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2 COURSE OUTCOMES

1 Catalog Description

Plastic deformation and fracture of metals, ceramics, and polymeric materials;
structure/property relations. Role of imperfections, state of stress, tempera-
tures, strain rate. Lectures, laboratory. Prerequisites: 316 1; 316 2 (may be
taken concurrently).

2 Course Outcomes

At the conclusion of the course students will be able to:

1. Apply basic concepts of linear elasticity, including multiaxial stress-
strain relationships through elastic constants for single and polycrystals.

2. Quantify the different strengthening mechanisms in crystalline materi-
als, based on interactions between dislocations and obstacles, such as:
point defect (solid solution strengthening), dislocations (work harden-
ing), grain boundaries (boundary strengthening) and particles (precipi-
tation and dispersion strengthening).

3. Apply fracture mechanics concepts to determine quantitatively when ex-
isting cracks in a material will grow.

4. Describe how composite toughening mechanisms operate in ceramic ma-
trix and polymer matrix composties.

5. Derive simple relationships for the composite stiffness and strength
based on those of the constituent phases.

6. Exhibit a quantitative understanding of high temperature deformation
in metals and ceramics, based on various creep mechanisms relate to dif-
fusional and dislocation flow (Coble, Nabarro-Herring and Dislocation
creep/climb mechanisms).

7. Exhibit a basic understanding of factors affecting fatigue in engineering
materials, as related to crack nucleation and propagation, as well as their
connection to macroscopic fatigue phenomena.

8. Describe the interplay between surface phenomena (environmental at-
tack) and stresses leading to material embrittlement.

9. Use the finite element method to calculate the stress and strain states
for simple test cases, including a cantilever beam and a material with a
circulat hole that is placed in tension.

10. Use complex moduli to solve mechanics problems involving an oscilla-
tory stress.
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2 COURSE OUTCOMES

11. Prepare and characterize specimens for measurement of mechanical
properties.

12. Write results from a laboratory project in the form of a journal article,
and present their work orally as would be required in a technical forum.

13. Select materials based on design requirements.
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3 INTRODUCTION

3 Introduction

In Figure 3.1 we show the materials available to mankind from the beginning
of time until the current day.[1] The data are plotted as so-called ’Ashby plots’,
where two material properties are chosen for the x and y axes. In Figure 3.1
we use density to separate different materials along the x axis, and the fracture
strength, σf , to separate materials on the y axis. When the story begins, all
we had to work with are the materials we could find around us or dig out of
the ground. Over time, we Figure d out how to produce more materials for
all kinds of purposes. The biggest developments come after World War II, a
situation that coincides with the emergence of materials science as a discipline.
We no longer rely on empiricism for materials development, but can actually
begin to design new materials with the properties we want, or at least design
materials that re better than anything we had before. The principles under-
lying the development of materials with the mechanical response forms the
basis for this course.

Figure 3.1: Available materials throughout history (from ref.[1]).
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4 STRESS AND STRAIN

y
x

Figure 4.1: 2-dimensional stress tensor

4 Stress and Strain

The mechanical properties of a material are defined in terms of the strain re-
sponse of material after a certain stress is applied. In order to properly under-
stand mechanical properties, we have to have a good understanding of stress
and strain, so that’s where we begin.

Some Notes on Notation: There are different ways to represent scalar
quantities, vectors and matrices. Here’s how we do it in this text:

• Scalar quantities are straight up symbols, like P1, σ12, etc.

• Vectors are indicated with an arrow over the symbol, like P⃗.

• Unit vectors are indicated with a caret above the symbol, like n̂.

• Matrices are enclosed in square brackets, like [σ]

4.1 Tensor Representation of Stress

The stress applied to an object, which we denote as σij or [σ] is the force acting
over an area of an object, divided by the area over which this force is acting.
Note note that [σ] is a matrix with individual components, σij specified by the
indices i and j. These indices have the following significance:

• i: surface normal (i= x, y, z)

• j: direction of force (j=x, y, z)

To obtain the Engineering stress, [σeng], we use the undeformed areas of the
stress-free object to obtain the stress tensor, whereas the true stress (which is

7



4.1 Tensor Representation of Stress 4 STRESS AND STRAIN

what we generally mean when we write [σ]) we use the actual areas in the
as-stressed state.

