

∂2Gm

∂X2
2

= RT

[
0 +

1

X2
+ 1

]
(13.12)

In the limit of small X2, the second term in the sum is much larger that the
third, and we can write

∂2Gm

∂X2
2

∣∣∣∣
Xα

∞

≈ RT

Xα
∞

(13.13)

With the final assumption that Xβ
r ≈ Xβ

∞ ≈ 1 and Xα
∞ → 0, the difference

Xβ
∞ − Xα

∞ → 1. Substituting into Eq. (4) and rearranging, we arrive at the
Gibbs-Thomson equation.

2γVm

r
= Xα

∞∆X (13.14)

⇔∆X =
2γVm

RTr
Xα

∞ (13.15)

⇔Xα
r =

2γVm

RTr
Xα

∞ +Xα
∞ (13.16)

⇔Xα
r

Xα
∞

=
2γVm

RTr
+ 1 (13.17)

The Gibbs-Thomson equation is a very important result. It allows us to predict
the equilibrium mole fraction of components in a matrix that is in equilibrium
with a precipitate of a given radius (of curvature). From Eqs. 15 and 17, we
see that

Xα
r ≥ Xα

∞ (13.18)

Xα
r ∝ 1

r
, ∆X ∝ 1

r
(13.19)

r → ∞ ⇒ Xα
r → Xα

∞ (13.20)

In other words, the mole fraction of component 2 in the matrix that is in equi-
librium with a small precipitate (small radius of curvature) is higher than that
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in a matrix that is in equilibrium with a large precipitate (large radius of cur-
vature). We can also say that the matrix in equilibrium with the smaller pre-
cipitate has higher nominal supersaturation. Note, however, that the nominal
supersaturation is calculated with respect to a precipitate with infinite radius.

Sometimes it is more useful to consider the effective supersaturation of the
matrix with respect to a precipitate of a given radius. Let’s assume that the
mole fraction of component 2 in the matrix is Xα

0 , and that at this mole frac-
tion precipitates of radius r∗ are in equilibrium, i.e. Xα

r∗ = Xα
0 . The effective

supersaturation of the matrix for a particle with radius r is then

∆Xeff = Xα
r∗ −Xα

r (13.21)

=

[
2γVm

RTr∗
Xα

∞ +Xα
∞

]
−
[
2γVm

RTr
Xα

∞ +Xα
∞

]
(13.22)

=
2γVm

RT
Xα

∞

[
1

r∗
− 1

r

]
(13.23)

=
2γVm

RT
Xα

∞

[
1

r∗
− 1

r

]
r∗

r∗
, (13.24)

=
2γVm

RTr∗
Xα

∞

[
1− r∗

r

]
(13.25)

= ∆X0

[
1− r∗

r

]
(13.26)

where
∆X0 = Xα

r∗ −Xα
∞ =

2γVm

RTr∗
Xα

∞ (13.27)

is the nominal supersaturation of the matrix in equilibrium with a ppt of radius
r∗.

Inspection of Eq. 26 reveals that the effective supersaturation is positive for
r > r∗, equal to zero for r = r∗, and negative for r < r∗. This means that
only particles with a radius that is larger than r∗ will grow, thereby take up
component 2 from the supersaturated matrix, and thus lower the local super-
saturation until equilibrium is reached. Ppt with radii smaller than r∗ on the
other hand will shrink, releasing component 2 into the matrix and reducing
the local undersaturation in the matrix. This is sometimes expressed as say-
ing that the precipitate dissolves in the matrix. Similarly, we can say that the
Gibbs-Thomson equation predicts that the solubility of small precipitates is
higher than that of large precipitates.

Only ppt that are exactly at radius r will neither shrink nor grow. Note that the
equilibrium that the latter precipitates are in is unstable, meaning that if they
grow by even a tiny amount in a random fluctuation, they will keep growing.
This is exactly the same situation that we discussed for the nucleus. Note
that for nucleation, we typically deal with high supersaturation and consider
the formation of one nucleus while the matrix composition remains constant.
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13 GROWTH AND CURVATURE

Figure 13.2: Schematic drawing of three β precipitates with different radii in the
α matrix. Only the particle with radius r∗ is in equilibrium with the matrix with
mole fraction X0 = Xα

r∗ . Consequently, ∆Xeff = 0 for this precipitate. Eq. 26 tells
us that ∆Xeff < 0 for the small precipitate, and ∆Xeff > 0 for the large precip-
itate. A negative effective supersaturation results in dissolution of the precipitate
until local equilibrium is established, and positive effective supersaturation will
lead to growth.

In growth, we consider that many precipitates are already present, and the
supersaturation is much lower.

Q: Plot the ratio of ∆Xeff over ∆X0 vs. r
r∗ .

In the previous paragraphs, we considered precipitates of different radii in a
matrix with a fixed mole fraction of component 2, essentially treating them
as independent systems. What happens if we instead assume that the matrix
shall have an average (but not constant) composition X0 = Xα

r∗ , and that there
are precipitates of different sizes distributed in the matrix? Consider the hy-
pothetical situation in Figure 3, where three precipitates, one with r1 < r∗, one
with r2 = r∗, and one with r3 > r∗, sit next to each other.

For each of the precipitates, the composition of the matrix in local equilibrium
is set by the Gibbs-Thomson equation. This means that the mole fraction of
component 2 in the matrix close to the smallest precipitate is higher than the
average composition, that in matrix in local equilibrium with the intermediate
precipitate is exactly equal to the average composition, and that in the matrix
in local equilibrium with the large precipitate is lower than the average value.

We now know how to determine whether a precipitate shrinks, remains the
same, or grows, and what the effective supersaturation is. The next step is
to find the interface velocity. In order to account for curvature, we need to
consider growth in three dimensional space. For a spherical precipitate, it
is sufficient to determine the radial growth velocity. To do so, consider the
concentration profile from the center of the precipitate in the radial direction
(Figure 4A). While the profile looks very similar to the disk, plate, or needle
shaped precipitates we considered previously, the shaded areas are not iden-
tical in size. Based on the shape of the precipitate, conservation of mass, and
using a quasi-steady-state approximation (Figure 4B), however, it is possible
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13 GROWTH AND CURVATURE

Figure 13.3: A. Schematic drawing of three β precipitates with different radii in
the α matrix. Each precipitate is in local equilibrium, meaning that the matrix just
outside the interface has the composition Xα

ri . The average composition of α is
about Xα

r2 . B. Concentration profile along the dashed line in (A). Because Xα
r1 >

Xα
r2 , there is a concentration gradient from the interface of the small precipitate to

the surrounding matrix that results in a diffusive flux of component 2 away from
the interface. This results in dissolution of the precipitate and the interface move
inward. For the large precipitate, Xα

r3 < Xα
r2 . As a consequence, component

2 diffuses toward the interface, and the precipitate grows in order to maintain
equilibrium.

to determine the size of the depletion zone

L = k · r (13.28)

, where k is a geometric factor that takes the value k = 1 for a spherical precip-
itate, and r(t) is the radius of the precipitate at time t. L is therefore dependent
on the radius of the precipitate and will increase (or decrease) as it grows (or
shrinks). In this case, the radial interfacial velocity takes a form that is very
similar to the growth velocity we derived for the unidirectional movement of
a flat interface.

v =
dr(t)

dt
=

D

Cβ − Cα
r

dC2

dρ
≈ D

Cβ − Cα
r

∆C2

∆ρ
(13.29)

Using Figure 4B to determine the slope of the concentration gradient,

v ≈ D

Cβ − Cα
r

Cα
◦ − Cα

r

L
=

D

Cβ − Cα
r

∆Ceff

kr(t)
(13.30)
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13 GROWTH AND CURVATURE

Figure 13.4: A. Schematic drawing of spherical particle, defining the abscissa (ρ)
for the radial concentration profiles in B and C. B. Plot of the radial concentration
profile for a spherical precipitate in a supersaturated matrix. If the particle is in
local equilibrium, the concentration of the components in the matrix just outside
the particle are given by the Gibbs-Thomson equation. C. Assuming quasi steady
state, the concentration gradient becomes linear over the distance L.

, where ∆Ceff is the effective supersaturation of the matrix with respect to a
precipitate with radius r (from here on, we use r instead of r(t) even though
r remains a function of time). If we assume that the molar volume is indepen-
dent of the concentration, we can replace concentration by mole fraction and
write

v ≈ D

Xβ −Xα
r

∆Xeff

kr
(13.31)

Using Gibbs-Thomson, we can express the effective supersaturation as a func-
tion of the radius and the nominal supersaturation.

v ≈ D∆X◦

k(Xβ −Xα
r )

1

r

(
1− r∗

r

)
(13.32)

As before, r∗ is the radius of a precipitate that is in equilibrium with a matrix
that has the average composition Xα

r∗ ≡ Xα
◦ . Assuming that Xα

r → Xα
∞, and

for a spherical precipitate where k = 1

v ≈ D∆X◦

(Xβ −Xα
∞)

1

r

(
1− r∗

r

)
(13.33)

Inspection of Eq. and comparison with the growth velocity of a precipitate
with a flat interface (see section 11),

v ≈ ∆X

2(Xβ
eq −Xα

eq)

√
D

t
(13.34)

reveals that in both cases the velocity v ∝ ∆X . For the curved interface, v ∝
D, whereas for the flat interface v ∝

√
D. In either case, the temperature,

66



14 COARSENING

though the diffusivity, has a strong impact on the growth velocity (what other

variables are dependent on T?). Finally, for the flat interface, v ∝ t−
1
2 . For the

curved interface, the velocity also depends on r, which of course depends on
time as well.

v ∝ 1

r

(
1− r∗

r

)
(13.35)

Inspection of Eq (35) reveals that the growth velocity is negative for r < r∗,
zero for r = r∗, and positive for r > r∗, as expected from the discussion of the
effective supersaturation.

Q. Sketch the dependence of growth velocity v on r and show that the velocity
has a global maximum at r = 2r∗ (Figure 5).

0

1 2 5 10 150

Figure 13.5: Dependence of growth velocity of a curved interface on the radius of
curvature.

14 Coarsening

In this section, we will consider what happens after nucleation and some
growth have reduced the supersaturation to the point that the nucleation cur-
rent has become negligible. Let’s assume that we have a binary system with
β precipitates (rich in component 2) in an α matrix (rich in component 1), and
that prior nucleation and growth have resulted in a number of spherical ppt
with radius ri (Figure 1).
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Figure 14.1: A. Schematic depiction of N = 100 spherical β precipitates with
radius ri in α matrix. B. Histogram of particle radii in (A).

For a system with N precipitates, the average precipitate radius is then

⟨r⟩ = 1

N

N∑
1

ri (14.1)

Let’s further assume that all ppt shall be in local equilibrium with the matrix.
With Gibbs-Thomson,

cαri
cα∞

=
2γV β

m

RTri
+ 1 (14.2)

⇔cαri =
2γV β

mcα∞
RTri

+ cα∞ (14.3)

The average concentration of component 2 in the matrix is then

c◦ ≡ cα⟨r⟩ =
2γV β

mcα∞
RT ⟨r⟩

+ cα∞ (14.4)

Now let’s consider the growth velocity of a precipitate with radius ri

v =
dr

dt
= − J2

cβ − cαri
(14.5)

, where J2 is the flux of component two towards the interface. Using Fick’s
first law,

⇔ v =
D

cβ − cαri

∂c2
∂x

(14.6)
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14 COARSENING

, where D is the diffusivity of component 2 in the matrix α. Assuming quasi-
steady state, i.e. a linear concentration gradient from the interface to the bulk
matrix,

⇔ v =
D

cβ − cαri

∆c2
∆x

=
D

kri

c◦ − cαri
cβ − cαri

(14.7)

, where k = 1 for spherical particles.This is known as the Zener Growth Law.

Using Eq. 4 and 7,

⇔ v =
D

ri(cβ − cαri)

2γV β
mcα∞

RT

(
1

⟨r⟩
− 1

ri

)
(14.8)

If we further assume that the supersaturation is small, cαri → cα∞, and therefore

⇔ v =
2γDV β

mcα∞
RT (cβ − cα∞)

1

r2i

(
ri
⟨r⟩

− 1

)
(14.9)

Inspecting Eq. 9, we find that the growth velocity is positive for ri > ⟨r⟩, zero
for ri = ⟨r⟩, and negative for ri < ⟨r⟩! Only precipitates that are larger than
average will grow, those that are smaller will shrink. The growth velocity has a
maximum for precipitates that are twice the average size, and decreases again
for larger precipitates (show that this is true).

Based on this, and a similar growth law for interface-controlled growth, Lif-
shitz, Slyosow, and Wagner (LSW) derived a theory that describes the time
evolution of the average precipitate radius, using the following assumptions:

• at t = 0, all supersaturation in the system is due to curvature

• ppt are randomly distributed

• the diffusivity D is uniform and isotropic

Under these conditions, Lifshitz and Slyosow found for diffusion controlled
growth

⟨r(t)⟩3 = ⟨r(t = 0)⟩3 + 8γV β
mDcα∞

9RT (cβ − cα∞)
t (14.10)

⇒⟨r(t)⟩ ∝ t
1
3 (14.11)

For interface controlled growth, Wagner found

⟨r(t)⟩2 =
64γV β

mcα∞
81RT (cβ − cα∞)

kst (14.12)

⇒⟨r(t)⟩ ∝ t
1
2 (14.13)
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14 COARSENING

Figure 14.2: Diffusion-limited growth of cementite precipitates in α-Fe matrix dur-
ing coarsening. Log-log-plot of the ratio of the average precipitate radius at time t
over the average radius at t = 0 against time at different temperatures.

Note that the diffusivity D only appears in the former, the attachment rate ks
only in the latter equations. In either case, the rate by which the average radius
grows decreases with time.

Note that these equations only describe how the average precipitate radius
evolves with time. One might ask what the particle size distribution is. We
will not discuss this in detail, but one interesting result is that for diffusion
controlled processes, one can show that the fraction Ψ(ρ, t) of particles with
reduced radius ρ = r

⟨r⟩ is independent of time (Figure 3).

The LSW theory of coarsening can be applied to many different materials, in-
cluding metals, ceramics, polymers, and biomaterials, and holds for liquids,
solids, and with some limitations, gases.

Q: Discuss how coarsening in diffusion controlled systems is affected by tem-
perature
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15 KINETICS OF PHASE TRANSFORMATIONS
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Figure 14.3: Precipitate size distribution is independent of time. There is a max-
imum at ρ ≈ 1.13, meaning that the most frequently observed precipitates are
slightly larger than the average. The probability for larger radii drops off quickly
and goes to zero at ρ = 1.5. Note that this size distribution is a prediction based
on theory; actual size distributions can and do differ.

15 Kinetics of Phase Transformations

In this section, we will connect microscopic events, such as nucleation and
growth of small volumes of a new phase, to the macroscopic rate of transfor-
mation. Let’s consider a simple case of α → β, meaning that the entire volume
of α is transformed. Examples for such a transformation would be solidifica-
tion from the melt in a unary system, e.g. freezing of water, or the transfor-
mation of γ-Fe (austenite, FCC) to α-Fe (ferrite, BCC) in pure iron. This phase
transformation shall occur isothermally, i.e. at a constant undercooling. Let’s
further assume that nucleation is random in the entire volume and occurs at a
steady state rate ṄV. Once a spherical nucleus has formed, it shall grow with
a constant and isotropic growth velocity v.

Given these conditions, we can understand the transformation of α into β by
considering what is going on in short time intervals (Figure 1). During very
first interval (not shown in Fig 1), a number of nuclei appears in the matrix. In
the next interval, the nuclei grow in radius, and a new batch of nuclei forms.
In the following interval, again new nuclei form and the existing β-particles
grow. This can continue for some time, but eventually, neighboring particles
will impinge on each other and will no longer be able to grow evenly in all
directions (Figure 1E).

We would like to determine the volume-based, fractional conversion

f(t) =
V β(t)

Vtot
(15.1)

However, because of the problem that we eventually run out of α phase for
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15 KINETICS OF PHASE TRANSFORMATIONS

Figure 15.1: Simulation of a α → β phase transformation in 2D with constant
nucleation and growth rate. A. At time τ , four nuclei are present. B. At time
τ + dτ , the four nuclei formed in the previous interval have grown into particles
(gray circles), and four new nuclei have formed randomly in the matrix. Growth
and nucleation continue in this fashion until growing β-particles impinge on each
other (E). Areas highlighted in red indicate the difference between the extended
area, i.e. the area that particles would take if their growth would continue unim-
peded, and the actual area of β formed.

the β particles to grow into, the time dependence of V β(t) is not immediately
obvious. Ignoring the problem for now, lets define the extended volume of β,
i.e. the volume β would take if there was an infinite amount of α such that
β particles never impinge on each other. If there are n β-particles, then the
extended volume is simply the sum over all of them

V β
ex(t) =

n∑
i

V β
i (15.2)

The extended fractional conversion is then

fex(t) =
V β
ex(t)

Vtot
=

V β
ex(t)

V α(t) + V β(t)
(15.3)

, where V α(t) = Vtot−V β(t) is the remaining volume that β particles can grow
into.

We can write the available amount of α also in terms of the available volume
fraction

1− f(t) = 1− V β(t)

Vtot
(15.4)
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15 KINETICS OF PHASE TRANSFORMATIONS

To find the fractional conversion we simply multiply the extended fractional
conversion with (1− f) to account for the reduction in the available α phase.

df = dfex(1− f) (15.5)

⇔ df

1− f
= dfex (15.6)

Using df = −d(1− f),

⇔− d(1− f)

1− f
= dfex (15.7)

With f(0) = 0, we can integrate

−
ˆ

d(1− f)

1− f
=

ˆ
dfex (15.8)

⇔ ln (1− f) = −fex (15.9)

⇔f = 1− e−fex (15.10)

This is a useful result because it allows us to determine the fractional conver-
sion in a straightforward manner if we can find an expression for the extended
fractional conversion. Let’s look at the specific example outline above, where
the nucleation rate and the growth rate are both constant.

In any time interval dτ , we therefore expect

dN = ṄVV dτ (15.11)

nuclei to form in the volume V. Any nucleus formed at time τ and observed at
time t will have grown by

dV =
4π

3

(
r3t − r3τ

)
(15.12)

Because rt ≫ rτ , and with rt = v(t− τ),

dV ≈ 4π

3
(v(t− τ))

3 (15.13)

The contribution to the extended volume of all nuclei formed during a time dτ
at some time τ is simply the product:

dV β
ex = dV dN =

4π

3
(v(t− τ))

3
ṄVV dτ (15.14)

⇔dV β
ex

V
=

4π

3
ṄVv

3(t− τ)3dτ (15.15)
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Integrating up until the time of observation,

ˆ
dV β

ex

V
=

4π

3
ṄVv

3

ˆ t

0

(t− τ)3dτ (15.16)

⇔fex(t) =
π

3
ṄVv

3t4 (15.17)

Combining Eqs. 10 and 17, we can write the fractional conversion

f(t) = 1− e−kt4 (15.18)

, where k = π
3 ṄVv

3 (Figure 2A).
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Figure 15.2: A. Plot of the fractional conversion vs. logarithmic time for the con-
version of α to β described by Eq. (18), with ṄV = 1 m−3 s−1, v = 100 µm s−1,
k = 10−12s−4, and n = 4. B. Plotting lg ln(1 − f)−1 against lg t linearizes the
JMAK equation. A linear function (red dashed line) fitted to data points indicated
by blue circles in (A) has slope n = 4 and intercept lg k = −12.

This is but one example of the general form of the Johnson-Mehl-Avrami-
Kolmogorov (JMAK) equation that describes macroscopic phase transforma-
tions.

f(t) = 1− e−ktn , (15.19)

where k and n are generally fit parameters. Note that it is possible to derive a
JMAK equation with analytical expressions for k and n based on an arbitrarily
complex model for the nucleation and growth processes in the sample. Where
analytical solutions fail, it may be possible to use numerical methods. How-
ever, these solutions are not unique - more than one model could result in a
given combination of k and n. Fitting experimental data to the JMAK equation
therefore DOES NOT give us information on the mechanism of phase trans-
formation.

Fitting the JMAK equation used to require linearizing it for regression. While
this is no longer necessary, it is still useful. To linearize, we rewrite Eq. 19
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16 SPINODAL DECOMPOSITION

(Figure 2B).

ln(1− f) = −ktn (15.20)

⇔ lg ln
1

(1− f)
= n lg t+ lg k (15.21)

16 Spinodal Decomposition

In the previous section, we realized that if the system is in the spinodal regime,
the free energy of unmixing is negative. However, for there to be a diffusive
flux, there needs to be a concentration gradient, even if uphill diffusion is pos-
sible. In principle then, as long as the concentration profile is completely flat,
the flux should be zero and no phase separation should occur. However, com-
ponents will still undergo thermally activated diffusion, and at any one mo-
ment in time, a one-dimensional concentration profile will show very small,
random deviations from the average concentration (Fig 1 A).

r
0 0 0.25 0.5 0.75 120 40 60 80 100

A B

Figure 16.1: A. Due to thermal fluctuations, the concentration profile of any binary
system (here: one dimensional) is never completely flat. B. As any concentration
profile can be thought of as a superposition of sine and cosine functions, we will
consider the free energy change associated with changing the concentration profile
from a completely flat line to a sine wave with wavelength λ and amplitude δ.

To understand how these local fluctuations affect the stability of the system,
we model a concentration fluctuation by a sine function with wavelength λ
and amplitude δ (Fig. 1B).

C − C0 = δ sin
2πz

λ
(16.1)

Next, we determine the change in the Gibbs free energy per unit volume that is
associated with the change from a flat concentration profile to the sine-shaped
fluctuation. To do that, we simply average the concentration-dependent Gibbs
free energy over one period and subtract the Gibbs free energy at C0.

∆GV =
1

λ

ˆ λ

0

GV(C)dz −GV(C0) (16.2)
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16 SPINODAL DECOMPOSITION

To evaluate the integral, write the Taylor expansion of the Gibbs free energy
around the average concentration and terminate after the second order term

GV(C) = GV(C0) +
∂GV

∂C

∣∣∣∣
C0

(C − C0) +
1

2

∂2GV

∂C2

∣∣∣∣
C0

(C − C0)
2 (16.3)

Substituting Eq (3) into (2),

∆GV =
1

λ

ˆ λ

0

[
GV(C0) +

∂GV

∂C

∣∣∣∣
C0

(C − C0) +
1

2

∂2GV

∂C2

∣∣∣∣
C0

(C − C0)
2

]
dz −GV(C0)

(16.4)

=
1

λ

∂GV

∂C

∣∣∣∣
C0

ˆ λ

0

(C − C0)dz +
1

2λ

∂2GV

∂C2

∣∣∣∣
C0

ˆ λ

0

(C − C0)
2dz (16.5)

Using Eq (1),

∆GV =
1

λ

∂GV

∂C

∣∣∣∣
C0

ˆ λ

0

δ sin
2πz

λ
dz +

1

2λ

∂2GV

∂C2

∣∣∣∣
C0

ˆ λ

0

δ2 sin2
2πz

λ
dz (16.6)

The first term in Eq. (6) is equal to zero, as we are integrating over an entire
period. Therefore,

∆GV =
δ2

2λ

∂2GV

∂C2

∣∣∣∣
C0

ˆ λ

0

sin2
2πz

λ
dz (16.7)

=
δ2

2λ

∂2GV

∂C2

∣∣∣∣
C0

λ

2
(16.8)

=
δ2

4

∂2GV

∂C2

∣∣∣∣
C0

(16.9)

This is an interesting result that confirms our qualitative assessment. As long
as the second derivative of the Gibbs free energy is negative, any fluctuation
with an amplitude δ greater than zero lowers the free energy of the system.
The wavelength λ doesn’t even occur in Eq. 9. Is this reasonable? A fluctuation
with a short wavelength is equivalent to a rapid concentration change over a
small distance, i.e. a steep concentration gradient (Fig. 2).