The stress matrix is a tensor, which means that it obeys the coordinate trans-
formation laws describe below. In two dimensions it has the following form:

[σ] =

[
σxx σxy
σyx σyy

]
(4.1)

The stress tensor must be symmetric, with σxy = σyx. If this were not the
case, the torques on the volume element shown above in Figure 4.1 would
not balance, and the material would not be in static equilibrium. As a result
the two dimensional stress state is specified by three components of the stress
tensor:

• 2 normal stresses, σxx, σyy. These are referred to as ’normal’ stresses be-
cause the force acts perpendicular to the plane that it is referred to.

• A single shear stress, σxy.

In three dimensions we add a z axis to the existing x and y axes, so the stress
state is defined by a symmetric 3x3 tensor. The full stress tensor can be used to
define the stresses acting on any given plane. To simplify the notation a bit we
label the three orthogonal directions by numbers (1, 2 and 3) instead of letters
(x, y and z). The stress tensor gives the components of the force (P1, P2 and P3)
acting on a given plane. The plane is specified by the orientation of the unit
vector, n̂ that is perpendicular to the plane. This vector has components n1, n2
and n3 in the 1, 2 and 3 directions, respectively. It’s a ’unit’ vector because the
length of the vector is 1, i.e.

(
n2

1 + n2
2 + n2

3
)1/2

= 1. The relationship between
P⃗, σ and n⃗ is as follows:

 P1
P2
P3

 = A

 σ11 σ12 σ13
σ12 σ22 σ23
σ13 σ23 σ33

 n1
n2
n3

 (4.2)

or in more compact matrix notation:

P⃗ = A [σ] n̂ (4.3)

Here A is the total cross sectional area of the plane that we are interested in. (If
you need a refresher on matrix multiplication, the Wikipedia page on Matrix
Multiplication (https://en.wikipedia.org/wiki/Matrix_multiplication)
[2] is very helpful).

8
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4 STRESS AND STRAIN 4.2 Tensor Transformation Law

 

3

2

1

Figure 4.2: 3 dimensional stress tensor

In graphical form the relationship is as shown in Figure 4.2. Like the 2-
dimensional stress tensor mentioned above, the 3-dimensional stress tensor
must also be symmetric in order for static equilibrium to be achieved. There
are therefore 6 independent components of the three-dimensional stress ten-
sor:

• 3 normal stresses, σ11, σ22 and σ33, describing stresses applied perpendic-
ular to the 1, 2 and 3 faces of the cubic volume element.

• 3 shear stresses: σ12, σ23 and σ13.

The three dimensional stress tensor is a 3x3 matrix with 9 elements (though
only 6 are independent), corresponding to the three stress components acting
on each of the three orthogonal faces of cube in the Cartesian coordinate sys-
tem used to define the stress components. The 1 face has n1=1, n2 = 0 and
n3 = 0. By setting n⃗ = (1, 0, 0) in Eq. 4.2, we get the following for the stresses
acting on the 1 face of the volume element:

P1/A = σ11
P2/A = σ12
P3/A = σ13

(4.4)

Equivalent expressions can be obtained for the stresses acting on the 2 and 3
faces, by setting n⃗ = (0, 1, 0) and n⃗ = (0, 0, 1), respectively.

4.2 Tensor Transformation Law

The stress experienced by a material does not depend on the coordinate sys-
tem used to define the stress state. The stress tensor will look very different if
we chose a different set of coordinate axes to describe it, however, and it is im-
portant to understand how changing the coordinate system changes the stress
tensor. We begin in this section by describing the procedure for obtaining the

9



4.2 Tensor Transformation Law 4 STRESS AND STRAIN
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Figure 4.3: Rotation of coordinate system. The coordinate system is rotated byθ
about the 3 axis, transforming the 1 axis to1′ and the 2 axis to2′.

stress tensor that emerges from a given change in the coordinate system. We
then describe the method for obtaining a specific set of coordinate axis which
gives a diagonalized tensor where only normal stresses are present (Section
4.3).

4.2.1 Specification of the Transformation Matrix

In general, we consider the case where our 3 axes (which we refer to simply as
axes 1, 2 and 3) are moved about the origin to define a new set of coordinate
axes that we refer to as 1′, 2′ and 3′. As an example, consider the simple coun-
terclockwise rotation around the 3 axis by an angle ϕ, shown schematically in
Figure 4.3. In general, the relative orientation of the transformed (rotated) and
untransformed coordinate axes are given by a set of 9 angles between the 3
untransformed axes and the three transformed axes. In our notation we spec-
ify these angles as θij, where i specifies the transformed axes (1′, 2′ or 3′) and j
specifies the untransformed axis (1, 2 or 3). In our simple example, the angle
between the 1 and 1′ axes is ϕ, so θ11 = ϕ. The angle between the 2 and 2′ axes
is also ϕ, so θ22 = ϕ. The 3 axis remains unchanged in our rotation example,
so θ33 = 0. The 3/3′ axis remains perpendicular to the 1,1′ , 2,2′ axes, so we
have θ31 = θ32 = θ13 = θ23 = 90◦. Finally, we see that the angle between the 1′

and the 2 axis is 90 − ϕ (θ12 = 90 − ϕ) and the angle between the 2′ and 1 axis
is 90 + ϕ (θ21 = 90 + ϕ). The full [θ] matrix in this case is as follows:

[θ] =

 ϕ 90 − ϕ 90
90 + ϕ ϕ 90

90 90 0

 (4.5)

Note that the [θ] matrix is NOT symmetric (θij ̸= θji), so you always need to
make sure the first index, i, (denoting the row in the [θ] matrix) corresponds to
the transformed axes, and the second index, j (denoting the column in the [θ]
matrix) corresponds to the original, untransformed axes.
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4 STRESS AND STRAIN 4.2 Tensor Transformation Law

4.2.2 Expressions for the Stress Components

Once we specify all the different components of [θ], we can use the follow-
ing general expression to obtain the stresses in the new (primed) coordinate
system as a function of the stresses in the original coordinate system:

σ′
ij= ∑

k,l
cos θjk cos θilσkl (4.6)

For each component of the stress tensor, we have to sum 9 individual terms
(all combinations of k and l from 1 to 3). For example, σ′

12 is given as follows:

σ′
12 = cos θ21 cos θ11σ11 + cos θ21 cos θ12σ12 + cos θ21 cos θ13σ13+

cos θ22 cos θ11σ21 + cos θ22 cos θ12σ22 + cos θ22 cos θ13σ23+
cos θ23 cos θ11σ31 + cos θ23 cos θ12σ32 + cos θ23 cos θ13σ33

(4.7)

The calculation is breathtakingly tedious if we do it all by hand, so it makes
sense to automate this and do the calculation via computer, in our case with
Python. In this example we’ll start with a simple stress state corresponding to
uniaxial extension in the 1 direction, with the following untransformed stress
tensor:

[σ] =

 5x106 0 0
0 0 0
0 0 0

 (4.8)

Suppose we want to obtain the stress tensor in the transformed coordinate
system obtained from a 45◦ counterclockwise rotation around the z axis. The
rotation matrix is given by Eq. 4.5, with ϕ = 45◦. The following Python code
solves for the full transformed tensor, with σij given by Eq. 4.8 and

[
θij
]

given
by Eq. 4.5 with ϕ = 45◦:

1 #!/ usr/bin/env python3
2 # -*- coding: utf -8 -*-
3

4 import numpy as np
5 sig=np.zeros((3, 3)) #% create stress tensor and set to zero
6 sig[0, 0] = 5e6; # this is the only nonzero component
7

8 sigp=np.zeros((3, 3)) # initalize rotated streses to zero
9

10 phi = 45
11

12 theta = [[phi ,90-phi ,90], [90+phi ,phi ,90], [90 ,90 ,0]]

11



4.2 Tensor Transformation Law 4 STRESS AND STRAIN

Figure 4.4: Output generated by rotate45.py.

13 theta = np.deg2rad(theta) # trig functions need angles in
radians

14 for i in [0, 1, 2]:
15 for j in [0, 1, 2]:
16 for k in [0, 1, 2]:
17 for l in [0, 1, 2]:
18 sigp[i,j]=sigp[i,j]+np.cos(theta[i,k])*np.cos(

theta[j,l])*sig[k,l]
19

20 print(sigp) # display the transformed tensor components

We use Python because it is free, powerful, and quite easy to learn especially
if you have experience with a similarly-structured programming environment
like MATLAB. Various Python code examples are included in this text, and are
presented as examples of how to do some useful things in Python.