It is reasonable to assume that there is an energetic price for establishing a
steep gradient. We will therefore add a term to Eq. 2 that depends on the
magnitude of the concentration gradient.

∆GV =
1

λ

ˆ λ

0

[
GV(C) + κ

(
∂C

∂z

)2
]
dz −GV(C0), (16.10)
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16 SPINODAL DECOMPOSITION

Figure 16.2: As wavelength lambda decreases, increasingly steep concentration
gradients (dashed lines) result.

where κ > 0 is a proportionality constant that expresses how strongly the free
energy depends on the magnitude of the concentration gradient.

Evaluating the integral is straightforward

∆GV =
δ2

4

∂2GV

∂C2

∣∣∣∣
C0

+
κ

λ

ˆ λ

0

(
∂C

∂z

)2

dz (16.11)

=
δ2

4

∂2GV

∂C2

∣∣∣∣
C0

+
κ

λ

ˆ λ

0

(
∂

∂z

[
δ sin

2πz

λ

])2

dz (16.12)

=
δ2

4

∂2GV

∂C2

∣∣∣∣
C0

+
κδ2

λ

ˆ λ

0

(
2π

λ
cos

2πz

λ

)2

dz (16.13)

=
δ2

4

∂2GV

∂C2

∣∣∣∣
C0

+
4π2κδ2

λ3

ˆ λ

0

cos2
2πz

λ
dz (16.14)

=
δ2

4

∂2GV

∂C2

∣∣∣∣
C0

+
4π2κδ2

λ3

λ

2
(16.15)

=
δ2

4

∂2GV

∂C2

∣∣∣∣
C0

+
2π2κδ2

λ2
(16.16)

=
δ2

2

[
∂2GV

2∂C2

∣∣∣∣
C0

+
4π2κ

λ2

]
(16.17)

Now if the second derivative of the Gibbs free energy is negative, and with
κ > 0, the two terms in the parentheses have opposite sign, indicating that
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∆GV changes sign for some critical value of λ. To find λC, we write

∆GV(λC) = 0 (16.18)

⇔δ2

2

[
∂2GV

2∂C2

∣∣∣∣
C0

+
4π2κ

λ2
C

]
= 0 (16.19)

⇔ ∂2GV

2∂C2

∣∣∣∣
C0

= −4π2κ

λ2
C

(16.20)

⇔λC = π

√√√√− 8κ

∂2GV

∂C2

∣∣∣
C0

(16.21)

Next, we determine for which λ spinodal decomposition is spontaneous:

∆GV(λC) < 0 (16.22)

⇔λ > π

√√√√− 8κ

∂2GV

∂C2

∣∣∣
C0

(16.23)

⇔λ > λC (16.24)

This means that only fluctuations with a wavelength greater than the critical
wavelength λC will form spontaneously. A rule of thumb is that in metals, λC

is on the order of 50 nm. In polymers, it is on the order of 1 µm.

Note that in spindle decomposition, there are no sharp phase boundaries or
interfaces. Instead, there are gradual changes in the composition.

A continuous Gibbs free energy curve implies that only the composition, but
not the structure of the material changes, meaning that the system is coherent.
As a consequence, we expect that there will be strain as differences in compo-
sition will result in local variation of the lattice parameter. Recall that we used
the elastic strain energy density W el

V when we looked at the effect of strain on
nucleation. For the elastic strain energy in spinodal decomposition we use

W el
V ≈ 6ϵ2µ (16.25)

The misfit parameter is the relative change in lattice parameter

ϵ =
∆a

a
(16.26)

where
∆a =

∂a

∂C
∆C (16.27)

With
η ≡ 1

a

∂a

∂C
, (16.28)
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16 SPINODAL DECOMPOSITION

we can write the misfit parameter as a function of ∆C = C − C◦

ϵ = η (C − C◦) , (16.29)

and finally the elastic strain energy density

W el
V ≈ 6η2µ (C − C◦)

2 (16.30)

We can then account for strain by adding a term to Eq. (10)

∆GV =
1

λ

ˆ λ

0

[
GV(C) + κ

(
∂C

∂z

)2

+ 6η2µ (C − C◦)
2

]
dz −GV(C0) (16.31)

Integration is straightforward and we find

∆GV =
δ2

2

[
∂2GV

2∂C2

∣∣∣∣
C0

+ 6η2µ+
4π2κ

λ2

]
(16.32)

λC = π

√√√√− 8κ

∂2GV

∂C2

∣∣∣
C0

+ 6η2µ
(16.33)

Inspection reveals that the (positive) strain energy contribution shifts the free
energy change to more positive values, resisting spinodal decomposition. This
is equivalent to shifting the binodal and spinodal lines to lower temperature
in the phase diagram. The strain energy term further makes the denominator
in Eq (33) less negative. The critical wavelength λC therefore increases with
increasing strain energy.

Take a moment to reflect on the similarities and differences of nucleation and
spinodal decomposition. In nucleation, a small amount of a new phase forms
that has a much higher concentration of one component. This is equivalent to a
very high amplitude fluctuation. Because the second derivative of the free en-
ergy is positive, diffusion against the concentration gradient increases the free
energy of the system and the process is not spontaneous. There is an interface
between nucleus and matrix and the formation of the nucleus is opposed by
the interfacial free energy. The critical radius indicates the size of a particle
that is in unstable equilibrium, meaning that both growing and shrinking will
lower its free energy. As soon as a particle becomes supercritical, it is likely to
keep growing. If nucleus and matrix are coherent, then strain will oppose the
formation of a nucleus, even though the interfacial free energy may be consid-
erably reduced. One way to think about the effect of strain is that it shifts the
coexistence line, e.g. the solvus, to lower temperatures.

In spinodal decomposition, the negative curvature of the Gibbs free energy
allows mass transport against the concentration gradient. Thermal fluctua-
tions in the composition can therefore grow in amplitude. There is no sharp
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16 SPINODAL DECOMPOSITION
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Figure 16.3: GX plots for a regular solution model with critical temperature of
1000K without strain (A) and in the presence of strain (B). The effect of strain is
to lower the critical temperature, here to a value of 800K. Minima (open circle)
and inflections points (x) are indicated on each curve. C. In this phase diagram,
the binodal line was constructed from the minima of the GX plot in A (blue line)
and B (red line) and the spinodal line was constructed from the inflection points
(dashed blue and red lines). Note that while strain shifts the binodal and spinodal
lines to smaller temperatures, the effect is strongest for X = 1

2
, but is attenuated

as X increases or decreases. The overall effect is one of vertical compression.

interface between regions of higher and lower concentration, but creating a
concentration gradient is associated with an increase in free energy that resists
the phase transformation, similar to the effect of the interfacial free energy in
nucleation. As a consequence, only concentration fluctuations with a wave-
length greater than the critical wavelength, i.e. a sufficiently shallow gradient,
will lower the free energy of the system. Strain shifts the free energy to more
positive values and therefore resists the phase transformation. Similar to the
case of nucleation, this strain can be thought to shift the coexistence line, i.e.
the spinodal, to lower temperatures. In case of a regular solid solution, the
shift of the spinodal can be expressed as a reduction of the critical temperature
(Figure 3).

In the following we’ll take a quick look at the time evolution of spinodal de-
composition. Recall that we can write the chemical diffusivity as

D = M
∂2GV

∂C2
, (16.34)

where M > 0 is the mobility.

Let’s rewrite Fick’s first and second law using this definition

J = −D
∂C

∂z
= −M

∂2GV

∂C2

∂C

∂z
= −M

∂

∂z

∂GV

∂C
(16.35)

∂C

∂t
= −∂J

∂z
= M

∂2

∂z2
∂GV

∂C
(16.36)
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16 SPINODAL DECOMPOSITION

To write out the Fick’s second law, we therefore need to find ∂GV

∂C . Recall that
we can write the free energy of the system with a fluctuation with wavelength
lambda as

GV =
1

λ

ˆ λ

0

[
GV(C) + κ

(
∂C

∂z

)2

+W el
V (C)

]
dz (16.37)

One can show that the partial derivative of the Gibbs free energy per unit vol-
ume with respect to concentration is

∂GV

∂C
=

∂2GV

∂C2

∣∣∣∣
C0

· (C − C◦)− 2κ
∂2C

∂z2
+ strain term (16.38)

Plugging into Eq. (36), we find

∂C

∂t
= M

∂2GV

∂C2

∣∣∣∣
C0

· ∂
2C

∂z2
− 2κ

∂4C

∂z4
+ strain term (16.39)

Eq. (36) is known as Cahn’s Diffusion Equation. The time evolution of spin-
odal decomposition is described by a solution to this differential equation:

C(z, t)− C◦ = Am(λ)e
R(λ)t cos

2πz

λ
, (16.40)

where Am(λ) is the amplitude of the fluctuation with wavelength λ at t = 0,
and

R(λ) = −M

(
2π

λ

)2
[
∂2GV

∂C2

∣∣∣∣
C0

+ 2κ

(
2π

λ

)2

+ Tstrain

]
, (16.41)

where Tstrain is a positive term that reflects coherency strain.

Note that in (40) and (41) we treat all spatial frequencies λ. We can think of
any initial concentration profile as a sum of cosines, i.e. a Fourier series. At
t = 0, their amplitudes (Fourier coefficients) are described by Am(λ). These
amplitudes evolve over time, as described by eR(λ)t. Let’s take a closer look at
R(λ).

To do so, let’s focus on the important variable and collect everything else in
positive constants:

R(λ) = −A1

λ2

[
∂2GV

∂C2

∣∣∣∣
C0

+ Tstrain +
A2

λ2

]
(16.42)

= −A1

λ2

[
∂2GV

∂C2

∣∣∣∣
C0

+ Tstrain

]
− A1A2

λ4
, (16.43)
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16 SPINODAL DECOMPOSITION

where A1 = M(2π)2 and A2 = 2κ(2π)2.

Inspection of Eq. (43) reveals that if the sum of the terms in parentheses is
negative, then R is the sum of a positive term that is proportional to λ−2 and a
negative term proportional to λ−4 (Figure). This immediately tells us that R(λ)
will change sign for some critical value of λ, that R(λ) < 0 for λ < λC, and that
R(λ) > 0 for λ > λC. Furthermore, R has a maximum at some λmax > λC and
asymptotically approaches the x-axis for large λ.

To find λC, we write

R(λC) = 0 (16.44)

⇔− A1

λ2
C

[
∂2GV

∂C2

∣∣∣∣
C0

+ Tstrain

]
− A1A2

λ4
C

= 0 (16.45)

Because λC > 0 and A1 > 0 we can multiply both sides with with λ4
C

⇔−A1λ
2
C

[
∂2GV

∂C2

∣∣∣∣
C0

+ Tstrain

]
−A1A2 = 0 (16.46)

⇔λ2
C =

−A2

∂2GV

∂C2

∣∣∣
C0

+ Tstrain

(16.47)

⇒λC = π

√√√√ −8κ

∂2GV

∂C2

∣∣∣
C0

+ Tstrain

(16.48)

Not surprisingly, we find that the critical wavelength is the same as before. We
can express R in terms of λC to better understand its behavior

R(λ) = 2κM

(
2π

λ

)4 [
λ2

λ2
C

− 1

]
(16.49)

The significance of the sign of R(λ) is that it affects how the amplitude of the
fluctuation with wavelength λ evolves over time. We can differentiate three
cases:

• λ < λC ⇒ R(λ) < 0 ⇒ limt→∞ eR(λ)t → 0

• λ = λC ⇒ R(λ) = 0 ⇒ eR(λ)t = 1

• λ > λC ⇒ R(λ) > 0 ⇒ limt→∞ eR(λ)t → ∞

This means that the amplitude of fluctuations with a wavelength smaller than
λC will be dampened with time, that of fluctuations with a wavelength equal
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16 SPINODAL DECOMPOSITION

to λC will remain the same, and that of fluctuations with a wavelength greater
than λC will be amplified. Note that the derivation given here is only valid for
short times and small amplitudes. This can be seen from the fact that the the
amplitude for the amplified wavelengths goes to infinity with time, which is
unphysical. Also note that while Cahn and Hilliard assumed that the mobility
is independent of the concentration, this is not true and becomes important as
spinodal decomposition progresses (see for example Nauman and He, Chemi-
cal Engineering Science 2001, 56, 1999-2018).

Recall that after R(λ) passes through its maximum it approaches zero for large
λ, meaning that fluctuations with a wavelength near the maximum will be am-
plified the most and fluctuations with very long wavelengths will be amplified
very little. We find λmax in straightforward fashion

dR(λ)

dλ

∣∣∣∣
λmax

= 0 (16.50)

⇒λmax =
√
2λC (16.51)

As an example, let’s assume that a binary solid solution is quenched into the
spinodal regime and that at t = 0. Initially (column 1 in Fig. 4) periodic con-
centration fluctuations with λ

λC
= 0.2, 0.5, 0.75, 1,

√
(2), and 2.5 (rows 1-6) shall

all have the same amplitude. Adding these fluctuations up gives the concen-
tration profile in the one dimensional sample (bottom row). With increasing
time (columns 1 → 5), the amplitudes are modulated as described by Eq. (40).
For fluctuations with wavelengths smaller than λC, the amplitude is rapidly
attenuated. This can be seen by comparing the amplitude of the fluctuations
in each of rows 1 through 3 across the columns, from left to right. For λ = λC,
the amplitude stays the same (row 4), and for λ > λC the amplitude increases.
The fluctuation with λ =

√
2λC is amplified most rapidly (cf. row 5 vs row 6).
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16 SPINODAL DECOMPOSITION
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Figure 16.4: Evolution of the amplitude of 1D concentration fluctuations with time
in spinodal decomposition. Note how rapid attenuation of low wavelength (high
frequency) fluctuations creates smooth profiles. The Matlab code used to generate
this plot is given ... A Matlab code to simulate spinodal decomposition in 2D is
available on Canvas (CahnHilliard_DJ.m).
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17 CASE STUDY: PRECIPITATION OF CU-RICH PRECIPITATES FROM
AL:

17 Case Study: Precipitation of Cu-rich Precipitates
from Al:

Al is soft - can be precipitation hardened by adding Cu

Pure Al α phase (κ in above drawing): FCC, a = 4.04Å, valence = 3+

Pure Cu: FCC, a = 3.62Å, valence =1+

Equilibrium precipitate when Al is supersaturated with Cu: θ−CuAl2- tetrag-
onal

Al-rich region of phase diagram:

L

wt. % Cu

600

5.65
33.5

52.5

53.5
 

660

548

Figure 17.1: Cu-Al phase diagram.

θcannot form coherent interfaces with α, γ for this interface is high:

W ∗
r ∝ γ3, Ṅv ∝ exp(−W ∗

r /kBT ) , nucleation rate of θ is very slow

Other non-equilibrium precipitates - Guinier-Preston (GP) zones, θ”, θ′

Al: FCC, a = 4.04Å

4.04

Figure 17.2: Structure of a GP zone

GP Zones: FCC, totally coherent, very small disks: 2 atomic layers thick, 50
atoms in diameter
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17 CASE STUDY: PRECIPITATION OF CU-RICH PRECIPITATES FROM
AL:

θ”: tetragonal, FCC distorted in one direction

4.04

3.84

3.84 All faces are
occupied by either
Au or Cu

Figure 17.3: Structure of the θ” phase.

all interfaces coherent with α phase

θ′: tegragonal, only one interface coherent with α phase:

4.04

2.90

2.90

top and bottom faces are 
occupied, and are 
coherent

only half of side faces are
occupied- sides are 
incoherent

Figure 17.4: Structure of the θ′ phase.

θphase: totally incoherent

6.07

2.43

2.43 crystal structure
distored by atoms
in the interior

Figure 17.5: Structure of the θ phase.
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17 CASE STUDY: PRECIPITATION OF CU-RICH PRECIPITATES FROM
AL:

Rank the values of γ, nucleation rate and thermodynamic stability:

precipitate γ Ṅv Gm

GP Zone 1 4 4
θ” 2 3 3
θ’ 3 2 2
θ 4 1 1

Table 17.1: Order of the surface energy, nucleation rate and free energy for differ-
ent Cu-rich precipitate phases in Al, ranked from lowest (1) to highest (4).

Most unstable phase appears first because of higher nucleation rate:

Map time dependence with TTT diagram:

General time dependence for a transformation:

0.1

0.9
1.0

10% 90%

t(log scale)

t(log scale)

Limited by
diffusion

Limited by
thermodynamic 
driving force

f(fraction
transformed)

Figure 17.6: Generic TTT diagram.

Unstable compounds only appear at larger undercoolings - different solvus for
each phase
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17 CASE STUDY: PRECIPITATION OF CU-RICH PRECIPITATES FROM
AL:

T

%Cu t(log scale)

GP
GP

Figure 17.7: TTT diagram for precipitate formation in the Cu-Al system.

At a given undercooling, each phase is in eq’m with a different concentration:

T

%Cu

GP

Figure 17.8: Schematic representation of the solvus lines for different precipitate
phases in the Al-Cu system.

Each concentration is affected by a local curvature:

Xr = Xe

(
1 +

2γVm

RTr

)
(17.1)

Once an equilibrium phase is formed, it grows at the expense of a non-eq’m
phase because of the lower concentration of Cu in eq’m with it:

Figure 17.9: Cu flux from a more soluble to a less-soluble precipitate phase.
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17 CASE STUDY: PRECIPITATION OF CU-RICH PRECIPITATES FROM
AL:

Matrix concentration of B decreases from X0to XGBto Xθ”to Xθ′ to Xθas dif-
ferent precipitates appear and grow to an appreciable size.

Types of precipitation:

1. All nucleation occurs at the beginning: site saturation (heterogeneous
nucleation sites used up initially)

nucleation growth process stops when
supersaturation = 0

Figure 17.10: Site saturation.

2. Constant nucleation rate throughout transformation:

initial
nucleation

more 
nucleation +
growth

process stops when
supersaturation = 0

Figure 17.11: Constant nucleation rate throughout precipitation.

3. Cellular precipitation: entire parent phase is consumed (recrystalliza-
tion, formation of pearlite)

nucleation growth formation of
boundaries

Figure 17.12: Cellular precipitation.
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17 CASE STUDY: PRECIPITATION OF CU-RICH PRECIPITATES FROM
AL:

What is time dependence of transformation?

f(t) = fraction transformed at time t
finaℓ fraction transformed (depends on temperature)

1

0
t

f(t)

Figure 17.13: Time dependence of transformation

Ex: derivation of f(t)for constant Ṅv

Vol = volume of a single cell

v = growth velocity

r = cell radius

V oℓ(t) = 4
3πr

3 = 4
3π(vt)

3 (nucleation occurs at t = 0)

If nucleation does not occur until t = τ :

V ol(t, τ) =
4

3
πv3(t− τ)3 (17.2)

Ṅvdτ = number of nuclei formed during time increment dτ .

f(t) = Ṅv

tˆ

0

V ol(t, τ)dτ = Ṅv
4

3
πv3
ˆ t

0

(t− τ)3dτ = Ṅv
π

3
v3t4 (17.3)

for long t, f(t) = 1:

detailed solution gives:

f(t) = 1− exp
(
−π

3 Ṅvv
3t4
)

Johnson-Mehl-Avrami equation

(in agreement with previous expression at small t, since 1 − exp(−x) ≈ x for
small x

This is a specific example of the following more general expression:
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18 CASE STUDY: MINERALIZATION FROM SOLUTION

f(t) = 1− exp(−ktn) (17.4)

n is found to vary between 1 and 4

temperature dependence is in k:

This is the simplest equation that has the basic behavior observed experimen-
tally:

1

0
t

f(t)
at long times

at short times

Figure 17.14: Behavior of the Johnson-Mehl Avrami equation

k is low at high temp. because Nv is small (low undercooling)

k is low at low temp. because v is small (slow diffusion)

18 Case Study: Mineralization from Solution

Basic Carbonate forming reaction: (all concentrations in moles/liter)

CaCO3 ↔ Ca2+ +CO2−
3

[
Ca2+

] [
CO2−

3

]
= 6x10−9 (18.1)[

Ca2+
] [
CO2−

3

]
> 6x10−9 for aragonite, vaterite

CO2−
3 - concentration affected by pH

HCO−
3 ↔ H+ + CO2−

3

[H+]
[
CO2−

3

][
HCO−

3

] = 5.61x10−11 (18.2)

H2CO3 ↔ H+ +HCO−
3

[H+]
[
HCO−

3

]
[H2CO3]

= 1.5x10−4 (18.3)

Dissolved CO2 in equilibrium with carbonic acid

H2O + CO2 ↔ H2CO3
[H2CO3]

[CO2]
= 1.70x10−3 (18.4)
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19 CASE STUDY: NANOPARTICLE NUCLEATION AND GROWTH

Dissolved CO2 in equilibrium with atmospheric CO2

dissolvedCO2 ↔ atmosphericCO2
PCO2

[CO2]
= 29.76 atm/mol/l (18.5)

Basic water equilibrium

H2O ↔ H+ +OH− [
H+
] [
OH−] = 10−14 (18.6)

Charge neutrality

2
[
Ca2+

]
+
[
H+
]
=
[
HCO−

3

]
+ 2

[
CO2−

3

]
+
[
OH−]+ [Cl−

]
(18.7)

Other equilibria. If Chloride ions are present:

HCl ↔ H+ + Cl−
[H+] [Cl−]

HCl
= 10−8 (18.8)

So we have 8 equations and 10 unknowns:[
Ca2+

]
,
[
CO2−

3

]
, [H+],

[
HCO−

3

]
, [H2CO3], [CO2], PCO2, [OH−], [HCℓ], [Cℓ−]

So we need to specify 2 quantities, generally
[
Ca2+

]
and PCO2 to completely

specify the problem. Note: pH = −ℓog [H+]

Increasing [CO2] increases carbonic acid concentration (Eq.(4)), decreases pH ,
increases [H+]

19 Case Study: Nanoparticle Nucleation and
Growth

Figure 19.1: Metallic Nanoparticles.[1]
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19.1 Motivation19 CASE STUDY: NANOPARTICLE NUCLEATION AND GROWTH

19.1 Motivation

Figure 19.2: Size dependent optical properties of metallic nanoparticles.

19.2 Wulff Constuction

Figure 19.3: The Wulff Construction.

1. Create polar plot of surface energy (red)

(a) Find intersections with lines drawn from the origin (brown)

(b) Draw perpendicular planes (black)

(c) Eq’m shape defined by innermost planes (blue)
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19.3 Kinetic Control of Particle Shape19 CASE STUDY: NANOPARTICLE NUCLEATION AND GROWTH

19.3 Kinetic Control of Particle Shape

Figure 19.4: Dependence of particle shape on the growth rate ratio.

Figure 19.5: Crystal facets for a cubic material.

19.4 Controlling Growth Rates

Figure 19.6: Chemical structure of poly(vinyl pyrrolidone).
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19.4 Controlling Growth Rates19 CASE STUDY: NANOPARTICLE NUCLEATION AND GROWTH

Figure 19.7: Cubic particles form rapid growth in ⟨111⟩ directions.

• Polymer adsorbs differently to {111} and {100} facets.

– Growth in ⟨111⟩ direction is favored.

– Cubes result.

Nucleation Rate and Size Distribution

• W ∗
R ∝ 1

(∆C)2

• Uniform particle size can be obtained if all nuclei form at same time

saturation
nucleation

growth

[re
ac
tan
t]

time

Figure 19.8: Time dependent reactant concentration profiles leading to two types
of particle size distributions.
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20 INTERFACE STABILITY

Figure 19.9: Optical Determination of Nucleation and Growth.

• Wavelength (λ) coupled to total nanoparticle volume

• Exponential regime: nucleation and growth

• Linear regime: growth only

20 Interface Stability

In this section we are concerned with factors that cause the interface between a
solid and a liquid to propagate in a non planar fashion, resulting in a dendritic
microstructure of the sort shown below in Figure. 20.1.