The output generated by the Python code is shown in Figure 4.4, and corre-
sponds to the following result:

[
σ′] =

 2.5x106 −2.5x106 0
−2.5x106 2.5x106 0

0 0 0

 (4.9)

Note the following:

• The normal stresses in the 1 and 2 directions are equal to one another.

• The transformed shear stress in the 1-2 plane is half the original tensile
stress.

• The sum of the normal stresses (the sum of the diagonal components of
the stress tensor) is unchanged by the coordinate transformation

4.2.3 An Easier Way: Transformation by Direct Matrix Multiplication

A much easier way to do the transformation is to use a little bit of matrix math.
The approach we use is described in a very nice web page put together by Bob

12



4 STRESS AND STRAIN 4.2 Tensor Transformation Law

McGinty[3]. A transformation matrix, Qij, is obtained by taking the cosines
of all of these angles describing the relationship between the transformed and
untransformed coordinate axes:

[Q] = cos [θ] (4.10)

For the simple case of rotation about the z axis, the angles are given by Eq. 4.5,
so that [Q] is given as:

[Q] =

 cos ϕ cos (90 − ϕ) cos 90
cos (90 + ϕ) cos ϕ cos 90

cos 90 cos 90 cos 0

 =

 cos ϕ sin ϕ 0
− sin ϕ cos ϕ 0

0 0 1


(4.11)

The transformed stress is now obtained by the following simple matrix multi-
plication:

[
σ′] = [Q] [σ] [Q]T (4.12)

where the[Q]T is the transpose of[Q]:

QT (i, j) = Q(j, i) (4.13)

For the rotation by ϕ around the z axis, [Q]T is given by the following:

[Q]T =

 cos ϕ − sin ϕ 0
sin ϕ cos ϕ 0

0 0 1

 (4.14)

Equation 4.12 is much easier to deal with than Eq. 4.7. The Python code to take
a uniaxial stress state and rotate the coordinate system by 45◦ about the 3 axis
looks like this if we base it on Eq. 4.12:

1 import numpy as np
2 # create stress tensor with all zero elements
3 sig = np.zeros ((3,3))
4

5 # set first one elment to be nonzero (one of the normal stresses)
6 sig [0][0] = 5e6
7

8 #set the rotation angle
9 phi = 45

10

11 # define the rotation matrix in degrees
12 theta = np.array ([[phi ,90+phi ,90],[90-phi ,phi ,90] ,[90 ,90 ,0]])
13

13



4.3 Principal Stresses 4 STRESS AND STRAIN

Figure 4.5: Principal Stresses

14 # now put all the direction cosines in Q
15 Q = np.cos(np.radians(theta))
16

17 # claculate the transpose of Q
18 QT = np.transpose(Q)
19

20 # now multiply everything together
21 # note that we use the @ sign to multiply matrices in python
22 sigp = np.round(Q@sig@QT)
23 # print the result
24 print(sigp)

Running this script gives the output shown in Figure 4.4, i.e. we obtain exactly
the same result we obtained by using Eq. 4.7.

4.3 Principal Stresses

Any stress state (true stress) can be written in terms of three principal stresses
σ1p, σ2p and σ3p, applied in three perpendicular directions as illustrated in Fig-
ure 4.5. Note that we still need 6 independent parameters to specify a stress
state: the 3 principal stresses, in addition to three parameters that specify the
orientation of the principal axes. The stress tensor depends on our definition
of the axes, but it is always possible to chose the axes so that all of the shear
components of the stress tensor vanish, so that the stress tensor looks like the
following:

[σ] =

 σ1p 0 0
0 σ2p 0
0 0 σ3p

 (4.15)

In order to gain some insight into the points mentioned above, it is useful
to consider a range of rotation angles, and not just a singe rotation angle of
45◦. One way to do this is to use the symbolic math capability of Python (or
your other favorite software) to obtain the full stress tensor as a function of the
rotation angle. We’ll use the principal axes to define our untransformed state,

14



4 STRESS AND STRAIN 4.3 Principal Stresses

and transform to a new set of axes by rotating counterclockwise by an angle ϕ
around the 3 axis. We want to calculate

[σ′] from Eqs.4.11 and 4.12 as we did before, but we leave ϕ as an independent
variable. We use the following python script to do this:

1 # mohr_circle.py
2 # Mohr's circle derivation
3 from sympy import symbols , Matrix , cos , pi, simplify , preview
4

5 # specify the principal stressesS
6 sig1p , sig2p , sig3p = symbols (['sigma_1^p', 'sigma_2^p', 'sigma_3

^p'])
7 sig = Matrix ([[sig1p , 0, 0], [0, sig2p , 0], [0, 0, sig3p ]])
8

9 # now specify the rotation angle
10 phi = symbols('phi')
11

12 # specify the theta matrix
13 theta=Matrix ([[phi ,pi/2-phi ,pi/2], [pi/2+phi ,phi ,pi/2],[pi/2,pi

/2 ,0]])
14

15 # take the cosine of all the elements in the matrix to get Q
16 Q=theta.applyfunc(cos)
17

18 # get the transpose of the matrix
19 QT=Q.transpose ()
20

21 # now do the matrix multiplication to get the transformed matrix
22 sigp=Q*sig*QT
23

24 # define the center (C) and radius (R) of the circle
25 R, C = symbols (['R', 'C'])
26

27 # now we rewrite in terms of center and radius and simplify again
28 sigp = sigp.subs ([(sig1p , C+R), (sig2p , C-R)])
29 sigp = simplify(sigp)
30

31 # now save the exp1 and exp2 as image files
32 preview(sigp , viewer = 'file', filename = '../ figures/

sympy_mohr_sigp.png')

This results in the following expression for [σ′] (exp1, generated in line 26 of
mohr_circle.py).

This is not yet a very illuminating result, but it is the basis for the Mohr circle
construction, which provides a very useful way to visualize two dimensional
stress states. This construction is described in more detail in the following
Section.

15



4.3 Principal Stresses 4 STRESS AND STRAIN

4.3.1 Mohr’s Circle Construction

The Mohr circle is a graphical construction that can be used to describe a
two dimensional stress state. A two dimensional stress state is specified by
two principal stresses, σ1p and σ2p, and by the orientation of the principal
axes. The Mohr circle is drawn with a radius, R, of σ1p − σ2p, centered at
C =

(
σ1p + σ2p

)
/2 on the horizontal axis. We can use these values of R and

C as the independent variables in the expression for σ′ that we obtained from
our python script. This substitution is made in lines 30-34 of mohr_circle.py,
and leads to the following expression for [σ′]:

Python has taken us almost as far as we need to go, but it doesn’t seem to be
smart enough to use the following two trigonometric identities:

1 − 2 sin2 ϕ = cos (2ϕ)
1 − 2 cos2 ϕ = − cos (2ϕ)

(4.16)

Substituting these into the expression for [σ′] gives our final result:

[
σ′] =

 C + R cos (2ϕ) −R sin (2ϕ) 0
−R sin (2ϕ) C − R cos (2ϕ) 0

0 0 ϕ
p
3

 (4.17)

In the Mohr circle construction normal stresses (σN) are plotted on the x axis
and the shear component of the stress tensor (τ) is plotted on the y axis. For
a two dimensional stress state in the 1-2 plane the circle is defined by two
points: (σ11, σ12) and (σ22, − σ12). In our current example the stress state in
the untransformed axes is represented by the open symbols in Figure 4.6, i.e.
by the points

(
σ1p, 0

)
and

(
σ2p, 0

)
. In the transformed axes the stress state is

represented by the solid circles in Figure 4.6. From Eq. 4.17 it is evident that
the relationship between the two different representations of the stress state is
obtained by a rotation along circle by 2ϕ. Whether this rotation is clockwise
or counterclockwise depends on the sign convention in the definition of the
shear stress. We’re not going to worry about it here, but you can refer to the
Mohr’s Circle Wikipedia article[4] for the details (see the Section on the sign
convention).
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Figure 4.6: Mohr’s circle construction.

The Mohr circle construction can only be applied for a two dimensional mean-
ing that there are no shear stresses with a component in the direction of the
rotation axis. There can be a normal stress in the third direction, as in our ex-
ample above, because this normal stress is simply superposed on the 2d stress
state. In general, there are three principal stresses, σ1p, σ2p and σ3p, and we can
draw the Mohr circle construction with any combination of these 3 stresses.
We end up with 3 different circles, as shown in Figure 4.7. Note that the con-
vention is that σ1p is the largest principal stress and that σ3p is the smallest
principal stress, i.e. σ1p > σ2p > σ3p. An important result is that the largest
shear stress, τmax, is given by the difference between the largest principal stress
and the smallest one:

τmax =
1
2
(
σ1p − σ3p

)
(4.18)

This maximum shear stress is an important quantity, because it determines
when a material will deform plastically (much more on this later). In order
to determine this maximum shear stress, we need to first Figure out what the
principal stresses are. In some cases this is easy. In a uniaxial tensile test, one of
the principals stresses is the applied stress, and the other two principal stresses
are equal to zero.