Figure 20.1: Image of a growth highlighting the curvature.
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20 INTERFACE STABILITY

solid

liquid

interface
motion

heat flow

Figure 20.2: Solidification in a cold mold.

Heat flow governed by thermal conductivity: q = −k dT
dx

q = heat flux, k = thermal conductivity

Growth into supercooled liquid:

Cold

Hot

liquid

solid

Decreaing temperature away from
interface

Solid protrusions see
lower temperature, and
can grow - dendrites
formq

Figure 20.3: Interface instability due to solidification into a supercooled liquid.

Growth by removal of heat from the wall (more common)

97



20 INTERFACE STABILITY

Hot

Cold

liquid

solid

Increasing temperature into liquid-
solid protrusions see higher
temperatures and do not grow

Heat conducted into
solidq

Planar surface is stable- no
dendrites

Figure 20.4: Solidification against a cold surface.

Alloys: similar, except formation of dendrites can be controlled by movement
of atoms; dendrites can form even when T increases into liquid

Solidify a material with overall composition C0: higher impurity concentration
in liquid phase

T

Figure 20.5: Phase diagram for immiscible solid phases.

Composition profile:

solid

liquid

C

x=0 x

Alloy has starting
compostion far from
interface

From solution to diffusion equation:

Figure 20.6: Impurity concentration profile at a solid/liquid interface.
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20 INTERFACE STABILITY

V = velocity of solid/liquid interface

D = diffusion of coefficient of impruity in liquid

How does this impurity buildup affect stability of the interface (tendency to
form dendrites)

Use concentration profile to define a liquidus temperature that depends on
position:

solid

liquid

C

x=0 x

Remove a small bit of liquid - liquidus
tempertature gives temperature below
which solid will form - do this for all
compositions

Figure 20.7: Significance of local liquid temperature.

Figure 20.8: Mapping local concentrations to local liquidus temperature.

So we can convert concentration profile to liquidus temperature as a function
of distance:

solid

liquid

x=0 x

Figure 20.9: Plot of the local liquidus temperature.

If the temperature is less than the local Tℓ,solid will form, if T > Tℓ, no solid
forms
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21 EUTECTIC SOLIDIFICATION

Stability criterion determined by comparing actual temperature profiles

solid

liquid

x

T

1
2

Figure 20.10: Graphical criterion for interface stability.

Case 1: Actual T always above Tℓ= stable interface

Case 2: Actual T below Tℓ,solid protrusion can grow:

Figure 20.11: Growth of an unstable interface.

Note: interface is always stable for a sufficiently large temperature gradient
into the sample.

21 Eutectic Solidification

Thermodynamics review - melting point depression

Thermodynamics: Equation for liquidus line

Xβ
ℓ (T ) = liquidus comp. for α side of diagram

Xβ
S (T ) = solidus comp. for α side of diagram

Gℓ
B = partial molar free energy of liquid B

GS
B = partial molar free energy of solid B
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21 EUTECTIC SOLIDIFICATION

TA
M , TB

M - melting points of pure components

At eq’m:

GL
B(X

β
L(T )) = GS

B(X
β
S (T )) (21.1)

If Xβ
S (T ) ≈ 1 (nearly pure solid phase):

GS
B(X

β
S (T )) = GL

BX
β
S (T )−∆HB(1− T/TB

m ) (21.2)

Combine (1) and (2):

Gℓ
B(X

β
ℓ )−Gℓ

B(X
β
S ) = −∆HB

(
1− T

TB
m

)
(21.3)

Assume liquids form an ideal solution:

GL
B(X

β
L)−GL

B(X
β
S ) = RT lnXβ

L (21.4)

Combine (3) and (4):

RT lnXβ
ℓ = −∆HB

(
1− T

TB
m

)
(21.5)

Melting point reduction due to increased entropy of liquid phase

Assumptions:

1. Ideal mixing in liquid (no enthalpy of mixing)

2. Solid phases are nearly pure

Optimum phase size for eutectic microstructure: (draw alternating α, β,
show wavelength, λ)

Overall enthalpy of melting of solid at composition Xe:

∆He = XB∆HB +(1−XB)∆HA (weighted average of component enthalpies)

Two contributions to free energy of solidification:

1. Bulk term:
∆Gbuℓk

V = −∆He∆T
VmTe

, ∆T = undercooling (Te − T )
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21 EUTECTIC SOLIDIFICATION

2. Interfacial term:

within one wavelength - total interfacial area = 2A (A = cross section) - 2
α/β interfaces per wavelength)

volume = λA
∆Gint

V =
2γαβ

λ

∆Gtotaℓ

V =
2γαβ

λ − ∆He∆T
VmTe

∆Gtotaℓ < 0 for λ > λ∗, λ∗ =
2γαγVmTe

∆H∆T

compare to r∗for nucleation of a solid phase: r∗ = −2γ
(∆Gbuℓk/V ) =

2γVmTe

∆H∆T

Alternate Approach: growth of curved lamellae

Liquid

Figure 21.1

RαRβ ∼ λ, details depend on relative values of γαβ , γaℓ, γβℓ.

Supercooled eutectic alloy (composition XB = XE) - consider α phase

L

A B

Figure 21.2

Conc. gradient drives B away from α/ℓ interface:
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21 EUTECTIC SOLIDIFICATION

Liquid phase

z (distance from interface)

phase

Figure 21.3

Now consider β phase

Supercooled eutectic alloy (composition XB = XE) - consider α phase

L

A B

Figure 21.4

Conc. gradient drives B toward from β/ℓ interface:

Liquid phase

z (distance from interface)

phase

Figure 21.5

Simultaneous growth of αand β minimizes required diffusion distance:

In liquid: B is enhanced near α, depleted near β.
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21 EUTECTIC SOLIDIFICATION

z

Figure 21.6

Concentration gradient in liquid: ∝ ∆Xλ

λ

Diffusive flux in liquid: ∝ D∆X
λ

What determines ∆Xλ?

Liquidus lines for finite λare suppressed in comparison to eq’m (λ = ∞) val-
ues.

Eutectic point of phase diagram:

finite

Figure 21.7

1. Assume liquidus lines are linear in this regime - Must have ∆T0linearly
related to ∆Tλ.

2. Must have ∆Xλ = 0 for λ = λ∗

3. Must have ∆Xλ = ∆X0 for λ =
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22 EUTECTOID REACTIONS

4. λ∗ ∝ 1
∆T0

All this gives: ∆Xλ = ∆X0

(
1− λ∗

λ

)
If growth is diffusion limited:

V ∝ ∆X0
D

λ

(
1− λ∗

λ

)
(21.6)

Maximum growth velocity for λ = 2λ∗.

22 Eutectoid Reactions

Eutectic transformation:

V ∝ ∆X0
D

λ

(
1− λ∗

λ

)
∆X0 ∝ ∆T0

Maximum V for λ = 2λ∗.

Figure 22.1

Eutectoid transformation: High temp. phase is a solid

0.02 0.77

wt. % C

(BCC, ferrite)

(FCC, austenite)

Figure 22.2
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22 EUTECTOID REACTIONS

γ → α+ Fe3C

Lamellar microstructure of α, Fe3C = pearlite

From lever rule: mostly ferrite

Nucleation occurs preferentially at γ grain boundaries:

V = growth velocity

Figure 22.3

Nucleation:

1. Fe3C nucleates first

incoherent - high mobility

semicoherent - low mobility

Figure 22.4

2. region near Fe3C ppt. depleted in C

3. α nucleates

Figure 22.5

Incoherent interfaces of α/γ2 and Fe3C/γ2

Coherent interfaces for α/γ1 and Fe2C/γ1.

Fe3C is orthorhombic: a ̸= b ̸= c, α = β = γ = 90º- γ is FCC
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22 EUTECTOID REACTIONS

Preferred orientation for coherent Fe3Cγ interfaces:

(100)Fe3C (111)γ ;(010)Fe3C (110)γ ; (001)Fe3C (112)γ

Growth rate limited by C diffusion in γ phase (like eutectic case).

Figure 22.6

Data: Growth rate (Hull, 1942)

thermo control

kinetic control

723

500

0.1 1 10

Figure 22.7

Wavelength (Pellissier, 1942)

Figure 22.8
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23 REVIEW QUESTIONS

23 Review Questions

• What controls the size of the depletion zone in front of a flat or curved
precipitate that is growing?

– How does it evolve with time?

• What limits the growth velocity of a precipitate phase boundary at high
and low temperatures?

– Which of these limits are connected to the phase diagram?

• Why are flat, plate-like precipitates sometimes formed?

• How does the molar free energy depend on the radius of curvature of a
precipitate?

• How does curvature effect the equilibrium concentration of solute that is
in equilibrium with a precipitate?

• What does the concentration dependence look like for precipitates that
are larger than r*?

– What if the precipitate is smaller than r*?

• What are transition phases, and why do they form?

– What is the mechanism by which transition phases shrink at the
expense of equilibrium phases?

• How are TTT curves for transition phases related to the phase diagram?

• What are the basic physical assumptions of the Lifshitz/Slyosov coars-
ening theory discussed in class?

– What do the depletion zones look like?

– What determines the average solute concentration in the matrix
phase?

• What does the distribution of precipitates look like if coarsening occurs
by the Lifshitz/Slyosov mechanism?

• What do the binodal and spinodal curves look like for the regular solu-
tion model?

– What is the critical temperature?

• What determines the size of the characteristic phase size when phase
separation occurs by spinodal decomposition?
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24 MATLAB EXAMPLES

• What is meant by uphill diffusion?

– When is it observed?

• How is this phase size modified (in qualitative terms) by coherent
strains?

• How do these strains modify the phase diagram to give coherent spin-
odal and binodal curves?

• How can the liquidus lines be estimated for an ideal eutectic system?

– What are the assumptions made in the approximation?

• What determines the size of the individual phases for eutectic solidifica-
tion?

• What determines the size of the individual phases for a eutectoid trans-
formation?

• What is the physical significance of the squared gradient term in the free
energy expression?

• How can the shapes and sizes of metallic nanoparticles be controlled?

24 Matlab Example Scripts

24.1 Free energy of water droplets formed from water vapor at
10 K (Figure 4.2)

1 %% Lecture 2 Figure 2
2 % free energy of water droplets formed from water vapor at 10 K
3 % supercooling , as a function of the radius
4 % all data from Wikipedia
5

6 close all;
7 clear all;
8

9 Mw = 18;% [g/mol]
10 DeltaS0_f = 22;% [J/mol/K]
11 T_m = 273.15;% [K]
12 DeltaS0_vap = 118.89;% [J/mol/K]
13 T_b = 373.15;% [K]
14

15 rho_363 = 0.96531;% [g/cm^3]
16 Vm_363 = Mw/rho_363 *1E-6;% [m^3/ mol]
17

18 gamma = 0.072;% [J/m^2] this is for the liquid -vapor
interface
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24.2 Water Droplets: 2 24 MATLAB EXAMPLES

19

20 P_vap = 10^5;% [Pa]
21 DeltaT = 10; % [K] supercooling
22

23 % calculate the Laplace pressure
24 DeltaP = DeltaS0_vap/Vm_363*DeltaT;
25

26 % calculate the critical radius
27 Rstar = 2* gamma/DeltaP ;% [m]
28

29 % calculate the reversivle work of nucleation
30 Wstar = 16/3* pi*gamma ^3/ DeltaP ^2; %[J]
31

32 % define radii for plot of the free energy of a small spherical
particle of the new

33 % phase
34 R = logspace (-10,-8,100);
35 % calculate free energy difference (Delta Omega) at the radii
36 omega = -DeltaP * 4/3*pi*R.^3 + gamma * 4*pi*R.^2;% [J]
37

38 % plot
39 figure;
40 % plot omega
41 plot(R*1E9 ,omega ,'b'); hold on;
42 % plot bulk term only
43 plot(R*1E9 ,-DeltaP * 4/3*pi*R.^3,'r');
44 % plot excess (surface) term only
45 plot(R*1E9 ,gamma * 4*pi*R.^2,'g');
46 % draw horizontal line at
47 plot(R*1E9 ,zeros(size(R)),'k--');
48 % draw vertical line at critical radius
49 plot([Rstar *1E9, Rstar*1E9],[Wstar 0],'k:');
50 % draw horizontal line at maximum
51 plot([0, Rstar*1E9],[Wstar Wstar],'k:');
52

53

54 set(gca ,'TickDir ','out');
55 xlim ([10^ -1 ,4]);
56 ylim ([ -.5*10^ -17 ,.5*10^ -17]);
57 xlabel('\rightarrow R [nm]');
58 ylabel('\Delta\Omega(R) [J] for one nucleus ');

24.2 Laplace pressure, critical radius, and reversible work of
nucleation for condensation of water from vapor, as a
function of temperature (Figure 4.4)

1 %% Lecture 2 Figure 2
2 % Laplace pressure , critical radius , and reversible work of

nucleation for
3 % condensation of water from vapor , as a function of temperature
4 % all data from Wikipedia
5

6 close all;
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24.2 Water Droplets: 2 24 MATLAB EXAMPLES

7 clear all;
8

9 k = 1.38E-23; %J/K Boltzmann constant
10 Mw = 18;% [g/mol]
11 DeltaS0_f = 22;% [J/mol/K]
12 T_m = 273.15;% [K]
13 DeltaS0_vap = 118.89;% [J/mol/K]
14 T_b = 373.15;% [K]
15 rho_373 = 0.95805;% [g/cm^3]
16 Vm_373 = Mw/rho_373 *1E-6;% [m^3/ mol]
17 gamma = 0.072;% [J/m^2] this is for the liquid -vapor

interface
18 P_vap = 10^5;% [Pa]
19

20

21 DeltaP = @(DT) DeltaS0_vap/Vm_373*DT;
22 Rstar = @(DT) 2*gamma ./ DeltaP(DT);% [m]
23 Wstar = @(DT) 16/3*pi*gamma ^3./ DeltaP(DT).^2; %[J]
24

25 DeltaT = [0.5:0.1:30];% [K] supercooling
26 T = T_b -DeltaT;
27

28 figure;
29 subplot (1,4,1);
30 plot(DeltaT ,DeltaP(DeltaT)/1E6 ,'b'); hold on;
31 set(gca ,'TickDir ','out');
32 axis square;
33 % xlim ([10^ -1 ,4]);
34 % ylim ([ -.5*10^ -17 ,.5*10^ -17]);
35 xlabel('\rightarrow \DeltaT [K]');
36 ylabel('\DeltaP [MPa]');
37

38 subplot (1,4,2);
39 plot(DeltaT ,Rstar(DeltaT)*1e9,'b'); hold on;
40 set(gca ,'TickDir ','out');
41 axis square;
42

43 % xlim ([10^ -1 ,4]);
44 % ylim ([ -.5*10^ -17 ,.5*10^ -17]);
45 xlabel('\rightarrow \DeltaT [K]');
46 ylabel('R^* [nm]');
47

48 subplot (1,4,3);
49 plot(DeltaT ,Wstar(DeltaT),'b'); hold on;
50 set(gca ,'TickDir ','out');
51 axis square;
52

53 % xlim ([10^ -1 ,4]);
54 % ylim ([ -.5*10^ -17 ,.5*10^ -17]);
55 xlabel('\rightarrow \DeltaT [K]');
56 ylabel('W^*_r [J]');
57

58 subplot (1,4,4);
59 semilogy(DeltaT ,Wstar(DeltaT)/k./T,'b'); hold on;
60 set(gca ,'TickDir ','out');
61 axis square;
62 xlabel('\rightarrow \DeltaT [K]');
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63 ylabel('W^*_r [kT]');

24.3 General Nucleation Rate (Figure 5.2)

1 %% Lecture 4 Figure 2 how to
2 close all
3 clear all
4 clc
5

6 Teq = 373;
7

8 f1 = @(DT) DT.^2
9 f2 = @(DT) Teq -DT;

10

11 DT = linspace(0,Teq ,1000);
12

13 T1n = f1(DT)/max(f1(DT));
14 T2n = f2(DT)/max(f2(DT));
15 figure;
16

17 subplot (131);
18 plot(DT, T1n ,'b',DT, T2n ,'g',DT,T1n.*T2n ,'r');
19 set(gca ,'TickDir ','out');
20 xlim([0,Teq]);
21 T3 = -1./(T1n.*T2n);
22

23 subplot (132);
24 plot(DT,T3 ,'r');
25 set(gca ,'TickDir ','out');
26

27 xlim([0,Teq]);
28 ylim ([ -1000 ,0]);
29

30 subplot (133);
31 plot(DT,exp(T3),'r');
32 set(gca ,'TickDir ','out');
33

34 xlim([0,Teq]);
35

36 %% account for diffusive term
37 figure;
38

39 max_y3=max(exp(T3));
40 y4=exp(T3).*exp ( -200./f2(DT));
41 max_y4=max(y4);
42 y4_n = y4/max(y4)*max_y3;
43 plot(DT,exp(T3),'b');hold on;
44

45 %plot(DT,exp ( -200./f2(DT)),'g');
46 plot(DT,y4_n ,'r');
47

48 set(gca ,'TickDir ','out');
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24.4 Nucleation Rate for Water Condensation (Figure 5.3)

1 %% Lecture 4 Figure 3
2 % Nucleation current for condensation of water from vapor , as a

function of temperature
3 % all data from Wikipedia
4

5 % Derk Joester
6 % 9/23/2017
7

8 close all;
9 clear all;

10

11 k = 1.38E-23; % [J/K] Boltzmann constant
12 Mw = 18; % [g/mol] molecular weight of

water
13 DeltaS0_f = 22; % [J/mol/K] standard molar entropy

of fusion
14 T_m = 273.15; % [K] melting point
15 DeltaS0_vap = 118.89; % [J/mol/K] standard molar entropy

of vaporization
16 T_b = 373.15; % [K] boiling point
17 rho_373 = 0.95835; % [g/cm^3] density of liquid

water at T_m
18 Vm_373 = Mw/rho_373 *1E-6; % [m^3/mol] molar volume of liquid

water at T_m
19 gamma = 0.072; % [J/m^2] surface energy for

water liquid -vapor interface
20 P_vap = 10^5; % [Pa] atmospheric pressure
21 A = 10^33; % [s^-1 cm^-3] kinetic prefactor
22

23 DeltaP = @(DT) DeltaS0_vap/Vm_373*DT; % [Pa]
24 Rstar = @(DT) 2*gamma ./ DeltaP(DT); % [m]
25 Wstar = @(DT) 16/3*pi*gamma ^3./ DeltaP(DT).^2; % [J]
26 NdotV = @(DT) A*exp(-Wstar(DT)/k./(T_b -DT)); % [s^-1 cm^-3]
27

28 DeltaT = [1:0.1: T_b];% [K] supercooling
29 T = T_b -DeltaT; % [K] actual temperature
30

31 % find DeltaT at which NdotV(x)==1, choose positive solution
closest to T_b

32 syms x
33 S_DT = vpasolve(NdotV(x)==1,x,[1 50]);
34

35 figure;
36 subplot (2,2,1);
37

38 yyaxis left
39 plot(NdotV(DeltaT),DeltaT ,'b');
40 set(gca ,'YDir','reverse ');
41 set(gca ,'TickDir ','out');
42 axis square;
43 ylim([0,T_b]);
44 ylabel('\leftarrow \DeltaT [K]');
45 xlabel('N_V [s^-^1 cm^-^3]');
46
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47 yyaxis right
48 plot(NdotV(DeltaT),T,'b');
49 ylim([0,T_b]);
50 ylabel('\rightarrow T [K]');
51

52 subplot (2,2,2);
53 yyaxis left
54 semilogx(NdotV(DeltaT),DeltaT ,'b');hold on;
55 semilogx ([1,1], DeltaT ([1,end]),'k--');
56 set(gca ,'YDir','reverse ');
57 set(gca ,'TickDir ','out');
58 set(gca ,'XTick ',logspace (-50,50,11));
59 axis square;
60 ylim([0,T_b]);
61 xlim ([1e-50,1e+50]);
62 ylabel('\leftarrow \DeltaT [K]');
63 xlabel('N_V [s^-^1 cm^-^3]');
64

65 yyaxis right
66 semilogx(NdotV(DeltaT),T,'b');
67 ylim([0,T_b]);
68 xlim ([1e-50,1e+50]);
69 ylabel('\rightarrow T [K]');
70 set(gca ,'XTick ',logspace (-50,50,11));
71

72

73 subplot (2,2,3);
74

75 yyaxis left
76 plot(NdotV(DeltaT),DeltaT ,'b');
77 set(gca ,'YDir','reverse ');
78 set(gca ,'TickDir ','out');
79 axis square;
80 ylim ([5 ,30]);
81 ylabel('\leftarrow \DeltaT [K]');
82 xlabel('N_V [s^-^1 cm^-^3]');
83

84 yyaxis right
85 plot(NdotV(DeltaT),T,'b');
86 ylim([T_b -30,T_b -5]);
87 ylabel('\rightarrow T [K]');
88

89 subplot (2,2,4);
90 yyaxis left
91 semilogx(NdotV(DeltaT),DeltaT ,'b');hold on;
92 plot ([1,1],[S_DT ,30],'k--');
93 plot ([1e-50,1],[S_DT ,S_DT],'k--');
94

95 set(gca ,'YDir','reverse ');
96 set(gca ,'TickDir ','out');
97 set(gca ,'XTick ',logspace (-50,50,11));
98 axis square;
99 ylim ([5 ,30]);
100 xlim ([1e-50,1e+50]);
101 ylabel('\leftarrow \DeltaT [K]');
102 xlabel('N_V [s^-^1 cm^-^3]');
103
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104 yyaxis right
105 semilogx(NdotV(DeltaT),T,'b');
106 ylim([T_b -30,T_b -5]);
107 xlim ([1e-50,1e+50]);
108 ylabel('\rightarrow T [K]');
109 set(gca ,'XTick ',logspace (-50,50,11));

24.5 Figure TOC entry

1 %% Lecture 5 Figure 3
2 % Plots of the structure factor S(theta) for spherical cap

geometry
3

4 close all
5 clear all
6

7 S = @(x) 0.25*(2+ cos(x)).*(1-cos(x)).^2;
8 theta = 0:0.1:180;
9

10 figure;
11

12 subplot (121);
13 plot(theta ,S(deg2rad(theta)),'b');
14 set(gca ,'TickDir ','out');
15 xlabel('\theta [?]');
16 ylabel('S(\theta)');
17 xlim ([0 ,180]);
18 ylim ([1e-10 ,1]);
19 grid on
20

21 subplot (122);
22 semilogy(theta ,S(deg2rad(theta)),'b');
23 set(gca ,'TickDir ','out');
24 xlabel('\theta [?]');
25 ylabel('S(\theta)');
26 xlim ([0 ,180]);
27 ylim ([1e-10 ,1]);
28 grid on
29

30 %% some solutions
31 syms x
32 Sv = [1e-5, 1e-3, 1e-2, 1e-1, .5];
33

34 for i=1: length(Sv)
35 thv(i) = rad2deg(double (( vpasolve(S(x)==Sv(i),x,[0 pi]))));
36 end

24.6 Figure TOC entry

1 % Draw spherical caps
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2 clear all
3 close all
4

5 S = @(x) 0.25*(2+ cos(x)).*(1-cos(x)).^2;
6 syms x
7 Sv = [1e-5, 1e-3, 1e-2, 1e-1, .5, 0.9, 0.99, 0.999];
8

9 for i=1: length(Sv)
10 thv(i) = rad2deg(double (( vpasolve(S(x)==Sv(i),x,[0 pi]))));
11 end;
12

13 h = @(theta ,R) R*(1-cosd(theta));
14 a = @(theta ,R) sqrt(h(theta ,R).*(2*R-h(theta ,R)));
15