The individual Mohr’s circles in Figure 4.7 correspond to rotations in the
around the individual principal axes. Circle C1 corresponds to rotation around
the direction in which σ1p is directed, C2 corresponds to rotation around the
direction in which σ2p is directed, and C3 corresponds to rotation around the
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Figure 4.7: Three-dimensional Mohr’s Circle.

direction in which σ3p is directed. A consequence of this is that is always pos-
sible to use the Mohr’s circle construction to determine the principal stresses
if there is only one non-zero shear stress.

1) Exercise: Determine the maximum shear stress for the following stress
state:

[σ] =

 3 0 2
0 3 0
2 0 5

 MPa (4.19)

2) Solution: We can handle this one without using a computer. There
is only one non-zero shear stress (σ13), so we can determine the principals
stresses in the following manner:

1. One of the three principal stresses is the normal stress in the direction
that does not involve either of the directions in the nonzero shear stress.
Since the non-zero shear stress in our example is σ13, one of the princi-
pal stresses is σ22=3 MPa.

2. Now we draw a Mohr circle construction using the two normal stresses
and the non-zero shear stress, in this case σ11, σ33 and σ13. Mohr’s circle
is centered at the the average of these two normal stresses, in our case
at C = (σ11 + σ33) /2 = 4 MPa.
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3. Determine the radius of the circle, R, is given as:

R =
√
(σ33 − σc)

2 + σ2
13 =

√
(5 − 4)2 + σ2

13 = 2.24 MPa

4. The principal stresses are given by the intersections of the circle with
the horizontal axis:

σ1p,σ2p = C ± R = 6.24 MPa, 1.76 MPa

The third principal stress is 3 MPa, as we already determined.

5. The maximum shear stress is half the difference between the largest
principal stress (6.64 MPa) and the smallest one (1.76), or 2.24 MPa.

4.3.2 Critical Resolved Shear Stress for Uniaxial Tension

As an example of the Mohr circle construction we can consider the calcula-
tion of the resolved shear stress on a sample in a state of uniaxial tension. The
Mohr’s circle representation of the stress state is shown in Figure 4.8. The re-
solved shear stress, τrss, for sample in uniaxial tension is given by the following
expression:

τrss = σ1p cos ϕ cos λ (4.20)

where σ1p is the applied tensile stress, ϕ is the angle between the tensile axis
and a vector normal to the plane of interest, and λ is the angle between the
tensile axis and the direction of the shear stress. This shear stress has to be in
the plane itself, so for a 2-dimensional sample λ+ ϕ = 90◦. This means we can
rewrite Eq. 4.20 in the following way:

τrss = σ1p cos ϕ cos (90◦ − ϕ) (4.21)
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Figure 4.8: Mohr’s circle construction and calculation of the resolved shear stress
for a 2-dimensional sample in uniaxial extension.

We can use the identities cos (90 − ϕ) = sin ϕ and sin (2ϕ) = 2 sin ϕ cos ϕ to
obtain the following:

τrss =
σ1p

2
sin (2ϕ) (4.22)

We can get the same thing from the Mohr’s circle construction to redefine the
axes by a rotation of ϕ. The shear stress is simply the radius of the circle (ϕ1p/2
in this case) multiplied by sin (2ϕ). Mohr’s circle also gives us the normal
stresses:

σ11 =
σ1p
2 +

σ1p
2 cos (2ϕ)

σ22 =
σ1p
2 − σ1p

2 cos (2ϕ)
(4.23)

The untransformed 2-dimensional stress tensor looks like this:

[σ] =

[
σ1p 0
0 0

]
(4.24)

The transformed stress tensor (after rotation by ϕ to give the resolved shear
stress) looks like this:

[
σ′] = [ σ1p

2 +
σ1p
2 cos (2ϕ)

σ1p
2 sin (2ϕ)

σ1p
2 sin (2ϕ)

σ1p
2 − σ1p

2 cos (2ϕ)

]
(4.25)
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Figure 4.9: Output generated by principal_stress_calc.py.