16 Rstar = 1;
17

18 hv = h(thv ,Rstar);
19 av = a(thv ,Rstar);
20

21 center = [zeros(size(hv))',hv' -1];
22

23 for i=1: length(hv)
24 subplot(3,3,i);
25 hold on;
26 clear intLbeta rotanv
27

28 r1=[-av(i);0;0] -[ center(i,:)';0]
29 r2=[av(i);0;0] -[ center(i,:)';0]
30

31 rotvec = vrrotvec(r1,r2)
32 if rotvec (3)==1
33 rotvec (4) =2*pi -rotvec (4);
34 rotvec (3)=-1;
35 end;
36

37 rotanv = linspace(0,rotvec (4) ,100);
38

39 for j=1: length(rotanv)
40 M=vrrotvec2mat ([ rotvec (1:3),rotanv(j)]);
41 intLbeta(j,:)=M*r1+[ center(i,:)';0];
42 end;
43

44 plot(intLbeta (:,1),intLbeta (:,2),'r');hold on
45 plot([-3,3],[0,0],'k');
46 plot([-3,-av(i)],[0,0],'b');
47 plot([av(i) ,3],[0,0],'b');
48 plot(center(i,1),center(i,2),'k+');
49

50 if thv(i) <90
51 xlim ([ -1.5*av(i) ,1.5*av(i)]);
52 ylim ([ -1.5*av(i) ,1.5*av(i)]);
53 else
54 xlim ([-2,2]);
55 ylim ([-2,2]);
56 end;
57 set(gca ,'TickDir','out');
58 axis equal
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59 titlestr = ['\theta = ',num2str(thv(i),'%3.1f'),'?; S(\theta)
= ',num2str(Sv(i),'%3.2e')];

60 title(titlestr);
61 xlabel('\rightarrow x/R^*');
62 ylabel('\rightarrow z/R^*');
63 end;

24.7 Figure TOC entry

1 % Lecture 8 Figure 2
2 close all
3 clear all
4 clc
5

6 k = 1.38E-23; % J/mol/K
7 T = 473; % K
8

9 gamma_incoherent = 0.5; % J/m^2
10 gamma_coherent = 0.2; % J/m^2
11

12 C = 5e10; % J/m^3 = Pa
13

14 W_V_el = 2e9; % J/m^3 = Pa
15

16 DX1 = linspace (0 ,0.2 ,100);
17 DT1 = 100* DX1;
18

19 DX2 = linspace(W_V_el/C,0.2 ,100);
20 DT2 = 100* DX2;
21

22 W_i = 16*pi/3 * gamma_incoherent ^3./(C*DX1).^2/k./(T-DT1);
23 W_c = 16*pi/3 * gamma_coherent ^3./(C*DX2 -W_V_el).^2/k./(T-DT2);
24

25 % figure;
26 % semilogy(DX1 ,W_i ,'b',DX2 ,W_c ,'r');
27 % set(gca ,'TickDir ','out');
28 % xlabel('\rightarrow \Delta X');
29 % ylabel('\rightarrow W^*_r [kT]');
30

31 figure;
32 plot(DX1 ,W_i ,'b',DX2 ,W_c ,'r');hold on;
33 ylim ([0 ,200]);
34 plot([ W_V_el/C,W_V_el/C],[0, 200],'k:');
35 set(gca ,'TickDir ','out');
36 xlabel('\rightarrow \Delta X');
37 ylabel('\rightarrow W^*_r [kT]');
38 legend('incoherent ','coherent ');
39 % figure;
40 % semilogy(DX1 ,W_i.*k.*(T-DT1),'b',DX2 ,W_c.*k.*(T-DT2),'r');
41 % set(gca ,'TickDir ','out');
42 % xlabel('\rightarrow \Delta X');
43 % ylabel('\rightarrow W^*_r [J]');
44

45 figure;
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46 plot(DX1 ,W_i.*k.*(T-DT1),'b',DX2 ,W_c.*k.*(T-DT2),'r');hold on;
47 plot([ W_V_el/C,W_V_el/C],[0, 5e-18],'k:');
48 ylim ([0,5e-18]);
49 set(gca ,'TickDir ','out');
50 xlabel('\rightarrow \Delta X');
51 legend('incoherent ','coherent ');

24.8 Figure TOC entry

1 % Elastic Strain Energy Density
2

3 mu_alpha = 80E9; % Pa
4 K_beta = 170E9;% Pa
5

6 Vm_alpha = 7.09E-6; % m^3/mol
7 Vm_beta = linspace(Vm_alpha ,Vm_alpha *1.2 ,100);
8

9 epsilon = 1/3*( Vm_beta -Vm_alpha)/Vm_alpha;
10

11 W_V_el = 18* epsilon .^2.* mu_alpha .* K_beta ./(4* mu_alpha + 3* K_beta)
;

12

13 figure;
14 plot(epsilon , W_V_el /1E6);
15 xlabel('\epsilon ');
16 ylabel('W_V^e^l [MPa]');
17

18 set(gca ,'TickDir ','out');

24.9 Figure TOC entry

1 %% Lecture 10 Figure 1
2 close all
3 clear all
4 clc
5

6 Teq = 1000; % [K] equilibrium temperature for phase
transformation

7 DT = linspace(0,Teq ,1000);
8

9 F1 = exp(-1e8*DT.^ -2.*(Teq -DT).^-1);
10 F1n = F1/max(F1);
11

12 F2 = exp(-1e2*(Teq -DT).^-1);
13 F2n = F2/max(F2);
14

15 figure;
16 plot(DT,F1n ,'b--');hold on
17 plot(DT,F2n ,'r');hold on
18 yyaxis right
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19 plot(DT,F1n.*F2,'b');hold on
20 set(gca ,'TickDir ','out');
21

22 %
23

24 F1 = @(Teq ,DT) exp(-1e8*DT.^ -2.*(Teq -DT).^-1);
25 F2 = @(Teq ,DT) exp(-1e2*(Teq -DT).^-1);
26 Teq1 = 1000; % [K] equilibrium temperature for phase

transformation at initial comosition X1
27 Teq2 = 900; % [K] equilibrium temperature for phase

transformation at initial comosition X2
28

29 DT1 = linspace(0,Teq1 ,1000);
30 T1 = Teq1 -DT1;
31 DT2 = linspace(0,Teq2 ,1000);
32 T2 = Teq2 -DT2;
33

34 N1 = F1(Teq1 ,DT1).*F2(Teq1 ,DT1);
35 N2 = F1(Teq1 ,DT1).*F2(Teq2 ,DT2);
36

37

38 figure;
39 plot(N1,T1 ,'b',N2,T2 ,'g');hold on;
40 ax = gca;
41 plot(ax ,[0 ax.XLim (2)],[Teq1 Teq1],'b--');
42 plot(ax ,[0 ax.XLim (2)],[Teq2 Teq2],'g--');
43 ax.TickDir = 'out';
44 ax.YLim (2) = Teq1 +100;
45

46 %
47 figure;
48 plot(F1(Teq1 ,DT1), DT1 , 'b--', N1,DT1 ,'b',F1(Teq2 ,DT2), DT2 , 'g--

', N2,DT2 ,'g', F2(Teq1 ,DT1), DT1 ,'r--');hold on;
49 ax = gca;
50 ax.TickDir = 'out';
51 ax.YDir = 'reverse ';

24.10 Figure TOC entry

1 % shape of nucleus of a precipitate at a totally incoherent grain
boundary ,

2 % grain edge , and grain corner after Clemm and Fisher 1955
3 clear all
4 close all
5 clc
6 % case 1: planar grain boundary
7

8 gamma_aa =0.1;
9 gamma_ab =0.08;

10

11 theta = acos(gamma_aa /(2* gamma_ab));
12

13 azv = linspace (0,2*pi ,36);
14 elv = linspace(pi/2-theta ,pi/2,ceil((pi-theta)*18/pi));

119



24.11 Figure TOC entry 24 MATLAB EXAMPLES

15 r = 1;
16

17 [AZ EL R] = meshgrid(azv ,elv ,r);
18 [X Y Z] = sph2cart(AZ , EL , R);
19 Z = Z-min(min(Z));
20

21 sphcap1 = surf2patch(X,Y,Z);
22 sphcap2 = surf2patch(X,Y,-Z);
23

24 % xy plane
25 xy.vertices = 1.25*[ -r -r 0;-r r 0; r r 0; r -r 0];
26 xy.faces = [1 2 3 4];
27

28 figure;
29 patch(sphcap1 ,'FaceColor ','c','EdgeColor ','k','AmbientStrength '

,0.5); hold on;
30 patch(sphcap2 ,'FaceColor ','c','EdgeColor ','k','AmbientStrength '

,0.5);
31 patch('Faces ',xy.faces ,'Vertices ',xy.vertices ,'FaceColor ','k','

EdgeColor ','none','FaceAlpha ' ,0.2);
32

33 lighting gouraud
34 light('Position ',[-2 0 4],'Style ','local ');
35 %light('Position ' ,[0 0 -1],'Style ','infinite ')
36 %camlight (-60,90)
37 view (25 ,20);
38 axis equal
39 %axis off
40 grid on
41 xlim (1.25*[ -r r]);
42 ylim (1.25*[ -r r]);

24.11 Figure TOC entry

1 %% Lecture 10 Figure 1
2 % Plots of structure factors at a free interface , grain boundary ,

grain
3 % edge , and grain corner
4 % adapted from Clemm and Fisher , Acta Metall. 1955,
5 close all
6 clear all
7

8 S_free = @(x) 0.25*(2+ cos(x)).*(1-cos(x)).^2;
9

10 % Clemm and Fisher
11 % derive a general form for the reversible work of nucleation for

nucleus
12 % beta at the interface between two or more grains of alpha phase
13 % The ratio of this rev. work for the heterogeneous case over

that for the
14 % homogeneous case is the structure factor with the general form
15

16 S = @(x,a,b,c) ((b-2*a.*cos(x)).^3) ./(36* pi*c.^2);
17
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18 a_gb = @(x) pi*(1-cos(x).^2);
19 b_gb = @(x) 4*pi*(1-cos(x));
20 c_gb = @(x) (2*pi/3) *(2+ cos(x)).*(1-cos(x)).^2;
21

22 a_ge = @(x,beta) 3.* beta .*(1-cos(x).^2)-cos(x).*(3 -4* cos(x).^2)
.^0.5;

23 b_ge = @(x,alpha , beta) 12*(pi/2-alpha -cos(x).*beta);
24 c_ge = @(x,alpha , beta) 2*(pi -2* alpha+cos(x).^2/3.*(3 -4* cos(x)

.^2) .^0.5 - beta.*cos(x).*(3-cos(x).^2));
25 alpha = @(x) asin (1./(2*(1 - cos(x).^2) .^.5));
26 beta = @(x) acos(cos(x)./(3*(1 - cos(x).^2)).^.5);
27

28 a_gc = @(x,phi ,K) 3*(2* phi.*(1-cos(x).^2)-K.*((1- cos(x).^2-K
.^2/4) .^.5-K.^2/ sqrt (8)));

29 b_gc = @(x,phi ,delta) 24*(pi/3-cos(x).*phi -delta);
30 c_gc = @(x,phi ,K,delta) 2*(4*( pi/3-delta)+cos(x).*K.*((1- cos(x)

.^2-K.^2/4) .^.5-K.^2/ sqrt (8)) -2*cos(x).*phi.*(3-cos(x).^2));
31 K = @(x) 4/3*(3/2 -2* cos(x).^2) .^.5 -2/3* cos(x);
32 phi = @(x,K) asin(K./(2*(1 - cos(x).^2) .^.5))
33 delta = @(x,K) acos((sqrt (2)-cos(x).*(3-K.^2) .^.5) ./(K.*(1-cos(x)

.^2) .^.5));
34

35 theta_free = deg2rad (0:0.1:180);
36

37 theta_gb = deg2rad (0:0.1:90);
38 S_gb = S(theta_gb ,a_gb(theta_gb),b_gb(theta_gb),c_gb(theta_gb));
39

40 theta_ge = deg2rad(rad2deg(acos(sqrt (3)/2)):0.1:90);
41 S_ge = S(theta_ge ,a_ge(theta_ge ,beta(theta_ge)),b_ge(theta_ge ,

alpha(theta_ge),beta(theta_ge)),c_ge(theta_ge ,alpha(theta_ge),
beta(theta_ge)));

42

43 theta_gc = deg2rad(rad2deg(acos (0.817)):0.01:90);
44 S_gc = S(theta_gc ,a_gc(theta_gc ,phi(theta_gc ,K(theta_gc)),K(

theta_gc)),b_gc(theta_gc ,phi(theta_gc ,K(theta_gc)),delta(
theta_gc ,K(theta_gc))),c_gc(theta_gc ,phi(theta_gc ,K(theta_gc)),
K(theta_gc),delta(theta_gc ,K(theta_gc))));

45 %
46 figure;
47

48 subplot (121);
49 plot(rad2deg(theta_gc),S_gc ,'b',rad2deg(theta_ge),S_ge ,'g',

rad2deg(theta_gb),S_gb ,'r');hold on
50 %plot(rad2deg(theta_free),S_free(theta_free),'k')
51 set(gca ,'TickDir ','out');
52 xlabel('\theta [\circ]');
53 ylabel('S(\theta)');
54 %xlim ([0 ,90]);
55 ylim ([0 ,1]);
56 grid on
57 legend('S_g_c (\ theta)','S_g_e (\ theta)','S_g_b (\ theta)');
58

59 subplot (122);
60 semilogy(rad2deg(theta_gc),S_gc ,'b',rad2deg(theta_ge),S_ge ,'g',

rad2deg(theta_gb),S_gb ,'r');hold on
61 %semilogy(rad2deg(theta_free),S_free(theta_free),'k')
62 set(gca ,'TickDir ','out');
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63 xlabel('\theta [\circ]');
64 ylabel('S(\theta)');
65 xlim ([0 ,90]);
66 ylim ([1e-6 ,1]);
67 grid on
68 legend('S_g_c (\ theta)','S_g_e (\ theta)','S_g_b (\ theta)');

24.12 Figure TOC entry

1 %% grain corner precipitates
2

3 % this seems to work pretty well at larger d, i.e. displacement
of the

4 % sphere along the axis , but runs into trouble with the surface
mesh at

5 % smaller values. The code could probably be simplified by making
better

6 % use of symmetry properties.
7

8 clear all
9 close all

10 clc
11

12 % Origin
13 O = [0,0,0];
14 % vertices of a tetrahedron
15 T1 = [1,0,-1/sqrt(sym(2))];
16 T1 = T1/norm(T1);
17 T2 = [-1,0,-1/sqrt(sym(2))];
18 T2 = T2/norm(T2);
19 T3 = [0,1,1/sqrt(sym(2))];
20 T3 = T3/norm(T3);
21 T4 = [0,-1,1/sqrt(sym(2))];
22 T4 = T4/norm(T4);
23

24 % normal vectors to planes
25

26 nP24 = cross(T2,T4)/norm(cross(T2 ,T4));
27 nP23 = cross(T2,T3)/norm(cross(T2 ,T3));
28 nP34 = cross(T3,T4)/norm(cross(T3 ,T4));
29

30 %
31 T.vertices = double ([T1;T2;T3;T4]);
32 T.faces = [[1 ,2 ,3];[1 2 4];[1 3 4];[2 3 4]];
33

34

35

36 % define sphere S1 , offset in the positive T1 direction
37 d=0.6;R=1;
38 C1 = d*R*T1;
39

40 % circle of intersection between S1 and the 3 planes OT2T3 , OT3T4
, and OT2T4

41 d23 = dot(C1 -T2,nP23);
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42 C23 = (C1-d23*nP23)';
43 r23 = sqrt(R^2-d23 ^2);
44

45 syms x
46 assume(x>0);
47 S = solve(norm(T2*x-C1)-R);
48

49 I2 = (T2*S)';
50 % rotation by 2pi/3 around T1 gives I3
51 I3 = vrrotvec2mat(double ([T1 ,2*pi/3]))*I2;
52 % rotation by -2pi/3 around T1 gives I4
53 I4 = vrrotvec2mat(double ([T1 ,-2*pi/3]))*I2;
54 % rotation by 2pi/3 around T4 gives I1
55 I1 = vrrotvec2mat(double ([T4 ,2*pi/3]))*I2;
56

57 %plot3(C1(1),C1(2),C1(3),'rx'); % center of sphere
58 %plot3(C23(1),C23 (2),C23(3),'gx'); % center of circle of

intersection
59 % plot3(I2(1),I2(2),I2(3),'go'); % intercept of sphere with T2

axis
60 % plot3(I3(1),I3(2),I3(3),'bo'); % intercept of sphere with T3

axis
61 % plot3(I4(1),I4(2),I4(3),'mo'); % intercept of sphere with T4

axis
62 % plot3(I1(1),I1(2),I1(3),'ro'); % intercept of sphere with T1

axis
63

64 % determine points on arc from I2 to I3
65 alpha = acos(double(dot(I2-C23 ,I3-C23)/r23 ^2));
66 phi = linspace(0,alpha ,20);
67 for i=1: length(phi)
68 arc23{i}= double(C23+vrrotvec2mat(double ([nP23 ,phi(i)]))*(I2-

C23));
69 arc34{i}= vrrotvec2mat(double ([T1 ,2*pi/3]))*arc23{i};
70 arc24{i}= vrrotvec2mat(double ([T1 ,-2*pi/3]))*arc23{i};
71 arc12{i}= vrrotvec2mat(double ([T2 ,2*pi/3]))*arc23{i};
72 arc13{i}= vrrotvec2mat(double ([T1 ,2*pi/3]))*arc12{i};
73 arc14{i}= vrrotvec2mat(double ([T1 ,-2*pi/3]))*arc12{i};
74 end;
75 arc23mat = cell2mat(arc23);
76 arc34mat = cell2mat(arc34);
77 arc24mat = cell2mat(arc24);
78 arc12mat = cell2mat(arc12);
79 arc13mat = cell2mat(arc13);
80 arc14mat = cell2mat(arc14);
81 plot3(arc23mat (1,:),arc23mat (2,:),arc23mat (3,:),'g');hold on;
82 plot3(arc34mat (1,:),arc34mat (2,:),arc34mat (3,:),'b');
83 plot3(arc24mat (1,:),arc24mat (2,:),arc24mat (3,:),'m');
84 plot3(arc12mat (1,:),arc12mat (2,:),arc12mat (3,:),'r');
85 plot3(arc13mat (1,:),arc13mat (2,:),arc13mat (3,:),'c');
86 plot3(arc14mat (1,:),arc14mat (2,:),arc14mat (3,:),'y');
87

88 % draw hoops of sphere segment
89

90 % iterate over points on arc23
91

92 for i=1:1: length(arc24)
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93 di = double(dot(C1-arc24{i}',nP23));
94 Ci = double ((C1-di*nP23))';
95 ri = double(sqrt(R^2-di^2));
96 % plot3(arc24{i}(1),arc24{i}(2),arc24{i}(3),'kx');
97 % plot3(arc34{end -i+1}(1) ,arc34{end -i+1}(2) ,arc34{end -i+1}(3)

,'kx');
98

99 phi =linspace(0,double(acos(dot(arc24{i}-Ci,arc34{end -i+1}-Ci
)/(norm(arc24{i}-Ci)*norm(arc34{end -i+1}-Ci)))) ,10);

100 % plot3(Ci(1),Ci(2),Ci(3),'kx');
101 for j=1: length(phi)
102 arci(:,j) = Ci+double(vrrotvec2mat(double ([nP23 ,phi(j)]))

*(arc24{i}-Ci));
103 end;
104 h1(i)=plot3(arci (1,:),arci (2,:),arci (3,:),'k');
105 end;
106

107 ax = gca;
108 h2 = copyobj(h1,ax);
109 rotate(h2,T4 ,120);
110 h3 = copyobj(h2,ax);
111 rotate(h3,T4 ,120);
112 h4 = copyobj(h1,ax);
113 rotate(h1,T3 ,-120);
114

115 % convert to patch
116 XData =[]; YData =[]; ZData =[];
117 for i=1: length(ax.Children)
118 XData = [XData ,ax.Children(i).XData];
119 YData = [YData ,ax.Children(i).YData];
120 ZData = [ZData ,ax.Children(i).ZData];
121 end;
122

123 DT = delaunayTriangulation ([XData ,0]',[YData ,0]',[ZData ,0]');
124 [FBtri ,FBpoints ]= freeBoundary(DT);
125 trisurf(FBtri ,FBpoints (:,1),FBpoints (:,2),FBpoints (:,3),'Facecolo

r','c','FaceAlpha ' ,0.8,'EdgeColor','none');
126

127 % draw tetrahedron
128 %patch('Faces ',T.faces ,'Vertices ',T.vertices ,'FaceColor','r','

EdgeColor','k','FaceAlpha ' ,0.2);hold on;
129 % draw grain corner
130 plot3 ([0 ,1.5*T1(1) ],[0 ,1.5*T1(2)],[0,1.5*T1(3)],'r');hold on;
131 plot3 ([0 ,1.5*T2(1) ],[0 ,1.5*T2(2)],[0,1.5*T2(3)],'g');
132 plot3 ([0 ,1.5*T3(1) ],[0 ,1.5*T3(2)],[0,1.5*T3(3)],'b');
133 plot3 ([0 ,1.5*T4(1) ],[0 ,1.5*T4(2)],[0,1.5*T4(3)],'m');
134 % draw facets
135 F.vertices = double (1.5*[O;T1;T2;T3;T4]);
136 F.faces = [[1 2 3];[1 2 4];[1 2 5];[1 3 4];[1 3 5];[1 4 5]];
137 patch('Faces ',F.faces ,'Vertices ',F.vertices ,'FaceColor','k','

EdgeColor','none','FaceAlpha ' ,0.2);
138

139 axis equal
140 grid on
141 lighting gouraud
142 camlight
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24.13 Figure TOC entry

1 %% Drawing Nuclei at Grain Edges and Grain Corners
2 clear all
3 close all
4

5 syms x
6

7 a1 = [1;0;0];
8 a2 = [-sym (1/2);sqrt(sym(3))/2;0];
9 a3 = [-sym (1/2);-sqrt(sym(3))/2;0];

10 z = [0;0;1];
11 na1 = cross(a1,z);
12 na2 = cross(a2,z);
13 na3 = cross(a3,z);
14

15

16 R = 1;
17 d = 0.5;
18

19 % plot axes
20 % plot3([0,a1(1)],[0,a1(2)],[0,a1(3)],'r');hold on;
21 % plot3([0,a2(1)],[0,a2(2)],[0,a2(3)],'b');hold on;
22 % plot3([0,a3(1)],[0,a3(2)],[0,a3(3)],'g');hold on;
23 % plot3 ([0,0],[0,0],[-1,1],'k');hold on;
24

25

26

27 % find origin of sphere
28 O1 = d*R*a1;O2 = d*R*a2;O3 = d*R*a3;
29 % plot3([O1(1)],[O1(2)],[O1(3)],'bo');
30 % plot3([O2(1)],[O2(2)],[O2(3)],'go');
31 % plot3([O3(1)],[O3(2)],[O3(3)],'ro');
32 % draw wire model of sphere
33 azv = [0:pi /15:2* pi];
34 elv = [-pi/2:pi/15:pi/2];
35 [AZ EL RA] = meshgrid(azv ,elv ,R);
36 [X Y Z] = sph2cart(AZ , EL , RA);
37 X = X+O1(1);Y = Y+O1(2);Z = Z+O1(3);
38 sph1 = surf2patch(X,Y,Z);
39 %patch(sph1 ,'FaceColor ','none','EdgeColor ','k');
40

41 % find origin of circle of intersection between sphere and the a2
-z plane

42 S=solve(dot(x*a2,O1 -x*a2));
43 O12 = S(find(not(S==0)))*a2;
44 % plot3(O12(1),O12(2),O12 (3),'bx');
45

46 % find origins on a3-z and a1 -z plane by rotation
47 O23 = vrrotvec2mat ([z;2*pi/3])*O12;
48 % plot3(O23(1),O23(2),O23 (3),'gx');
49 O31 = vrrotvec2mat ([z;2*pi/3])*O23;
50 % plot3(O31(1),O31(2),O31 (3),'rx');
51

52 % find radius of circle of intersection between sphere and the a2
-z plane
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53 R12 = sqrt(R^2-norm(O12 -O1)^2);
54

55 % find circle segments on positive half planes
56 S=solve(norm(x*z-O12)-R12);
57 % plot3(S*z(1),S*z(2),S*z(3),'bo');
58 % plot3(S*z(1),S*z(2) ,-S*z(3),'bo');
59 alpha = acos(norm(O12)/R12);
60 phi = [-alpha:pi/60: alpha ];
61 C12=zeros(3,length(phi));
62 C23=zeros(3,length(phi));
63 C31=zeros(3,length(phi));
64

65 for i=1: length(phi)
66 C12(:,i) = vrrotvec2mat(double ([na2;phi(i)]))*(R12*a2);
67 C23(:,i) = vrrotvec2mat ([z;2*pi/3])*vrrotvec2mat(double ([na2;

phi(i)]))*(R12*a2);
68 C31(:,i) = vrrotvec2mat ([z;-2*pi/3])*vrrotvec2mat(double ([na2

;phi(i)]))*(R12*a2);
69 end;
70 C12X = O12(1)+C12(1,:);
71 C12Y = O12(2)+C12(2,:);
72 C12Z = O12(3)+C12(3,:);
73

74 C23X = O23(1)+C23(1,:);
75 C23Y = O23(2)+C23(2,:);
76 C23Z = O23(3)+C23(3,:);
77

78 C31X = O31(1)+C31(1,:);
79 C31Y = O31(2)+C31(2,:);
80 C31Z = O31(3)+C31(3,:);
81

82 plot3(C12X ,C12Y ,C12Z ,'b');
83 plot3(C23X ,C23Y ,C23Z ,'g');
84 plot3(C31X ,C31Y ,C31Z ,'r');
85

86 % draw hoops for surface 1
87 [az12 , el12] = cart2sph(double(C12X -O1(1)),double(C12Y -O1(2)),

double(C12Z -O1(3)));
88 [az23 , el23] = cart2sph(double(C23X -O1(1)),double(C23Y -O1(2)),

double(C23Z -O1(3)));
89

90 N = 10;
91 [Xhoop_old ,Yhoop_old ,Zhoop_old] = sph2cart(az12 (1)*ones(1,N),el12

(1)*ones(1,N),R);
92 for i=2:2: length(el12)
93 azhoop=linspace(az12(i),az23(i)+2*pi,N);
94 [Xhoop ,Yhoop ,Zhoop] = sph2cart(azhoop ,el12(i)*ones(size(

azhoop)) ,1);
95 plot3(Xhoop+O1(1),Yhoop+O1(2),Zhoop+O1(3),'k');
96

97 for j=1: length(Xhoop)
98 plot3 ([ Xhoop_old(j) Xhoop(j)]+O1(1) ,[Yhoop_old(j) Yhoop(j

)]+O1(2) ,[Zhoop_old(j) Zhoop(j)]+O1(3),'k');hold on;
99 end;
100

101 Xhoop_old=Xhoop;
102 Yhoop_old=Yhoop;
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103 Zhoop_old=Zhoop;
104 end;
105 [Xhoop ,Yhoop ,Zhoop] = sph2cart(az12 (1)*ones(1,N),el12(end)*ones

(1,N),R);
106 for j=1: length(Xhoop)
107 plot3 ([ Xhoop_old(j) Xhoop(j)]+O1(1) ,[Yhoop_old(j) Yhoop(j)]+

O1(2) ,[Zhoop_old(j) Zhoop(j)]+O1(3),'k');
108 end;
109

110

111 % draw hoops for surface 2
112 [az23 , el23] = cart2sph(double(C23X -O2(1)),double(C23Y -O2(2)),

double(C23Z -O2(3)));
113 [az31 , el31] = cart2sph(double(C31X -O2(1)),double(C31Y -O2(2)),

double(C31Z -O2(3)));
114

115 N = 10;
116 [Xhoop_old ,Yhoop_old ,Zhoop_old] = sph2cart(az23 (1)*ones(1,N),el23

(1)*ones(1,N),R);
117 for i=2:2: length(el23)
118 azhoop=linspace(az23(i),az31(i),N);
119 [Xhoop ,Yhoop ,Zhoop] = sph2cart(azhoop ,el23(i)*ones(size(

azhoop)) ,1);
120 plot3(Xhoop+O2(1),Yhoop+O2(2),Zhoop+O2(3),'k');
121

122 for j=1: length(Xhoop)
123 plot3 ([ Xhoop_old(j) Xhoop(j)]+O2(1) ,[Yhoop_old(j) Yhoop(j

)]+O2(2) ,[Zhoop_old(j) Zhoop(j)]+O2(3),'k');
124 end;
125

126 Xhoop_old=Xhoop;
127 Yhoop_old=Yhoop;
128 Zhoop_old=Zhoop;
129 end;
130 [Xhoop ,Yhoop ,Zhoop] = sph2cart(az23 (1)*ones(1,N),el23(end)*ones

(1,N),R);
131 for j=1: length(Xhoop)
132 plot3 ([ Xhoop_old(j) Xhoop(j)]+O2(1) ,[Yhoop_old(j) Yhoop(j)]+

O2(2) ,[Zhoop_old(j) Zhoop(j)]+O2(3),'k');
133 end;
134

135 % draw hoops for surface 3
136 [az31 , el31] = cart2sph(double(C31X -O3(1)),double(C31Y -O3(2)),

double(C31Z -O3(3)));
137 [az12 , el12] = cart2sph(double(C12X -O3(1)),double(C12Y -O3(2)),

double(C12Z -O3(3)));
138

139 N = 10;
140 [Xhoop_old ,Yhoop_old ,Zhoop_old] = sph2cart(az31 (1)*ones(1,N),el31

(1)*ones(1,N),R);
141 for i=2:2: length(el31)
142 azhoop=linspace(az31(i),az12(i),N);
143 [Xhoop ,Yhoop ,Zhoop] = sph2cart(azhoop ,el31(i)*ones(size(

azhoop)) ,1);
144 plot3(Xhoop+O3(1),Yhoop+O3(2),Zhoop+O3(3),'k');
145

146 for j=1: length(Xhoop)
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147 plot3 ([ Xhoop_old(j) Xhoop(j)]+O3(1) ,[Yhoop_old(j) Yhoop(j
)]+O3(2) ,[Zhoop_old(j) Zhoop(j)]+O3(3),'k');

148 end;
149

150 Xhoop_old=Xhoop;
151 Yhoop_old=Yhoop;
152 Zhoop_old=Zhoop;
153 end;
154 [Xhoop ,Yhoop ,Zhoop] = sph2cart(az31 (1)*ones(1,N),el31(end)*ones

(1,N),R);
155 for j=1: length(Xhoop)
156 plot3 ([ Xhoop_old(j) Xhoop(j)]+O3(1) ,[Yhoop_old(j) Yhoop(j)]+

O3(2) ,[Zhoop_old(j) Zhoop(j)]+O3(3),'k');
157 end;
158

159 ax = gca;
160 % convert to patch?
161

162 XData =[]; YData =[]; ZData =[];
163 for i=1: length(ax.Children)
164 XData = [XData ,ax.Children(i).XData];
165 YData = [YData ,ax.Children(i).YData];
166 ZData = [ZData ,ax.Children(i).ZData];
167 end;
168 %
169 DT = delaunayTriangulation ([XData ,0]',[YData ,0]',[ZData ,0]');
170 [FBtri ,FBpoints ]= freeBoundary(DT);
171 trisurf(FBtri ,FBpoints (:,1),FBpoints (:,2),FBpoints (:,3),'Facecolo

r','c','FaceAlpha ' ,0.8,'EdgeColor','none');
172 lighting gouraud
173 camlight
174 axis equal
175

176 %% plot half planes
177

178 % a1-z plane
179 p1.vertices = R*[0 0 1;1 0 1; 1 0 -1; 0 0 -1];
180 p2.vertices = double(R*[0 0 1;a2(1) a2(2) 1; a2(1) a2(2) -1; 0 0

-1]);
181 p3.vertices = double(R*[0 0 1;a3(1) a3(2) 1; a3(1) a3(2) -1; 0 0

-1]);
182 p.faces = [1 2 3 4];
183

184 patch('Faces ',p.faces ,'Vertices ',p1.vertices ,'FaceColor','k','
EdgeColor','none','FaceAlpha ' ,0.2);

185 patch('Faces ',p.faces ,'Vertices ',p2.vertices ,'FaceColor','k','
EdgeColor','none','FaceAlpha ' ,0.2);

186 patch('Faces ',p.faces ,'Vertices ',p3.vertices ,'FaceColor','k','
EdgeColor','none','FaceAlpha ' ,0.2);

187

188 lighting gouraud
189 light('Position ',[-2 0 4],'Style ','local ');
190 view (25 ,20);
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24.14 Figure TOC entry

1 %% solidification in binary systems
2 clear all
3 close all
4 clc
5

6 R = 8.314; % J mol^-1 K^-1
7 k = 0.5;
8 X_0 = 0.05;
9 p = '/Users/derk/Box Sync/Teaching/MSE 316-2 Fall 2018/ Notes (F18

)/Tex Files and Figures/';
10

11 %% perfect mixing in liquid and solid
12 Tm = 1000; %K
13 b_L = -400; %K
14 b_s = -800; %K
15 k = b_L/b_s;
16

17 X_0 = 0.15;
18

19 T_s = @(X) Tm + b_s*X;
20 T_L = @(X) Tm + b_L*X;
21

22 X_L = @(T) (T - Tm)/b_L;
23 X_s = @(T) k*X_L(T);
24

25 f_s = @(T) (X_L(T)-X_0)./( X_L(T)*(1-k)); % assuming molar volumes
indentical

26

27 T_i = T_L(X_0);
28 T_f = T_s(X_0);
29

30 % plot PD
31 close all
32 figure;
33 X = [0:0.01:0.5];
34 plot(X,T_L(X),'b');hold on;
35 plot(X,T_s(X),'g');
36 ax=gca;
37 plot([X_0 ,X_0],ax.YLim ,'k:');
38 plot([0,X_0],[T_i ,T_i],'k:');
39 plot([0,X_0/k],[T_f ,T_f],'k:');
40 legend('liquidus ','solidus ');
41 ax=gca;
42 ax.TickDir='out';
43 saveas(gcf ,[p,'Lecture13_Figure3A '],'epsc');
44 % plot f_s vs T
45 figure;
46 T = T_i:-1:T_f;
47 plot(f_s(T),T);
48 ylabel('\rightarrow T [K]');
49 xlabel('\rightarrow f_s');
50 ax=gca;
51 ax.TickDir='out';
52 saveas(gcf ,[p,'Lecture13_Figure3B '],'epsc');
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53 % plot X_L and X_s vs f_s
54 figure;
55 plot(f_s(T),X_L(T),'b');hold on;
56 plot(f_s(T),X_s(T),'g');
57 ylabel('\rightarrow X');
58 xlabel('\rightarrow f_s');
59 legend('liquid ','solid ');
60 ax=gca;
61 ax.TickDir='out';
62 saveas(gcf ,[p,'Lecture13_Figure3C '],'epsc');
63

64 % plot snapshots of solidification
65 N = 3; % number of intermediate temperatures
66 figure;
67 Tv = [T_i:(T_f -T_i)/(N+1):T_f];
68

69 for i=1:N+2
70 subplot(N+2,1,i);
71 plot([f_s(Tv(i)) ,1],[X_L(Tv(i)),X_L(Tv(i))],'bo -');hold on;
72 plot([0,f_s(Tv(i))],[X_s(Tv(i)),X_s(Tv(i))],'go -');
73 plot ([0,1],[X_0 ,X_0],'k:');
74 plot([f_s(Tv(i)),f_s(Tv(i))],[0,X_0/k+0.05] ,'r');
75 ax=gca;
76 ax.YLim = [0,X_0/k+0.05];
77 ax.TickDir='out';
78 ylabel('\rightarrow X');
79 end
80 xlabel('\rightarrow f_s');
81 legend('liquid ','solid ','X_0','interface ');
82 saveas(gcf ,[p,'Lecture13_Figure4 '],'epsc');
83

84 %% no diffusion in solid , perfect mixing in liquid
85 close all
86 % Scheil equation
87 X_s = @(f_s) k*X_0*(1-f_s).^(k-1);
88 X_L = @(f_s) X_0*(1-f_s).^(k-1);
89

90 f = [0:0.01:1];
91 figure;
92 plot(f,X_s(f));hold on
93 plot(f,X_L(f));hold on
94 plot ([0,1],[X_0 ,X_0],'k:'); % initial composition
95 ax=gca;
96 ax.TickDir='out';
97 xlabel('\rightarrow fractional progress of solidification f_{\rm{

s}}');
98 ylabel('\rightarrow X');
99 legend('solid ','liquid ','initial ');
100 saveas(gcf ,[p,'Lecture13_Figure5 '],'epsc');
101

102 % plot snapshots of solidification
103 N = 3; % number of intermediate temperatures
104 f_sv = [0:1/(N+1) :1];
105

106 figure;
107 for i=1:N+2
108 subplot(N+2,1,i);
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109 plot([f_sv(i) ,1],[X_L(f_sv(i)),X_L(f_sv(i))],'bo -'); hold on;
110 f_s = 0:0.01: f_sv(i);
111 plot(f_s ,X_s(f_s),'g');
112 plot ([0,1],[X_0 ,X_0],'b:');
113 X_S_av = mean(X_s(f_s));
114 plot(f_s([1,end]) ,[X_S_av ,X_S_av],'m:');
115 plot([f_sv(i),f_sv(i)],[0,X_L (0.9)],'r');
116 ax=gca;
117 ax.YLim = [0,X_L (0.9)];
118 ax.TickDir='out';
119 ylabel('\rightarrow X');
120 end
121 legend('liquid ','solid ','X_0','mean(X_s)','interface ');
122 xlabel('\rightarrow fractional progress of solidification f_{\rm{

s}}');
123 saveas(gcf ,[p,'Lecture13_Figure6 '],'epsc');
124

125 %% no diffusion in solid , only diffusion in liquid
126 close all;
127

128 D = 1E-9; % m^2 s^-1
129 x = [0:1e-8:1e-5];%m
130 v = 1e-3; % m/s
131

132 X_L = X_0 *(1+(1 -k)/k*exp(-x*v/D));
133 figure;
134 plot(x,X_L);hold on;
135 plot ([0,0],[0,X_L(1) +0.05] ,'r');
136 plot ([-2*x(end),x(end)],[X_0 ,X_0],'b:');
137 plot ([-2*x(end),x(end)],[k*X_0 ,k*X_0],'b:');
138 plot ([-2*x(end),x(end)],[X_0/k,X_0/k],'b:');
139 ax=gca;
140 ax.TickDir='out';
141 ax.YLim = [0,X_L(1) +0.05];
142 ax.XLim = [-2*x(end),x(end)];
143 saveas(gcf ,[p,'Lecture13_Figure7 '],'epsc');
144

145 %% local liquidus temperature
146 figure;
147 % plot local liquidus
148 plot(x,T_L(X_L)); hold on;
149 % indicate interface
150 plot ([0,0],[T_L(X_0/k) -100,T_L(X_0)+50],'r');
151 % plot T_L(X_0) isotherm
152 plot ([-2*x(end),x(end)],[T_L(X_0),T_L(X_0)],'b:');
153 % plot T_L(X_0/k) isotherm
154 plot ([-2*x(end),x(end)],[T_L(X_0/k),T_L(X_0/k)],'b:');
155 % plot critical T-gradient
156 fun_gradT_crit = @(x) T_L(X_0/k)+(T_L(X_0)-T_L(X_0/k))*v/D*x;
157 xv = [0:1e-6:D/v];
158 plot(xv ,fun_gradT_crit(xv),'m');
159 ax=gca;
160 ax.TickDir='out';
161 ax.YLim = [T_L(X_0/k) -100,T_L(X_0)+50]
162 ax.XLim = [-2*x(end),x(end)];
163 saveas(gcf ,[p,'Lecture13_Figure8 '],'epsc');
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24.15 Figure TOC entry

1 %% Lecture 11 Figure 1
2

3 % precipitate growth: interface position and velocity
4 k = 1.38e-23; %J/K
5 R = 8.314; %J/mol/K
6 Qd= 136000; %J/mol
7 D0= 6.5e-5; %m^2/s
8

9 DeltaC = 0.05;
10 C_beta = 0.98;
11 C_alpha= 0.02;
12

13 D = @(T) D0 * exp(-Qd/R./T);
14 h = @(T,t) DeltaC /(C_beta -C_alpha)*sqrt(D(T).*t);
15 v = @(T,t) DeltaC /2/( C_beta -C_alpha)*sqrt(D(T)./t);
16

17 DeltaC = 0.05;
18 C_beta = 0.95;
19 C_alpha= 0.05;
20

21 Tv = 0:1:700;
22

23 close all
24 figure
25 plot(sqrt(D(Tv)),Tv)

24.16 Figure TOC entry

1 %% Lecure 12: Precipitate Growth
2 clear all
3 close all
4 clc
5 % 1D growth rate of an incoherent precipitate as a function of

temperature
6 % example: carbon diffusing in ferrite
7 D0 = 6.2E-7; % m^2s^-1 C in ferrite
8 Qd = 80000; % J mol^-1
9 R = 8.314; % J mole^-1 K^-1

10 D = @(T) D0*exp(-Qd/R./T);
11

12 T_eu = 727+273; %K
13 Xs_max = 0.022;
14 X_0 = 0.02;
15

16 Ts = @(X) T_eu/Xs_max*X;
17 Xs = @(T) Xs_max/T_eu*T;
18

19 Tv = linspace(0,Ts(X_0) ,1000);
20

21 Delta_X = X_0 - Xs(Tv);
22
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23 yyaxis left
24 plot(Tv,Delta_X/max(Delta_X),'b');hold on;
25

26 yyaxis right
27 plot(Tv,D(Tv)/max(D(Tv)),'g');
28

29

30 plot(Tv,Delta_X .*D(Tv)/max(Delta_X .*D(Tv)),'r')

24.17 Figure TOC entry

1 %% Lecture 16,17 Figure 5
2 clear all
3 % growth velocity of a curved interface
4 R = 8.314; % J mol^-1 K^-1
5 Na = 6.023 E23;% mol^-1
6 kb = R/Na; % J K^-1
7

8 D = @(D_0 ,Qd,T) D_0*exp(-Qd/R/T);
9 v = @(D,DX_0 , r, r_star , X_ppt , X_matrix_eq) (D .* DX_0)./( X_ppt

- X_matrix_eq).* r.^-1 .* (1 - r_star ./r);
10 w2X = @(w1,M1,M2) w1/M1/(w1/M1+(1-w1)/M2);
11 X2w = @(X1,M1,M2) X1*M1/(X1*M1+(1-X1)*M2);
12 r_star = @(X_matrix_0 ,X_matrix_eq ,gamma ,Vm_ppt ,T) 2* gamma*Vm_ppt/

R/T/( X_matrix_0/X_matrix_eq -1);
13

14 % for visualization of terms going into v
15 vT1 = @(D,DX_0 , r, r_star , X_ppt , X_matrix_eq) (D .* DX_0)./(

X_ppt - X_matrix_eq).* r.^-1;
16 vT2 = @(D,DX_0 , r, r_star , X_ppt , X_matrix_eq) -(D .* DX_0)./(

X_ppt - X_matrix_eq).* r_star ./r.^2;
17

18 % example 1
19 % Cu in Al , solid state
20 D_0_Cu = 6.5E-5; % m^2 s^-1 from Callister
21 Qd_Cu = 136000; % J mol^-1
22 M_Al = 27; % g mol^-1
23 M_Cu = 63.55; % g mol^-1
24 Vm_theta = 9e-6; % m^3 mol^-1 from Y. Ocak et al. / Thin

Solid Films 518 (2010) 4322?4327 and ref therein
25 gamma_theta_Al = 88e-3; % J m^2 from Y. Ocak et al. / Thin Solid

Films 518 (2010) 4322?4327 and ref therein
26

27 % calcuate diffusivity at 400?C
28 T = 673; % K
29 D_Cu = D(D_0_Cu ,Qd_Cu ,T);
30

31 % composition of alpha Al and theta CuAl2 at 400?C, from phase
diagram

32 w_alpha_eq = 0.03; % (w/w)
33 w_theta = 0.5369; % (w/w)
34 X_alpha_eq = w2X(w_alpha_eq ,M_Cu ,M_Al);
35 X_theta = w2X(w_theta ,M_Cu ,M_Al);
36
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37 % set up starting condition
38 w_0 = 0.0305;
39 X_0 = w2X(w_0 ,M_Cu ,M_Al);
40 DeltaX0 = X_0 -X_alpha_eq;
41

42 r_crit = r_star(X_0 ,X_alpha_eq ,gamma_theta_Al ,Vm_theta ,T); % m
43 r = logspace(floor(log10(r_crit /10)),ceil(log10(r_crit *10)) ,100);

% m
44 v_theta = v(D_Cu ,DeltaX0 , r, r_crit , X_theta , X_alpha_eq);
45 v_max = v(D_Cu ,DeltaX0 , 2*r_crit , r_crit , X_theta , X_alpha_eq);
46

47 v_theta_T1 = vT1(D_Cu ,DeltaX0 , r, r_crit , X_theta , X_alpha_eq);
48 v_theta_T2 = vT2(D_Cu ,DeltaX0 , r, r_crit , X_theta , X_alpha_eq);
49

50

51 close all
52 figure;
53 subplot (121);
54 plot(r*1e9 ,v_theta *1e9);hold on;
55 plot(r*1e9 ,v_theta_T1 *1e9,'g--',r*1e9 ,v_theta_T2 *1e9 ,'r--');
56

57 set(gca ,'TickDir ','out','XMinorTick ','on','XMinorGrid ','on');
58 xlim ([0 ,15* r_crit *1e9]);
59 ylim ([-2* v_max*1e9 ,4* v_max*1e9]);
60 grid on
61 xlabel('\rightarrow r [nm]');
62 ylabel('\rightarrow v [nm/s]');
63

64 subplot (122);
65 plot(r/r_crit ,v_theta *1e9);hold on;
66 plot(r/r_crit ,v_theta_T1 *1e9,'g--',r/r_crit ,v_theta_T2 *1e9,'r--')

;
67

68 set(gca ,'TickDir ','out','XMinorTick ','on','XMinorGrid ','on');
69 ylim ([-2* v_max*1e9 ,4* v_max*1e9]);
70 xlim ([0 ,15]);
71 grid on
72 xlabel('\rightarrow r/r^*');
73 ylabel('\rightarrow v [nm/s]');
74 % example 2
75 % protein in water / polymer in solvent

24.18 Figure TOC entry

1 %% Coarsening
2 clear all
3 close all
4

5 imx = 200;
6 beta = zeros(imx ,imx);
7

8 centers = rand (10,2)*imx;
9

10 [V C] =voronoin(centers);
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11 voronoi(centers (:,1),centers (:,2)); hold on;
12 syms x1 x2 m
13 X =[x1 , x2];
14 %%
15 j = 3
16 c = C{j}
17 %for i=1: length(C{j})
18

19 i=1;
20 V1V2 = V(c(2) ,:)-V(c(1) ,:)
21 plot(V(c(2) ,1),V(c(2) ,2),'go',V(c(1) ,1),V(c(1) ,2),'go',

centers(j,1),centers(j,2),'r+');
22

23 OX = X-centers(j,:);
24

25 S=solve([dot(V1V2 ,OX)==0, X == V(c(1) ,:) + m*V1V2],[x1 x2 m])
26

27 double ([S.x1, S.x2 , S.m])
28 double(V(c(1) ,:) + S.m*V1V2)
29

30 plot(double(V(c(1) ,1) + S.m*V1V2),double(V(c(1) ,2) + S.m*V1V2
),'ro');

31

32 %c=circshift(c,[0 -1]);

24.19 Figure TOC entry

1 %% Spinodal decomposition in one dimension
2

3 % initial system described by fluctuations with wavelengths
lambda_i

4 % vector vl gives the wavelength of these fluctuations as
multiples of

5 % lambda_c , the critical wavelength
6

7 lambda_c = 50e-9; % m
8 vl = [0.2 0.5, 0.75, 1, sqrt (2), 2.5];
9 lambda = lambda_c*vl;

10

11 t = [0 ,10 ,50 ,200 ,1000]; %
12

13 % the matrix Am(lambda ,t) gives the amplitude of the fluctuations
w/wavelengths given

14 % in vl at time t
15

16 Am = zeros(length(vl),length(t));
17 Am(:,1) = ones(size(vl)); % initial Amplitudes are all 1
18

19 % calculate the solution to Cahn's Diffusion equation
20 % here , we don't use an explicit example , so kappa and M are

choses purely
21 % for convenience of visualization
22 kappa =1; % Jm^5mol^-2
23 M = 1e-35; % mol^2 J^-1m^-1s^-1

135



24.20 Figure TOC entry 24 MATLAB EXAMPLES

24

25 R = @(l,l_c) 2*kappa*M*(2*pi./l).^4.*(l.^2/ l_c^2-1);
26

27 for i=2: length(t)
28 Am(:,i)=exp(R(lambda ,lambda_c)*t(i));
29 end;
30 Amax = max(max(Am));
31

32 close all
33 z = linspace (0,5* lambda_c ,1000);
34 C = zeros(length(vl),length(t),length(z));
35 for j=1: length(t)
36 for i = 1: length(vl)
37 subplot(length(vl)+1,length(t) ,(i-1)*length(t)+j);
38 C(i,j,:) = Am(i,j)*cos(2*pi*z/lambda(i));
39 plot(z/lambda_c ,squeeze(C(i,j,:)));hold on
40 ylim([-Amax ,Amax]);
41 xlim([z(1),z(end)]/ lambda_c);
42 set(gca ,'TickDir ','out','XMinorGrid ','on','YMinorGrid ','

on','XMinorTick ','on','YMinorTick ','on');
43 grid on
44 end;
45 subplot(length(vl)+1,length(t),i*length(t)+j);
46 plot(z/lambda_c ,sum(squeeze(C(:,j,:)) ,1));hold on
47 %ylim([-Amax ,Amax]);
48 xlim([z(1),z(end)]/ lambda_c);
49 xlabel('\rightarrow z/\ lambda_c ');
50 ylabel('\rightarrow C(z,t)-C_0');
51 set(gca ,'TickDir ','out','XMinorGrid ','on','YMinorGrid ','on','

XMinorTick ','on','YMinorTick ','on');
52 grid on
53 end;

24.20 Figure TOC entry

1 %% Spinodal Decomposition Figures
2 clear all
3 close all
4 % Figure 1
5

6 z = 0:1:100;
7 c = 0.1* rand(size(z));
8 c = c-mean(c);
9

10 lambda = 100;
11 delta = 0.1;
12

13 figure;
14 subplot (1,2,1);
15 plot(z,c);
16 ylim ([-2*delta ,2* delta]);
17 set(gca ,'TickDir ','out','YMinorTick ','off','YTick ' ,[ -2:1:2]*delta

,'YTickLabel ',{'','','C_\circ','',''});
18 xlabel('\rightarrow z');
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19 ylabel('\rightarrow C(z)-C_\circ');
20 grid on
21

22 subplot (1,2,2);
23 plot(z/lambda ,delta*sin(2*pi*z/lambda));
24 ylim ([-2*delta ,2* delta]);
25 set(gca ,'TickDir ','out','YMinorTick ','off','XTick ' ,[0:.25:1] ,'

XTickLabel ',{'0','\lambda /4','\lambda /2','3\ lambda /4','\lambda '
},'YTick ' ,[ -2:1:2]*delta ,'YTickLabel ',{' -2\delta','-\delta ','C_
\circ','\delta','2\delta '});

26 xlabel('\rightarrow z');
27 ylabel('\rightarrow C(z)-C_\circ');
28 grid on
29

30 %% Figure 2
31 clear all
32 close all
33

34 f = @(delta , lambda , z) delta*sin(2*pi*z/lambda);
35 syms delta lambda z
36 df= matlabFunction(diff(f(delta , lambda , z),z),'Vars',[delta ,

lambda , z]);
37 clear delta lambda z
38

39 lambda = [20 ,50 ,100];
40 delta = 1;
41

42 for i=1: length(lambda)
43 z = 0:0.01: lambda(i);
44 plot(z,f(delta ,lambda(i),z));hold on; % plot concentration

fluctuation
45 slope = df(delta , lambda(i), lambda(i)/2); % find slope at

inflection point
46 dz = -delta/slope;
47 plot([ lambda(i)/2-dz, lambda(i)/2+dz],[delta , -delta]);
48 ylim ([-2*delta ,2* delta]);
49 set(gca ,'TickDir ','out','YMinorTick ','off','YTick ' ,[ -2:1:2]*

delta ,'YTickLabel ',{' -2\delta','-\delta ','C_\circ','\delta'
,'2\delta '});

50 xlabel('\rightarrow z');
51 ylabel('\rightarrow C(z)');
52 grid on
53 end;
54 %% Figure 3
55 clear all
56 close all
57

58

59 G = @(X2,T,Tc,R) R*T.*(1-X2).*log(1-X2)+R*T.*(X2).*log(X2)+2*R*Tc
.*(1-X2).*X2;

60 syms X2 T Tc R
61 dG = matlabFunction(diff(G(X2 ,T,Tc,R),X2),'Vars',[X2,T,Tc,R]);
62 d2G = matlabFunction(diff(dG(X2,T,Tc ,R),X2),'Vars',[X2,T,Tc,R]);
63 Tsp = matlabFunction(solve(d2G(X2,T,Tc,R),T),'Vars',[X2,Tc]);
64 Xsp = matlabFunction(solve(d2G(X2,T,Tc,R),X2),'Vars',[T,Tc]);
65

66 R = 8.314; % J mol^-1 K^-1
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67 X = [0:0.001:1];
68 Tcrit = [1000 ,800]; % K
69 c = ['b','r'];
70 s = {'-','-'};
71 cm = colormap(jet (64));
72 Tmin = 0;
73 Tmax = max(Tcrit);
74

75 figure;
76 for j=1: length(Tcrit)
77 subplot(2,1,j);
78 Tact = [0 ,100:50: Tcrit(j) -200,Tcrit(j) -190:10: Tcrit(j) -20,

Tcrit(j) -18:2: Tcrit(j)-2,Tcrit(j)]; % K for Fig 3b
79 %Tact = [0 ,100:100: Tcrit(j)-2,Tcrit(j)]; % K for Fig 3a
80 i=1;col = cm(1+ floor ((Tact(i)-Tmin)/Tmax*( length(cm) -1)) ,:);
81 Xspin(:,i) = [1 ,0];
82 Gspin(:,i) = G(Xspin (:,1),Tact (1),Tcrit(j),R);
83 Xbin(:,i) = [1,0];
84 Gbin(:,i) = G(Xbin (:,1),Tact (1),Tcrit(j),R);
85 plot(Xspin(:,i),Gspin(:,i),'MarkerEdgeColor ',col ,'Marker ','o'

,'LineStyle ','none');hold on;
86 plot(Xbin(:,i),Gbin(:,i),'MarkerEdgeColor ',col ,'Marker ','x','

LineStyle ','none');
87 plot(X,G(X,Tact(i),Tcrit(j),R),'Color ',col ,'LineStyle ',s{j});

hold on;
88 colormap(jet (64));
89 title (['T_c = ',num2str(Tact(end)),' K']);
90 for i=2: length(Tact) -1;
91 col = cm(1+ floor((Tact(i)-Tmin)/Tmax*( length(cm) -1)) ,:);
92 plot(X,G(X,Tact(i),Tcrit(j),R),'Color ',col ,'LineStyle ',s{

j});hold on;
93

94 Xspin(:,i) = Xsp(Tact(i),Tcrit(j));
95 Gspin(:,i) = G(Xspin(:,i),Tact(i),Tcrit(j),R);
96

97 Xbin(:,i) = [fzero(@(X) dG(X,Tact(i), Tcrit(j), R) ,[0.5+1
e-10 1-1e-10]), fzero(@(X) dG(X,Tact(i), Tcrit(j), R)
,[1e-10 0.5-1e -10])];

98 Gbin(:,i) = G(Xbin(:,i),Tact(i),Tcrit(j),R);
99

100 plot(Xspin(:,i),Gspin(:,i),'MarkerEdgeColor ',col ,'Marker '
,'o','LineStyle ','none');hold on;

101 plot(Xbin(:,i),Gbin(:,i),'MarkerEdgeColor ',col ,'Marker ','
x','LineStyle ','none');

102 end;
103 i=i+1;
104 col = cm(1+ floor((Tact(i)-Tmin)/Tmax*( length(cm) -1)) ,:);
105

106 plot(X,G(X,Tact(i),Tcrit(j),R),'Color ',col ,'LineStyle ',s{j});
hold on;

107

108 Xspin(:,i) = [.5 .5];
109 Gspin(:,i) = G(Xspin(:,i),Tact(i),Tcrit(j),R);
110 plot(Xspin(:,i),Gspin(:,i),'MarkerEdgeColor ',col ,'Marker ','o'

,'LineStyle ','none');
111

112 Xbin(:,i) = [.5 .5];
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113 Gbin(:,i) = G(Xbin(:,i),Tact(i),Tcrit(j),R);
114 plot(Xbin(:,i),Gbin(:,i),'MarkerEdgeColor ',col ,'Marker ','x','

LineStyle ','none');
115

116 data.spinodal.Tc = Tcrit(j);
117 data.spinodal.T = Tact;
118 data.spinodal.X = Xspin;
119 data.spinodal.G = Gspin;
120 data.binodal.Tc = Tcrit(j);
121 data.binodal.T = Tact;
122 data.binodal.X = Xbin;
123 data.binodal.G = Gbin;
124 GXTX{j}=data;
125 clear Xspin Xbin Gspin Gbin
126 set(gca ,'TickDir ','out');
127 xlabel('\rightarrow X');
128 ylabel('\rightarrow G');
129 grid on
130 colorbar
131 end;
132

133 %
134 figure;
135 for j=1: length(GXTX)
136 plot(GXTX{j}. binodal.X(1,:),GXTX{j}. binodal.T,[c(j),'-'],GXTX

{j}. binodal.X(2,:),GXTX{j}. binodal.T,[c(j),'-']);hold on;
137 plot(GXTX{j}. spinodal.X(1,:),GXTX{j}. spinodal.T,[c(j),':'],

GXTX{j}. spinodal.X(2,:),GXTX{j}. spinodal.T,[c(j),':']);hold
on;

138 end;
139 set(gca ,'TickDir ','out');
140 xlabel('\rightarrow X');
141 ylabel('\rightarrow T');
142 grid on

25 Lab Examples

In this section we take a closer look at some of the data from the laboratories.
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25.1 Coarsening

Figure 25.1: Phase diagram for the NH4NO3/NaNO3 system.

Figure 25.2: Observed Dendritic Morphology

Note: λ1 (primary arm spacing) ≈ 10λ2 (secondary arm spacing)
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25.2 Secondary Arm Spacing
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25.3 Surface to Volume Ratio
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Figure 25.4: Measured surface to volume ratio (units missing)
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25.4 Temperature Dependence: K
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Figure 25.5: Temperature Dependence of the Coarsening Constant

1 %some initialization stuff
2 clear all
3 close all
4 set(0, 'DefaultAxesFontSize ', 16);
5 set(0, 'DefaultTextFontSize ', 16);
6 set(0, 'DefaultLineLineWidth ', 2);
7 set(0, 'DefaultFigurePaperposition ' ,[0 0 6 4])
8 set(0, 'DefaultFigurePaperSize ' ,[6 4])
9

10 %input the data
11 t=60*[0 6 12 18 24 36 48 60];
12 l=[7.94 13.3 14.3 16.7 16.6 25 28.6 28.6];
13 sv =[0.364 0.32 0.258 0.222 0.196 0.178 0.16 0.16];
14

15 % create the first plot
16 plot(t, l.^3, '+b');
17 hold on
18 spacingfit=polyfit(t, l.^3, 1); % generates a linear curve fit
19 plot(t,polyval(spacingfit ,t),'b-'); % plots the fit
20 hold off
21 xlabel('t (s)')
22 ylabel('\lambda_ {2}^{3} (\mum ^{3})')
23 text (200 ,2.2e4 ,'\lambda_ {2}^{3}=A+Kt')
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24 ktext=num2str (1e-18* spacingfit (1),'%5.1e');
25 text (200 ,1.8e4 ,['K =' ktext ' m^3/s'])
26 print(gcf ,'-depsc2 ','../316 -2 _figures/lab_dendrite_spacing.eps')
27

28 % now make the sv plot
29 figure % creates a new figure window
30 plot(t, sv.^-3, 'b+');
31 hold on
32 svfit=polyfit(t, sv.^( -3) ,1);
33 plot(t,polyval(svfit ,t))
34 xlabel('t (s)')
35 ylabel('S_{v}^{ -3} (unspecified units)')
36 text (200,270 ,'S_{v}^{ -3}=A+Kt')
37 ktext=num2str (1e-18* svfit (1),'%5.1e');
38 text (200 ,220 ,['K =' ktext ])
39 print(gcf ,'-depsc2 ','../316 -2 _figures/lab_dendrite_svplot.eps')
40

41 % now include another dataset (from Monday PM group)
42 figure
43 t=[0 80 160 240 320]; % time in seconds
44 sv1311 =[0.258 0.157 0.10 0.099 0.075];
45 sv1338 =[0.144 0.113 0.096 0.085 0.0756];
46 plot(t, sv1311.^-3, 'b+', t, sv1338.^-3, 'ro');
47 svfit1=polyfit(t, sv1311 .^(-3) ,1);
48 svfit2=polyfit(t, sv1338 .^(-3) ,1);
49 hold on
50 plot(t,polyval(svfit1 ,t),'b-', t, polyval(svfit2 ,t),'r-')
51 xlabel('t (s)')
52 ylabel('S_{v}^{ -3} (\mum ^{3})')
53 % now generate legend info
54 ktext1=num2str (1e-18* svfit1 (1),'%5.1e');
55 ktext2=num2str (1e-18* svfit2 (1),'%5.1e');
56 legendtext {1}=['131.1 ^{\ circ}C, K=' ktext1 ' m^{3}/s'];
57 legendtext {2}=['133.8 ^{\ circ}C, K=' ktext2 ' m^{3}/s'];
58 legend(legendtext ,'location ','best')
59 print(gcf ,'-depsc2 ','../316 -2 _figures/lab_dendrite_svplotv2.eps')

25.5 LSW Theory

K =
8γVmDCe

9RT (Cβ − Ce)

• Does this work (at least approximately)?

• What does D correspond to, and how can we estimate it?

• What about Ce

Cβ−Ce
?

• Do we really care about the factor of 8/9?
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25.6 Estimating D

λ1 ≈ D

V

D ≈ V λ1 ≈ 10λ2V

T (◦C) V (µm/s) λ2 (µm) 10λ2V (m2s)

130.4 150 9.3 1.4x10−9

130.9 130 11 1.4x10−9

133.6 86 13 1.1x10−9

135 45 16 0.7x10−9

25.7 Estimating the Expected Coarsening Constant

K ≈ γVmD

RT

Vm =

(
80 g

mol

)(
cm3

1.7 g

)
= 47 cm3/mol = 4.7x10−5 m3/mol

D ≈ 10−9 m2/s

γ ≈ 0.1 J/m2

K ≈ (0.1 J/m2)(4.7x10−5 m3/moℓ)(10−9 m2/s)
(8.314 J.moℓ−K)(400K) = 1.4x10−18 m3/s

• Not bad, given all the approximations that we have made.
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25.8 Heat treatment of Al alloys

Figure 25.6: Heat Treatment of Al Alloys (from P&E)

Figure 25.7: (P&E 5.5.4)
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26 Appendix: Thermodynamic Data for Cu

1 %% Phase transformations in elemental copper
2 % This script uses NIST thermochemical data to
3 % - create plots of thermodynamic functions of state
4 % - calculate phase transformation temperatures , and the

changes in
5 % standard enthalpy , entropy , and Gibbs free energy

associated with
6 % the phase transformation
7 % - compare the change in Gibbs free energy calculated from

NIST data
8 % to the linearized Gibbs free energy estimate near the

phase
9 % transformation temperature.

10

11 close all; clear all; filename = 'Cu_Shomate_ ';
12 %% NIST Data
13 % The NIST Chemistry webbook (URL: http :// webbook.nist.gov/

chemistry /)
14 % gives Shomate coefficients that can be used to calculate the

heat
15 % capacity , standard enthalpy , absolute entropy , and standard

Gibbs free
16 % energy as a function of temperature. The Shomate coefficients

are define
17 % only over a certain range of T. Extrapolation beyond this range

is
18 % dangerous.
19

20 % NIST Chemistry webbok data for iron can be found here:
21 % http :// webbook.nist.gov/cgi/cbook.cgi?Name=copper&Units=SI
22 % This is actually a fairly straightforward case , as there only

two phase
23 % transformations: solid (alpha , hcp) -> L and L -> gas
24

25 Cu.phase={'s','L','g'};
26 Cu.Tmin = [298, 1358, 2843.261];
27 Cu.Tmax = [1358 , 2843, 6000];
28

29 S=[[17.72891 , 32.84450 , -80.48635];
30 [28.09870 , -0.000084 , 49.35865];
31 [ -31.25289 , 0.000032 , -7.578061];
32 [13.97243 , -0.000004 , 0.404960];
33 [0.068611 , -0.000028 , 133.3382];
34 [ -6.056591 , -1.804901 , 519.9331];
35 [47.89592 , 73.92310 , 193.5351];
36 [0, 11.85730 , 337.6003];];
37

38 %% Calculating Thermodynamic Functions of State from Shomate
Coefficients

39 % We use here anonymous functions to calculate the thermodynamic
functions

40 % of state. Input arguments are a column vector of exactly 8
Shomate
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41 % coefficients (A-H) and a row vector with temperature values
where t = T/1000 [K]. Please note that H0

42 % is really H0 , not H0-H0_298! Cp0 and S0 are given in units of J
mol^-1 K^-1, H0

43 % and G0 in units of kJ mol^-1.
44

45 Cp0 = @(Shomate ,t) Shomate *[0*t+1 ; t ; t.^2 ; t.^3 ; t
.^-2 ; 0*t ; 0*t ; 0*t]; %[J mol^-1 K^-1]

46

47 H0 = @(Shomate ,t) Shomate *[t ; t.^2/2; t.^3/3; t.^4/4; -t
.^-1 ; 0*t+1; 0*t ; 0*t]; %[kJ mol^-1]

48

49 S0 = @(Shomate ,t) Shomate *[log(t); t ; t.^2/2; t.^3/3; -0.5*
t.^-2; 0*t ; 0*t+1; 0*t]; %[J mol^-1 K^-1]

50

51 G0 = @(Shomate , T) H0(Shomate , T/1000) -T/1000.* S0(Shomate , T
/1000); % [kJ mol^-1]

52

53 %% Calculate phase transformation temperatures
54 % We define the Gibbs free energy change for four different
55 % transformations in the system as anonymous functions. To solve

for the
56 % phase transformation tempreature at which the Gibbs free energy

change is
57 % zero , we find the root of the anonymous functions using a guess

based on
58 % the phase transformation temperatures given in phase diagrams.
59

60 % vaporization: L->gas
61 DeltaG_Lg= @(T) G0(S(:,3)',T)-G0(S(:,2)',T);
62 T_Lg = fzero(DeltaG_Lg ,3130);
63

64 % melting/fusion: s->L
65 DeltaG_sL= @(T) G0(S(:,2)',T)-G0(S(:,1)',T);
66 T_sL = fzero(DeltaG_sL ,1800);
67

68

69 %% Plot Functions of State
70

71 % T-ranges
72 T1=linspace (298,T_sL ,1000);
73 T2=linspace(T_sL ,T_Lg ,1000);
74 T3=linspace(T_Lg ,6000 ,1000);
75

76 h1=figure;
77 set(gcf ,'DefaultLineLineWidth ' ,1.5)
78

79 c=colormap(lines (3));
80 plot(T1,Cp0(S(:,1)',T1 /1000) ,'Color',c(1,:));hold on;
81 plot(T2,Cp0(S(:,2)',T2 /1000) ,'Color ',c(2,:));hold on;
82 plot(T3,Cp0(S(:,3)',T3 /1000) ,'Color',c(3,:));hold on;
83

84 title('Heat capacity (specific heat) of elemental Cu');
85 ylabel('C_p^0 [J mol^-^1 K^-^1]');
86 xlabel('T [K]');
87 legend(Cu.phase);
88 set(gca ,'TickDir','out');
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89 grid on;
90

91 h2=figure;
92 set(gcf ,'DefaultLineLineWidth ' ,1.5)
93 plot(T1,H0(S(:,1)',T1 /1000) ,'Color ',c(1,:));hold on;
94 plot(T2,H0(S(:,2)',T2 /1000) ,'Color',c(2,:));hold on;
95 plot(T3,H0(S(:,3)',T3 /1000) ,'Color ',c(3,:));hold on;
96

97 title('Standard Enthalpy of elemental Cu');
98 ylabel('H^0-H_2_9_8 [kJ mol^-^1]');
99 xlabel('T [K]');
100 legend(Cu.phase);
101 set(gca ,'TickDir ','out');
102 grid on;
103

104 h3=figure;
105 set(gcf ,'DefaultLineLineWidth ' ,1.5)
106 plot(T1 ,S0(S(:,1)',T1 /1000) ,'Color',c(1,:));hold on;
107 plot(T2 ,S0(S(:,2)',T2 /1000) ,'Color ',c(2,:));hold on;
108 plot(T3 ,S0(S(:,3)',T3 /1000) ,'Color',c(3,:));hold on;
109

110 title('Absolute Entropy of elemental Cu');
111 ylabel('S^0 [J mol^-^1 K^-^1]');
112 xlabel('T [K]');
113 legend(Cu.phase);
114 set(gca ,'TickDir','out');
115 grid on;
116

117 h4=figure;
118 set(gcf ,'DefaultLineLineWidth ' ,1.5)
119 plot(T1 ,G0(S(:,1)',T1),'Color ',c(1,:));hold on;
120 plot(T2 ,G0(S(:,2)',T2),'Color',c(2,:));hold on;
121 plot(T3 ,G0(S(:,3)',T3),'Color ',c(3,:));hold on;
122

123 title('Gibbs Free Energy of elemental Cu');
124 ylabel('G^0 [kJ mol^-^1]');
125 xlabel('T [K]');
126 legend(Cu.phase);
127 set(gca ,'TickDir ','out');
128 grid on;
129

130

131 %% Plot Close Ups of Phase Transformations
132 h5=figure;
133 set(gcf ,'DefaultLineLineWidth ' ,1.5)
134 % solid -liquid transition
135 DT = 2;
136 T_tr = T_sL;
137 p1=1;
138 p2=2;
139

140 Tr_left = (T_tr -DT):0.1: T_tr;
141 Tr_right = T_tr :0.1:( T_tr+DT);
142 Tr = (T_tr -DT):0.1:( T_tr+DT);
143

144 subplot (4,2,1);
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145 ycent=mean([H0(S(:,p1)',Tr_left(end)/1000) , H0(S(:,p2)',Tr_left(
end)/1000) ]);

146 yrange=abs(H0(S(:,p1)',Tr_left(end)/1000) -ycent);
147 DeltaH0 (1) = H0(S(:,p2)',T_tr /1000) -H0(S(:,p1)',T_tr /1000);
148

149 plot(Tr_left ,H0(S(:,p1)',Tr_left /1000) ,'Color ',c(p1 ,:));hold on;
150 plot(Tr_right ,H0(S(:,p1)',Tr_right /1000) ,'Color',c(p1 ,:),'

LineStyle ',':');
151 plot(Tr_left ,H0(S(:,p2)',Tr_left /1000) ,'Color ',c(p2 ,:),'LineStyle

',':');hold on;
152 plot(Tr_right ,H0(S(:,p2)',Tr_right /1000) ,'Color',c(p2 ,:));
153 plot([T_tr T_tr],[0 600],'k:');
154 plot([T_tr T_tr],[H0(S(:,p1)',Tr_left(end)/1000) , H0(S(:,p2)',

Tr_left(end)/1000)],'m','LineWidth ' ,2);
155 xlim([Tr(1) Tr(end)]);
156 ylim(ycent+[-yrange yrange ]*1.5);
157 ylabel('H^0-H^0 _2_9_8 [kJ/mol]');
158 xlabel('T [K]');
159 set(gca ,'TickDir','out');
160

161 subplot (4,2,3);
162 ycent=mean([S0(S(:,p1)',Tr_left(end)/1000) , S0(S(:,p2)',Tr_left(

end)/1000) ]);
163 yrange=abs(S0(S(:,p1)',Tr_left(end)/1000) -ycent);
164 DeltaS0 (1) = S0(S(:,p2)',T_tr /1000) -S0(S(:,p1)',T_tr /1000);
165

166 plot(Tr_left ,S0(S(:,p1)',Tr_left /1000) ,'Color',c(p1 ,:));hold on;
167 plot(Tr_right ,S0(S(:,p1)',Tr_right /1000) ,'Color ',c(p1 ,:),'

LineStyle ',':');
168 plot(Tr_left ,S0(S(:,p2)',Tr_left /1000) ,'Color',c(p2 ,:),'LineStyle

',':');hold on;
169 plot(Tr_right ,S0(S(:,p2)',Tr_right /1000) ,'Color ',c(p2 ,:));
170 plot([T_tr T_tr],[0 600],'k:');
171 plot([T_tr T_tr],[S0(S(:,p1)',Tr_left(end)/1000) , S0(S(:,p2)',

Tr_left(end)/1000)],'m','LineWidth ' ,2);
172 xlim([Tr(1) Tr(end)]);
173 ylim(ycent+[-yrange yrange ]*1.5);
174 ylabel('S^0 [J/(mol K)]');
175 xlabel('T [K]');
176 set(gca ,'TickDir ','out');
177

178 subplot (4,2,5);
179 plot(Tr_left ,G0(S(:,p1)',Tr_left),'Color',c(p1 ,:));hold on;
180 plot(Tr_right ,G0(S(:,p1)',Tr_right),'Color ',c(p1 ,:),'LineStyle ','

:');
181 plot(Tr_left ,G0(S(:,p2)',Tr_left),'Color',c(p2 ,:),'LineStyle ',':'

);hold on;
182 plot(Tr_right ,G0(S(:,p2)',Tr_right),'Color ',c(p2 ,:));
183 plot([T_tr T_tr],[0 -600],'k:');
184 xlim([Tr(1) Tr(end)]);
185 ylim(G0(S(:,p1)',Tr_left(end))+[-.2 .2]);
186 ylabel('G^0 [kJ/mol]');
187 xlabel('T [K]');
188 set(gca ,'TickDir','out');
189

190 subplot (4,2,7);
191 y1=G0(S(:,p2)',Tr(1))-G0(S(:,p1)',Tr(1));
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192 y2=G0(S(:,p2)',Tr(end))-G0(S(:,p1)',Tr(end));
193

194 plot(Tr ,G0(S(:,p2)',Tr)-G0(S(:,p1)',Tr),'b');hold on; % Note:
could be replaced with DeltaG function

195 plot(Tr ,-DeltaS0 (1) /1000*(Tr-T_tr),'r:');
196

197 plot([Tr(1) Tr(end)],[0,0],'k:');
198 plot([T_tr T_tr],[y2 y1],'k:');
199 xlim([Tr(1) Tr(end)]);
200 ylim([y2 y1]);
201

202 ylabel('\DeltaG [kJ/mol]');
203 xlabel('T [K]');
204 set(gca ,'TickDir','out');
205

206 % liguid -gas transition
207 DT = 2;
208 T_tr = T_Lg;
209 p1=2;
210 p2=3;
211

212 Tr_left = (T_tr -DT):0.1: T_tr;
213 Tr_right = T_tr :0.1:( T_tr+DT);
214 Tr = (T_tr -DT):0.1:( T_tr+DT);
215

216 subplot (4,2,2);
217 ycent=mean([H0(S(:,p1)',Tr_left(end)/1000) , H0(S(:,p2)',Tr_left(

end)/1000) ]);
218 yrange=abs(H0(S(:,p1)',Tr_left(end)/1000) -ycent);
219 DeltaH0 (2) = H0(S(:,p2)',T_tr /1000) -H0(S(:,p1)',T_tr /1000);
220

221 plot(Tr_left ,H0(S(:,p1)',Tr_left /1000) ,'Color',c(p1 ,:));hold on;
222 plot(Tr_right ,H0(S(:,p1)',Tr_right /1000) ,'Color ',c(p1 ,:),'

LineStyle ',':');
223 plot(Tr_left ,H0(S(:,p2)',Tr_left /1000) ,'Color',c(p2 ,:),'LineStyle

',':');hold on;
224 plot(Tr_right ,H0(S(:,p2)',Tr_right /1000) ,'Color ',c(p2 ,:));
225 plot([T_tr T_tr],[0 600],'k:');
226 plot([T_tr T_tr],[H0(S(:,p1)',Tr_left(end)/1000) , H0(S(:,p2)',

Tr_left(end)/1000)],'m','LineWidth ' ,2);
227 xlim([Tr(1) Tr(end)]);
228 ylim(ycent+[-yrange yrange ]*1.5);
229 ylabel('H^0-H^0 _2_9_8 [kJ/mol]');
230 xlabel('T [K]');
231 set(gca ,'TickDir ','out');
232

233 subplot (4,2,4);
234 ycent=mean([S0(S(:,p1)',Tr_left(end)/1000) , S0(S(:,p2)',Tr_left(

end)/1000) ]);
235 yrange=abs(S0(S(:,p1)',Tr_left(end)/1000) -ycent);
236 DeltaS0 (2) = S0(S(:,p2)',T_tr /1000) -S0(S(:,p1)',T_tr /1000);
237

238 plot(Tr_left ,S0(S(:,p1)',Tr_left /1000) ,'Color ',c(p1 ,:));hold on;
239 plot(Tr_right ,S0(S(:,p1)',Tr_right /1000) ,'Color',c(p1 ,:),'

LineStyle ',':');
240 plot(Tr_left ,S0(S(:,p2)',Tr_left /1000) ,'Color ',c(p2 ,:),'LineStyle

',':');hold on;
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241 plot(Tr_right ,S0(S(:,p2)',Tr_right /1000) ,'Color',c(p2 ,:));
242 plot([T_tr T_tr],[0 600],'k:');
243 plot([T_tr T_tr],[S0(S(:,p1)',Tr_left(end)/1000) , S0(S(:,p2)',

Tr_left(end)/1000)],'m','LineWidth ' ,2);
244 xlim([Tr(1) Tr(end)]);
245 ylim(ycent+[-yrange yrange ]*1.5);
246 ylabel('S^0 [J/(mol K)]');
247 xlabel('T [K]');
248 set(gca ,'TickDir','out');
249

250 subplot (4,2,6);
251 plot(Tr_left ,G0(S(:,p1)',Tr_left),'Color ',c(p1 ,:));hold on;
252 plot(Tr_right ,G0(S(:,p1)',Tr_right),'Color',c(p1 ,:),'LineStyle ','

:');
253 plot(Tr_left ,G0(S(:,p2)',Tr_left),'Color ',c(p2 ,:),'LineStyle ',':'

);hold on;
254 plot(Tr_right ,G0(S(:,p2)',Tr_right),'Color',c(p2 ,:));
255 plot([T_tr T_tr],[0 -600],'k:');
256 xlim([Tr(1) Tr(end)]);
257 ylim(G0(S(:,p1)',Tr_left(end))+[-.2 .2]);
258 ylabel('G^0 [kJ/mol]');
259 xlabel('T [K]');
260 set(gca ,'TickDir ','out');
261

262 subplot (4,2,8);
263 y1=G0(S(:,p2)',Tr(1))-G0(S(:,p1)',Tr(1));
264 y2=G0(S(:,p2)',Tr(end))-G0(S(:,p1)',Tr(end));
265

266 plot(Tr ,G0(S(:,p2)',Tr)-G0(S(:,p1)',Tr),'b');hold on;
267 plot(Tr ,-DeltaS0 (2) /1000*(Tr-T_tr),'r:');
268

269 plot([Tr(1) Tr(end)],[0,0],'k:');
270 plot([T_tr T_tr],[y2 y1],'k:');
271 xlim([Tr(1) Tr(end)]);
272 ylim([y2 y1]);
273

274 ylabel('\DeltaG [kJ/mol]');
275 xlabel('T [K]');
276 set(gca ,'TickDir ','out');
277

278 %% Output data
279 clc;
280 fprintf('Phase transformation :\n');
281 fprintf('s->L:\n');
282 fprintf('T_tr = %4.2f K.\n',T_sL);
283 fprintf('DeltaH0 = %4.2f kJ mol^-1.\n',DeltaH0 (1));
284 fprintf('DeltaS0 = %4.2f J mol^-1 K^-1.\n\n',DeltaS0 (1));
285

286 fprintf('L->gas:\n');
287 fprintf('T_tr = %4.2f K.\n',T_Lg);
288 fprintf('DeltaH0 = %4.2f kJ mol^-1.\n',DeltaH0 (2));
289 fprintf('DeltaS0 = %4.2f J mol^-1 K^-1.\n\n',DeltaS0 (2));
290

291 %% How good is the linear approximation of DeltaG near T_tr?
292 % careful here: extrapolation beyond the range over which Shomate
293 % coefficients are defined may not represent reality very well ,

or at all.
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294 h6=figure;
295 set(gcf ,'DefaultLineLineWidth ' ,1.5)
296 DT = 50;
297

298 T_tr = T_Lg;
299 p1=2;
300 p2=3;
301 i=2;
302 Tr = (T_tr -DT):0.1:( T_tr+DT);
303

304 subplot (223);
305 y1=G0(S(:,p2)',Tr(1))-G0(S(:,p1)',Tr(1));
306 y2=G0(S(:,p2)',Tr(end))-G0(S(:,p1)',Tr(end));
307

308 plot(Tr ,G0(S(:,p2)',Tr)-G0(S(:,p1)',Tr),'b');hold on;
309 plot(Tr ,-DeltaS0(i)/1000*(Tr-T_tr),'r:');
310 plot([Tr(1) Tr(end)],[0,0],'k:');
311 plot([T_tr T_tr],[y2 y1],'k:');
312 xlim([Tr(1) Tr(end)]);
313 ylim([y2 y1]);
314

315 ylabel('\DeltaG [kJ/mol]');
316 xlabel('T [K]');
317 set(gca ,'TickDir ','out');grid on;
318

319 subplot (224);
320 plot(Tr ,100*( G0(S(:,p2)',Tr)-G0(S(:,p1)',Tr)+DeltaS0(i)/1000*(Tr-

T_tr))./(- DeltaS0(i)/1000*(Tr-T_tr)),'b');hold on;
321 grid on;
322 %plot([T_tr T_tr],[y2 y1],'k:');
323 xlim([Tr(1) Tr(end)]);
324 %ylim([y2 y1]);
325 ylabel('(\DeltaG -\ DeltaG_e_s_t)/\ DeltaG_e_s_t [%]');
326 xlabel('T [K]');
327 set(gca ,'TickDir ','out');
328

329 %
330 T_tr = T_sL;
331 p1=1;
332 p2=2;
333 i=1;
334 Tr = (T_tr -DT):0.1:( T_tr+DT);
335 subplot (221);
336 y1=G0(S(:,p2)',Tr(1))-G0(S(:,p1)',Tr(1));
337 y2=G0(S(:,p2)',Tr(end))-G0(S(:,p1)',Tr(end));
338

339 plot(Tr ,G0(S(:,p2)',Tr)-G0(S(:,p1)',Tr),'b');hold on;
340 plot(Tr ,-DeltaS0(i)/1000*(Tr-T_tr),'r:');
341 plot([Tr(1) Tr(end)],[0,0],'k:');
342 plot([T_tr T_tr],[y2 y1],'k:');
343 xlim([Tr(1) Tr(end)]);
344 ylim([y2 y1]);
345

346 ylabel('\DeltaG [kJ/mol]');
347 xlabel('T [K]');
348 set(gca ,'TickDir ','out');grid on;
349
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350 subplot (222);
351 plot(Tr ,100*( G0(S(:,p2)',Tr)-G0(S(:,p1)',Tr)+DeltaS0(i)/1000*(Tr-

T_tr))./(- DeltaS0(i)/1000*(Tr-T_tr)),'b');hold on;
352 grid on;
353 %plot([T_tr T_tr],[y2 y1],'k:');
354 xlim([Tr(1) Tr(end)]);
355 %ylim([y2 y1]);
356 ylabel('(\DeltaG -\ DeltaG_e_s_t)/\ DeltaG_e_s_t [%]');
357 xlabel('T [K]');
358 set(gca ,'TickDir ','out');
359

360 %% save figures h1=h6 as .eps files
361

362 print(h1 ,[filename ,'Cp'],'-deps','-cmyk','-opengl ');
363 print(h2 ,[filename ,'S'],'-deps','-cmyk','-opengl ');
364 print(h3 ,[filename ,'H'],'-deps','-cmyk','-opengl ');
365 print(h4 ,[filename ,'G'],'-deps','-cmyk','-opengl ');
366 print(h5 ,[filename ,'PTs'],'-deps','-cmyk','-opengl ');
367 print(h6 ,[filename ,'Linearity '],'-deps','-cmyk','-opengl ');

27 316-2 Problems

27.1 Laplace Pressure Derivation

4. Derive the expression for the Laplace pressure inside a long cylinder of
radius R.

27.2 Homogeneous Nucleation

5. Consider the following data for nickel:

Melting point 1452 ◦C
Molar entropy of solid at Tm 56.07 J/K
Molar entropy of liquid at Tm 66.27 J/K
Solid density 8.9 g/cm3

Molar mass 58.7

In their classic experiment Turnbull and Cech studied the undercooling of
small droplets for a number of different metals . Assuming that nucleation in
the droplets occurs homogeneously and using the data given below calculate
the following at 1100 °C and 1200 °C:

6. The molar volume of nickel.

7. The work of nucleation (W ∗
R).
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8. The dimensionless ratio, W ∗
R/kBT .

9. The radius of the critical nucleus.

10. The pressure of the critical nucleus in pascals (assume the surrounding
liquid is at atmospheric pressure).

11. The molar enthalpy of melting at Tm.

12. Suppose a Ni droplet with a volume of about 100 µm3 is solidified. Ap-
proximate the temperature to which the droplet must be cooled in order
for solidification to occur by homogeneous nucleation.

13. Import the file labeled ElementData.mat that includes the required data
for various elements on the periodic table into Matlab and:

1. Derive the expressions for ∆P , R∗, W ∗
R, and W ∗

R/kBT in terms of Tm,
∆T , Vm, ∆Sf , and γ.

(a) Plot Vm, ∆Sf , γ, ∆P , R∗, W ∗
R, and W ∗

R/kBT using ∆T = 100K
versus atomic number (Z) and label all axes including units and
each data point with the chemical symbol corresponding to the
element. Hint: You should only consider those elements for which
the values of γ are included in the ElementData.mat file. For both
W ∗

R and W ∗
R/kBT plot the y axis on a log scale. Also, in order to

label the data points with the chemical symbol you will need to use
the text(x, y, ’string’) function. You may want to use subplots.

The ElementData.mat file has the following format:

1 ElementData =
2 Name: {118x1 cell}
3 Symbol: {118x1 cell}
4 DeltaH0f: [118x1 double]
5 Tm: [118x1 double]
6 Z: [118x1 double]
7 Aw: [118x1 double]
8 rho: [118x1 double]
9 gamma: [118x1 double]

10 Vm: [118x1 double]
11 DeltaS0f: [118x1 double]
12 Structure: {118x1 cell}
13 Units: {1x8 cell}
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(b) Discuss the plots from part (b) with respect to trends in the
periodic table, which variables are really important, outliers, and
rules of thumb i.e. typical range of values or average value. Does
homogeneous nucleation ever really happen?

(c) Now replot the data for both ∆T = 352K and ∆T = 252K and
compare the R∗ and W ∗

R values obtained for Ni to those you
calculated in question 5.

2. Derive expressions for R∗ and W ∗
R for a cuboidal nucleus.

3. In the derivations for nucleation in this course we assume that the
nucleus is incompressible. Show that this is a valid assumption for
solidification of Ni with γ = 2.38J/m2 and R∗ = 1nm. Hint: Assume
that the material is linearly elastic and isotropic. Therefore, you can
calculate the bulk modulus using a simple relationship which is a
function of Young’s modulus and Poisson’s ratio. Please cite your
source for the values of E and ν that you use.

27.3 Surface and Interface Effects

4. The surface free energy of solid gold at its melting point (1063ºC) is
1.400J/m2. The surface energy of liquid gold at this temperature is
1.128J/m2, and the interfacial energy for the gold solid/liquid interface
is = 0.132J/m2. The latent heat of fusion for gold is 1.2x109J/m3.

1. What is the contact angle for liquid gold on a solid gold surface at 1063ºC
?

(a) Is there thermodynamic barrier for the melting of a gold surface?

(b) Suppose a thin liquid gold layer of thickness δ exists at the surface
of gold at 1058 ◦C (5 ◦ below the equilibrium melting point). By
comparing to the free energy of a gold surface that does not have
this liquid layer, estimate the maximum thickness of the liquid layer
that will be thermodynamically stable at this temperature.

(c) Very small gold particles have melting points that differ from the
melting point of bulk gold. From the analysis given above, do you
expect the melting point of a particle with a diameter of 2 nm to be
higher or lower than the melting point of bulk gold? Give a brief
explanation for your answer.

2. Suppose precipitates form at grain boundaries within the matrix phase,
with geometries that look like the following:
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Precipitate
Grain boundary

What is the ratio of the grain boundary free energy to the interfacial energy
between the precipitate and the matrix phase?

3. Water beads up on a freshly waxed car to form droplets with a contract
angle of 80◦. What is the interfacial free energy for the wax/water inter-
face, if the surface energy of the wax is 0.025 J/m2? (Note: you’ll need to
look up the surface energy of water to do this problem).

4. An oil droplet (δ phase) is placed on the water surface (phase β) in con-
tact with air (phase α). The schematic of the cross section of the droplet
is as describe in class (and repeated below). The surface free energy of
water (against air) is 0.072 J/m2. If the measured values of θ1 and θ2 in
the figure below are 37◦ and 23◦, respectively, what are the values of the
oil surface energy and the oil/water interfacial energy.

27.4 Heterogeneous Nucleation

5. Derive the structure factor, S(θ).

6. Suppose that nucleation of a solid, single component metal occurs het-
erogeneously at a wall. Based on the values given for Ni in problem 5,
what contact angle for the critical nucleus must be obtained in order to
increase the minimum temperature required for solidification by 50°C?

27.5 Nucleation in a Binary System

7. 3. Consider the formation of a nucleus β∗ with composition Xβ∗ from
metastable α with composition Xα

0 .At temperature T , the composition
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of stable α is Xα
eq , that of stable β is Xβ

eq (all X refer to X1). In class we
derived an expression for the molar Gibbs free energy of formation for
the nucleus:

∆Gα→β∗
m = Gβ

m(Xβ∗)−Gα
m(Xα

0 )−
∂Gα

∂X

∣∣∣∣∣
Xα

0

(Xβ∗ −Xα
0 ) (27.1)

Show that for Xα
0 −Xα

eq → 0 and Xβ∗ −Xβ
eq → 0, Eq. (1) can be rewritten in

the following form:

∆Gα→β∗
m = −δ2Gα

δX2

∣∣∣∣∣
Xα

0

(Xα
0 −Xα

eq)(X
β
eq −Xα

eq)

Hint: Express Gβ
m(Xβ∗) in terms of Gα

m. Approximate all terms at
non-equilibrium compositions as Taylor expansions around suitable
equilibrium values.

8. In class we used the definition of the misfit parameter for a β nucleus in
an α matrix as

ε =
1

3

(
V β
m − V α

m

V α
m

)

i.e. one third of the volume strain. Show that for cubic systems, the misfit
parameter can be approximated as

εcubic =
aβ − aα

aα

where a is the lattice parameter. Hint: Write ∆V in terms of εcubic and look at
the behavior asεcubic → 0.

9. A coherent precipitate nucleates much more easily than does an incoher-
ent particle of the same precipitate. To illustrate this:

1. What is the ratio of W ∗
R for the two types of precipitate if γcoherent =

30 ergs/cm2 and γincoherent = 300 ergs/cm2? Assume that the precipitate
is unstrained.
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(a) If the chemical driving force (∆Gv) is given by−50∆T/Te cal/cm
3,

Te = 1000K, the misfit strain is 0.001 for the coherent precipi-
tate and zero for the incoherent precipitate, at what ∆T are the
W ∗

R’s for the two equal? Assume a shear modulus of the matrix
of 5.46x1010 Pa and bulk modulus of the precipitate of 15x1010 Pa.

(b) Repeat the previous calculation using a misfit strains of 0.01 and 0.1.

(c) If the number of nuclei formed per cubic centimeter per second is
given by N = 1027\exp(−W ∗

R/kT ), what is the rate of coherent nu-
cleation at ∆T = 25K and 250K with a misfit of 0.01? What is it for
incoherent nucleation at these same values of ∆T ?

2. Consider the following Al-Cu phase diagram:

Suppose that a dispersion of roughly spherical θ precipitates is formed at 300
°C. Estimate the precipitate radius for which Cu solubility in the α phase (the
Al-rich phase) will be increased by 25% in comparison to a flat α/θ interface.
Assume an interfacial free energy for theα/θ interface of 0.3 J/m2 and a molar
volume for the α and β phases of 7 cm3.

3. Consider the Co-Cu phase diagram shown below:
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1. Plot the equilibrium activity of Cobalt as a function of composition across
the entire phase diagram at 900ºC.

(a) Suppose the interfacial free energy for the Cu/Co interface is
300mJ/m2. Develop an expression for r∗, the critical radius for a
cobalt precipitate, as function of the atomic % cobalt in the alloy.

(b) Calculate W ∗
r for a Copper rich alloy at 900ºC with a cobalt compo-

sition that exceeds the equilibrium composition by a factor of 1.15.

27.6 Spinodal Decomposition

2. A and B form a regular solution with a positive heat of mixing so that
the A-B phase diagram contains a miscibility gap.

1. Starting from
G = XAGA +XBGB +ΩXAXB +RT (XAlnXA +XBlnXB), derive an
equation for d2G/dX2

B , assuming GA = GB = 0.

(a) Use the above equation to calculate the temperature at the top of
the miscibility gap Tc in terms of Ω.

(b) Using MATLAB plot the miscibility gap for this system.

(c) On the same diagram plot the chemical spinodal.

2. For a homogeneous alloy of composition X0 decomposes into two parts,
one with composition X0 +∆X and the other with composition
X0 −∆X , show that the total chemical free energy will change by an
amount ∆Gc given by

∆Gc =
1

2

d2G

dX2
(∆X)2
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Hint: Express G(X0 +∆X) and G(X0 −∆X) as Taylor series.

3. Describe the effect of each of the following, and briefly explain your an-
swer.

1. The effect of coherent strains on the characteristic wavelength of the two-
phase structure formed by spinodal decomposition.

(a) The effect of a reduction of the surface free energy on the nucleation
rate.

(b) The effect of a decrease in the contact angle of a precipitate on its
heterogeneous nucleation rate.

(c) Can a diffusion coefficient ever be negative? If so, when is this the
case?

27.7 Constitutional Undercooling and the ’Mushy Zone’

2. In our classroom discussion of interface stability, we considered the case
where impurities decrease the melting point. Suppose that the impurities
increase the melting point, so that the phase diagram looks like this:

Liquid

Solid

Suppose sample with the composition indicated by the arrow is solidified, so
that the front moves forward with a certain velocity.

1. Sketch the behavior of the impurity concentration in the liquid phase just
ahead of the solidification front. Reference any specific compositions to
the corresponding compositions on the phase diagram.

(a) On a separate figure, sketch the liquidus temperature in the liquid
phase just ahead of the solidification front. Reference any specific
temperatures to the corresponding temperatures on the phase dia-
gram.
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(b) Comment on the types of temperature profiles that can lead to the
formation of a dendritic microstructure for this type of phase dia-
gram. Is the criterion for interface stability qualitatively different
from the criterion discussed in class?

2. Consider the Al/Si phase diagram shown below, along with the follow-
ing thermodynamic and kinetic data:

Heat of fusion for Al: 10.790 kJ/mol

Diffusion coefficient for impurities in liquid Al: ∼ 5x10−9 m2/s

Suppose an alloy with 0.8 wt. % Si is solidified at a rate of 5µm/s. (This is the
velocity at which the solid/liquid interface is moving.)

1. What is the interface temperature in the steady state?
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(a) What is the thickness of the diffusion layer (i.e. the distance into the
liquid phase, measured from the solid/liquid interface, over which
the liquid composition differs from the average bulk composition
far from the interface?

(b) Estimate the temperature gradient required to eliminate the appear-
ance of a ’mushy zone’.

27.8 Coarsening

2. The size of Co clusters in Cu vs. aging time at several temperatures was
measured using a magnetic technique. At 600 ◦C the data indicate the
following: 10 minute aging, average particle radius = 18 Å, 100 minutes,
35 Å, 1,000 minutes, 70 Å.

1. Assuming that the coarsening kinetics are consistent with Lifshitz-
Slyozov-Wagner theory that was discussed in class, estimate the size of
particles at t = 0, the end of the precipitation stage, where the cobalt su-
persaturation was first in equilibrium with the average size of the cobalt
clusters.

(a) Using the data for the Co/Cu system given in the previous home-
work, determine the difference in the average mole fraction of Co
in the Cu phase at aging times of 100 minutes and 1,000 minutes.

(b) Use the data given to estimate the diffusion coefficient for Co in Cu
at 600 °C.

2. Assume the following "law" for the kinetics of precipitation:

X (t) = 1− exp [− (t/τ)
m
]

Consider the following experimental data for the formation of Gunier-Preston
zones in Al-2 wt.% Cu at 0˚C for X(t) less than 0.25. .

Time in hours X (t)

0.4 0.08
0.7 0.10
1 0.14
2 0.17
4 0.23
6 0.28
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1. Determine the value of the exponent m in the above equation by plotting
this equation in an appropriate fashion. (Hint: you need to rearrange the
equation and take logarithms so that m is the slope of the plot).

(a) Plot the qualitative temperature dependence that you would expect
for the time constant, τ . Note that you cannot obtain this from the
data provided – you need to make some assumptions about what
you expect this to look like) Comment on the factors that cause τ
to become very large at high and low temperatures. From Fig. 5.25
in Porter and Easterling, what can you say about the behavior of
τ in the high temperature regime (i.e., at what temperature must τ
diverge to infinity)?

27.9 Eutectic Solidification

2. Refer to the Al/Si phase diagram and thermodynamic data below to an-
swer the following questions.

Heat of fusion for Al: 395 J/g

Heat of fusion for Si: 1408 J/g

1. Obtain an estimate for the heat of fusion for the Al/Si eutectic (Joules per
cm3 of eutectic).

(a) Calculate the bulk free energy gain (ignoring the energy associated
with the Al/Si interfaces) associated with the solidification of 1 cm3
of eutectic at 560 °C.
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(b) Calculate the width of the Al and Si phases in a lamellar eutectic for
the case where the total free energy change (including the energy
associated with the interfaces) on solidification at 560 °C is equal to
zero. Assume an interfacial free energy for the Al/Si interface of
350 mJ/m2.

(c) Compare the phase widths from part c to the critical radii for the
solidification of pure Al and pure Si at an undercooling of 20 ◦C.
Assume that the solid liquid interfacial free energies are similar in
magnitude to the Al/Si (solid/solid) interfacial free energy.

(d) How good is the assumption of ideal liquid mixing in this case?
Plot the liquidus lines for the Al-rich and Si-rich phases, using the
equation that was developed in class. Compare the location of these
lines with the location of the actual eutectic point, and comment on
the agreement that you observe.

27.10 Eutectoid Transormations

2. Imagine the Fe-0.15 wt% C alloy in the figure below is austenitized
above A3, and then quenched to800◦C where ferrite nucleates and
covers the austenite grain boundaries.

1. Draw a composition profile normal to the α/γ interface after partial
transformation assuming diffusion-controlled growth.

(a) Derive an approximate expression for the thickness of the ferrite
slabs as a function of time.

2. The eutectoid temperature for the Fe/C phase diagram is 723 ◦C. Pearlite
formed at 713 ◦C has a lamellar period (λ) of 1µm.

1. Calculate the lamellar period for pearlite that you would expect if the
pearlite were formed at a temperature of 623 ◦C.

(a) Pearlite forms initially at grain boundaries within the parent austen-
ite phase. Briefly describe why this is so.

(b) Describe what happens to the microstructure of the steel and to the
hardness as increasingly large cooling rates are used. Discuss the
role of carbon diffusion, and the role of both equilibrium and non-
equilibrium phases.
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2. In the reading about the Wright Flyer Crankcase, the authors assert “In
an Al-Cu alloy with significant supersaturation, GP zones develop by
spinodal decomposition. The spacing between zones (before
coarsening) is determined by the fastest growing wavelength during
decomposition. The favored wavelength is inversely related to the
second derivative of the free energy versus composition function,which
is zero at the spinodal line (located inside but near the GP zone solvus
curve) and increases(negatively) with an increase in Cu or a decrease in
temperature. Thus, the favored wavelength in the region with a large
amount of Cu is smaller than in the regions with small amounts of Cu,
and the resulting spacing between zones is smaller.”

3. Support their argument using the equations derived in class for
spinodal decomposition. A good way to approach this is to postulate a
spinodal line and then consider two cases, i.e. Xo = 2.5 wt.% Cu and
Xo = 4.5 wt.% Cu, in detail, based on this spinodal. Be sure to also
explain why the authors made the parenthetical statement “(before
coarsening)”.

4. Is their argument entirely valid or do certain conditions need to be met?
If so, what qualifications should be made to make it more accurate?

5. The authors claim that “The growth of [GP] zones is ultimately limited
by solute depletion in the matrix. Despite its high solute concentration,
the region with a large amount of Cu is depleted of solute by the time
the zones have grown to about 10 nm.” Let’s assume with them the GP
zones grow at 100◦C from a matrix with 4.5 wt.% Cu. How do the
authors arrive at this statement, what evidence did they likely use, and
what calculations did they perform to arrive at this statement?

27.11 Transitional Phases

6. Suppose an alloy containing 97 wt. % aluminum and 3 wt. % copper is
poured into a mold and solidified by extracting heat from the external
surfaces of the mold.
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1. What phase (or phases) do you expect to be present in the solid immedi-
ately after the solidification reaction?

(a) What phase (or phases) will be present at equilibrium?

(b) A variety of non-equilibrium phases are observed at intermediate
stages in the transformation process. Why are these phases ob-
served?

(c) Once the equilibrium phase is formed, its rate of growth is found to
decrease with time. Why is this? What is the rate limiting step in
the transformation?

2. Porter and Easterling, prob. 5.6

3. Suppose that in the system of interest, χ is inversely proportional to the
absolute temperature, and the critical temperature for this system is 350
K. Replot the phase diagram from part a with temperature on the vertical
axis.

27.12 TTT diagrams

4. Consider the following blowup of the low concentration region of a
phase diagram similar to the Co-Cu diagram shown above:
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T

Solubility limit for   phase

Solubility limit for   phase

1. At an average alloy composition ϕ0 shown on this plot, it is determined
that only β precipitates form (no γ is ever observed) at two temperatures,
T1 and T2. The time dependence of the appearance of β is plotted at these
two temperatures as shown below. On the plot above, indicate locations
of T1and T2 that are consistent with these curves, and briefly describe
your reasoning.

time (log scale)

relative
fraction of 

 

(a) Draw TTT curves for the precipitation of both β and γ for an alloy
with the composition of ϕ0, making connections to specific temper-
atures from the phase diagram where possible.

27.13 Mineralization

2. Calculate the CO2−
3 concentration in equilibrium with seawater and with

each of the following three forms of calcium carbonate: calcite, aragonite,
vaterite. You’ll need to use the solubility products provided in class, and
look up the calcium concentration in seawater.
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27.14 Review Questions

• What does the liquid composition look like in front of an advancing solid
phase?

• What controls length scale of the composition variation?

• What is the criteria for interface stability with respect to the formation of
dendrites?

• Under what conditions are dendrites formed during the solidification of
a pure material?

• What is the qualitative behavior of S(θ) for nucleation at a flat interface,
and at grain boundary surfaces, edges and corners?

• How are equilibrium contact angles related to surface and interfacial free
energies?

• What is meant by complete wetting?

– What is the effect on nucleation for the complete wetting case?

• What are the characteristic frequencies and concentrations (C0, ν0) that
determine the homogeneous and heterogeneous nucleation rates?

• Why is coherent nucleation generally the favored homogeneous nucle-
ation mechanism?

• How is the work to form the critical nucleus calculated?

• What is the ’incoherent solvus’, and how does it relate to the expressions
listed above?

• Where does the Laplace pressure come from?

• How do you know that kinetic factors must be controlling complex mor-
phologies (dendrite formation, shapes of snowflakes, etc.)?

• What controls the size of the depletion zone in front of a flat or curved
precipitate that is growing?

• How does it evolve with time?

• What limits the growth velocity of a precipitate phase boundary at high
and low temperatures?

– Which of these limits are connected to the phase diagram?

• Why are flat, plate-like precipitates sometimes formed?
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• How does the molar free energy depend on the radius of curvature of a
precipitate?

• How does curvature effect the equilibrium concentration of solute that is
in equilibrium with a precipitate?

• What does the concentration dependence look like for precipitates that
are larger than r*?

– What if the precipitate is smaller than r*?

• What are transition phases, and why do they form?

– What is the mechanism by which transition phases shrink at the
expense of equilibrium phases?

• How are TTT curves for transition phases related to the phase diagram?

• What are the basic physical assumptions of the Lifshitz/Slyosov coars-
ening theory discussed in class?

– What do the depletion zones look like?

– What determines the average solute concentration in the matrix
phase?

• What does the distribution of precipitates look like if coarsening occurs
by the Lifshitz/Slyosov mechanism?

• What do the binodal and spinodal curves look like for the regular solu-
tion model?

– What is the critical temperature?

• What determines the size of the characteristic phase size when phase
separation occurs by spinodal decomposition?

• What is meant by uphill diffusion?

– When is it observed?

• How is this phase size modified (in qualitative terms) by coherent
strains?

• How do these strains modify the phase diagram to give coherent spin-
odal and binodal curves?

• How can the liquidus lines be estimated for an ideal eutectic system?

– What are the assumptions made in the approximation?
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• What determines the size of the individual phases for eutectic solidifica-
tion?

• What determines the size of the individual phases for a eutectoid trans-
formation?

• What is the physical significance of the squared gradient term in the free
energy expression?

• How can the shapes and sizes of metallic nanoparticles be controlled?

• What is the growth mechanism of Si nanowires catalyzed by Gold?

– What is the importance of the Au/Si phase diagram.

• How does the solubility of calcite compare to the solubility of aragonite
or vaterite, and why?

– How is the concept of the solubility product used?

• In the two-phase mixture of n-type and p-type materials used to form an
organic solar cell, what sort of phase morphology is desired, and why?

28 316-2 Laboratories

28.1 Laboratory 1: Nucleation and Solidification in a Binary
Eutectic Salt System

28.1.1 Laboratory Objectives:

To observe phase transformations in a binary eutectic system and the forma-
tion and subsequent coarsening of dendrites.

28.1.2 Learning Outcomes:

Upon completing the lab exercise, students should be able to:

• Explain the observation of birefringence.

• Discuss undercooling and observations related to cooling rate.

• Quantify coarsening using measured secondary arm spacing and surface
area to volume ratios. Predict how Sv will change with coarsening.

• Estimate uncertainty in measured values (temperature and dimension).
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28.1.3 General Instructions:

Read through the lab before you begin. It is possible to acquire data for parts
II and III during the same runs, but you must anticipate when to pause the
temperature on the hotstage and when to acquire images on the printer. Parts
I and II are measurements of phase transitions and dendrite growth rates and
initial secondary arm spacing at a constant cooling rate. Part III is a measure of
dendrite evolution as a function of time at a constant temperature. Therefore,
you could pause the temperature of the system as soon as dendrites appear.
The initial progression of the dendrite across the screen will provide you with
the rate for part II; the subsequent evolution of the structure at a constant tem-
perature will provide the data for part III. Note: setup a video file and record
time / temperature / scale bar on the images.

Figure 28.1: Phase diagram for the ammonium nitrate/sodium nitrate system.

Part I: Solidification Use the hotstage and transmission microscope to ob-
serve melting and solidification of ∼10wt% NaNO3 in the above salt system.
Record transition temperatures on heating and cooling, and carefully note
which transitions they correspond to. Fill in the table, below.

Table 28.1: Tempeartures of phase transformations at different cooling rates.

Rate T(eut) T(δ − ε) T(liq)
Heating
Cooling
Heating
Cooling
Heating
Cooling
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Birefringence: Are any of the phases observed during heating and cooling
birefringent? Which? Label the phase diagram.

Part II: Observing the Microstructure as a Function of Constant Cooling
Rate: A. Cool the sample from the melt at a rate between 1 deg/ minute and
15 degrees per minute. Watch the melt (from the microscope – it has a larger
area of view than the camera) until you observe the primary solidification
begin, then “hold” the temperature and start recording the video image. The
actual distance can be scaled based on the magnification, and the dendrite
growth velocity calculated from these results. The information for Part III
may be obtained by continuing to record as the microstructure evolves with
time at constant temperature.

B. Repeat (A) for two additional cooling rates.

Table 28.2: Data collection table for constant cooling rate.

Rate T (dendrite formation) Dendrite growth rate* Initial secondary arm spacing *

* Correct for magnification.

Magnification : ________________________

Part III: Observing the Microstructure as a Function of Time at Constant
Temperature (Isothermal Experiments) Repeat (A), but when solidification
begins, pause the hotstage. Note the temperature. Capture images as a func-
tion of time (isothermal this time). Note: We will pause the temperature when
we observe the dendrite formation. So the initial dendrite velocity, as well as
the initial dendrite secondary arm spacing is a function of constant cooling
rate; subsequent dendrite coarsening (secondary arm spacing) is a function of
time at a constant temperature.
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Table 28.3: Measured dendrite properties for isothermal experiments. Paused
temperature = _____________.

Time Secondary Arm Spacing Surface Area to Volume Counts

Table 28.4: Measured dendrite properties for isothermal experiments. Paused
temperature = _____________.

Time Secondary Arm Spacing Surface Area to Volume Counts

28.1.4 Lab Write Up:

Answer the following questions, using appropriate discussion of results,
tables and plots. Neatness counts.

1. Describe what equipment was used in this lab and what measurements
were made.

2. Make a table of your temperature results.
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3. Is the temperature of the hotstage reliable? Why or why not? Be quanti-
tative. Use your observations to substantiate your answer.

4. Did you observe birefringent phases? Which? Did you observe phases
that were not birefringent? Which? What are the corresponding crystal
structures?

5. Is there a relationship between the transition temperatures and the rate
of cooling? What is it?

6. Does dendrite growth velocity depend on the cooling rate? What trend
to you observe? Discuss.

7. From the constant cooling rate data, plot (initial) secondary arm spacing
vs. cooling rate. Discuss.

8. Quantitatively, the secondary arm spacing is predicted to increase as a
function of time to the 1/3 power. Plot the secondary arm spacing vs.
time to determine if your data exhibits this behavior. Use the isothermal
data.

9. The quantitative behavior of the surface area to volume ratio is predicted
to change as time to the -1/3 power. What do your results indicate about
coarsening? You can use overlays to determine the surface area per unit
volume (# intersection of curved lines with phase / # points on overlay).

10. Choose a set of images, one taken at the initial dendrite formation, a sec-
ond after some time has elapsed. Estimate the radius of curvature in each
case. Assume that you had a uniform distribution of spheres, first with
radius 1, coarsening to radius 2, using the two values above. Calculate
the change in surface area to volume of such a change in radii. . Show
your work. If you didn’t measure these, try to choose reasonable values.
Approximate the radius of curvature of the tip by half the distance across
a secondary dendrite arm.
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28.2 Laboratory 2: Age Hardening in Al Alloys

28.2.1 Objective:

To determine the hardness and conductivity versus aging time of 2024 (1” wide
x 1/8” thick), 6061 (1/2” wide x 1/8” thick) and 7075 (1” wide x ¼ “ thick)
aluminum alloys aged at temperatures of 25°C, 125°C, 225°C. Each lab section
will be responsible for a single alloy. Aging will be conducted over the course
of the week; team members should plan to make measurements throughout
the week.

28.2.2 Final write-up:

Data from the three lab sections will be pooled. This must be submitted by the
end of week 2. Group reports will need to include (discuss) ALL class data.

28.2.3 Procedure:

1. Measure as-received, un-solutionized samples.

Alloy Hardness Scale Hardness (5 values) Conductivity

2. Solution-treat~ a set samples of each alloy at 500C for one hour. Quench
in ice water.

3. Measure the hardness of each solutionized sample (5 measurements on
each!); discard outliers. Record.

4. Measure conductivity. Note: the sample MUST be at room temp. (do this
after hardness) Record. Store samples in ice water.
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Table 28.5: Hardness and Conductivity of Various Samples

Sample # Hardness (5 values) Conductivity

5. Anneal at:

(a) room temperature
(b) 125 °C
(c) 225°C

for times ranging from 10 minutes, ½ hour, 1 hour, 2 hours. . . .64, 128, 264
hours. . . .Note that data will be plotted on a logarithmic scale. Use this infor-
mation to plan your measurements.

Table 28.6

Sample # T
(◦C)

Date in Time in Date out Time out Anneal
time
(min)

Hardness
(5 meas)

σ
5 meas)

28.2.4 Group report (informal)

First describe each alloy. (What do the 2XXX, 6XXX, and 7XXX designations
indicate?) Give some examples of applications in each case. Indicate what

176



28.2 Laboratory 2: Age Hardening in Al Alloys 28 316-2 LABORATORIES

the normal thermo-mechanical heat-treatments (tempers) would be for each
alloy. Discuss your results in the context of these heat-treatments. (Include
references.)

1. Plot hardness versus log-time for each of the temperatures measured us-
ing the pooled data.

2. Discuss the curves and their relative magnitudes and relative position
on the time axis of any peaks observed, and label appropriately. In your
own words, discuss in terms of the theory of precipitation hardening.

3. Plot conductivity vs. log-time. Correlate with hardness measurements.
Why does the conductivity change?

4. Discuss uncertainties in your data. Include error bars on your figures.
Use the correct number of significant figures. Assuming a normal (Gaus-
sian) distribution of these values, you can find the uncertainty of the
mean to within a 95% confidence level ,by determining 2X the standard
error of the mean: 2x the standard deviation (STDEV in Excel) divided
by the square root of the number of points measured (COUNT in Ex-
cel). There is a single command to do this: CONFIDENCE (.05, STDEV,
COUNT). Indicate these values on your plots by adding error bars: left
click the data set and choose Format data series > Y error bars. Note that
you can use the Custom error bar command to add different values for
each data point (i.e. each mean value of hardness for each individual
sample).

Be sure to include the following:

1. Data from all alloys – not just the one measured by your group.

2. error bars on plots – see the handout.

3. results on as-received samples (Note that the 2024 samples had a T4
temper. The 6061 and 7075 samples had a T6 temper. Your discussion
should define these, and indicate if they make sense, based on your ag-
ing results.)

4. results on solutionized samples.

References Porter and Easterling [2], pages 291-308. Matter program (on
Macs). Rosen paper posted on Bb, others you might find.
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28.3 Laboratory 3: Al-Si Alloy Solidification and Modification
(not currently used)

28.3.1 Experiment:

Each lab group (2-3 individuals) will prepare a castable alloy of AlSi using
Al and a “Master Alloy” of 50wt% Al/Si. One group in each section should
choose a hypoeutectic composition, another the hypereutectic composition, a
third, if there is one, the eutectic composition. Consult the Al-Si phase dia-
gram. Total alloy mass should be~ 25 grams. Once cast, we will cut a portion
of this sample to polish, and a portion to re-cast with a 10%Sr, 90%Al alloy
to achieve Sr compositions between .05 and .2 wt% Sr. We will examine the
microstructures of the polished alloys.

28.3.2 Write-up (memo style):

• Project objectives – brief summary. Why are Al-Si alloys of interest?

• Methods – briefly summarize procedures.

• Results and Discussion

– Micrographs:

* Hypo, hyper and (if done) eutectic unmodified samples

* Modified samples – compare to unmodified.

– Stereology

* How do Image J results compare to predictions from phase di-
agram?

– Details of microscopy – is Jackson criteria valid?

– Other observations: porosity? Differences from center-to-edge of
samples? What? Why?\

28.3.3 Experimental details (record here):

• Mass Al:

• Mass Al(50wt%)Si(50wt%) master alloy:

• Alloy composition (wt% Si):

• Mass of alloy used for modification:

• Mass of Al(90wt%)Sr(10wt%): Note: Target amount = .05 - .2 wt% Sr

• Other details, i.e furnace temperatures, materials, procedures used.
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28.3.4 Short Answer Questions: due at the beginning of lab, week 2

1. We will be using the casting process in lab. What limitations or potential
difficulties can you anticipate using this technique?

2. You have already used the AlSi phase diagram to predict the microstruc-
ture for each alloy. Can further detail be added? Can you predict any
differences in primary phase formation? Use the Jackson criteria, dis-
cussed in P&E in section 3.4.6 (p. 170) to predict in detail what the shape
of the primary phase in the hypo and hyper-eutectic alloys might be.
Show your work. Lv, Si = 1788 kJ/kg; Lv, Al = 397 kJ/kg. Q – will the
microstructures look like figure 3.65 (a) or (b) or neither?

3. How might the microstructure be further controlled by solidification
conditions?

4. What might be the technological importance of Al-Si alloys?

5. What effect do modifiers (careful – “grain refiners” and “modifiers” play
different roles) have on the microstructure?

6. Why is the modification in (6) desired?

7. A recent research summary by Napolitano et al. attributes the
differences in morphology between un-modified and modified AlSi
alloys to a variety of factors. Describe these factors.
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