4.3.3 Principal Stress Calculation

Principal stresses can easily by calculated for any stress state just by obtain-
ing the eigenvalues of the stress tensor. In addition, the orientation of the
principal axes (the coordinate system for which there are no off-diagonal
components in the stress tensor). If you need a refresher on what eigenval-
ues and eigenvectors actually are, take a look at the appropriate Wikipedia
page (http://en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors). We’ll
use Python to do this, using the ’eig’ command .

To illustrate, we’ll start with the stress state specified by Eq. 4.9. which we got
by starting with a simple uniaxial extension in the 1 direction, and rotating the
coordinate system by 45◦ about the 3 axis. The Python script to do this is very
simple and is as follows:

1 import numpy as np
2

3 # write down the stress tensor that we need to diagonalize
4 sig=1e6*np.array ([[2.5 ,2.5 ,0] ,[2.5 ,2.5 ,0] ,[0 ,0 ,0]])
5

6 # get the eigen values and eigen vectors
7 [principalstresses , directions ]=np.linalg.eig(sig)
8

9 # the columns in 'directions ' correspond to the dot product of
the

10 # principal axes with the orignal coordinate system
11 # The rotation angles are obtained by calculating the inverse

cosines
12 theta=np.arccos(directions)*180/( np.pi)
13

14 # print the results (or just look at them in the variable
explorer in Spyder)

15 print ('theta =\n', theta)
16 print ('principal stresses =\n', principalstresses)

Here’s the output generated by this script:

3 principal axes returned as column vectors. In this case there is a single nor-
mal stress, acting in a direction midway between the original x and y axes. The
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original uniaxial stress state is recovered in this example, as it should be. To
summarize:

• Principal Stresses: Eigenvalues of the stress tensor

• Principal Stress directions: Eigenvectors of the stress tensor

4.3.4 Stress Invariants

Some quantities are invariant to choice of axes. The most important one is the
hydrostatic pressure, p, given by summing the diagonal components of the
stress tensor and dividing by 3:

p = −1
3
(σ11 + σ22 + σ33) = −1

3
(
σ1p + σ2p + σ3p

)
(4.26)

The negative sign appears because a positive pressure is compressive, but pos-
itive stresses are tensile. The hydrostatic pressure is closely related to a quan-
tity referred to as the ’first stress invariant’, I1:

I1 = σ11 + σ22 + σ33 (4.27)

The second and third stress invariants,I2 and I3, are also independent of the
way the axes are defined:

I2 = σ11σ22 + σ22σ33 + σ33σ11 − σ2
12 − σ2

13 − σ2
23 (4.28)

I3 = σ11σ22σ33 − σ11σ2
23 − σ22σ2

13 − σ33σ2
12 + 2σ12σ13σ23 (4.29)

It’s not obvious at first that each of these quantities are invariant to the choice
of coordinate axes. As a check, we can start with a general tensor, rotate the
coordinate system through a full 180 degrees, and plot the value of an invariant
as a function of a the rotation angle, ϕ. The following python code does this
for I2:

1 import numpy as np
2 import matplotlib.pyplot as plt
3

4 # create a function that multiplies the transforms a stress
5 # tensor sig by a rotation of phi about the Z axis ,
6 # and returns the vaalue of I2
7

8 def I2_calc(phi):
9 sig = np.array ([[3, 5, 4], [5, 2, 9], [4, 9, 6]])

10 theta = np.array ([[phi ,90+phi ,90],[90-phi ,phi ,90] ,[90 ,90 ,0]])
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Figure 4.10: Plot of I2 as a function of the axis rotation angle for a generic 3d stress
state, calculatged from I2_invariant_check.py.

11 Q = np.cos(np.radians(theta))
12 QT = np.transpose(Q)
13 sigp = Q@sig@QT
14 I2 = (sigp [0][0]* sigp [1][1]+ sigp [1][1]* sigp [2][2]+ sigp [2][2]*

sigp [0][0] -
15 sigp [0][1]**2 - sigp [1][2]**2 -sigp [0][2]**2)
16 return I2
17

18 # vectorize the function so we can input an array of phi values
19 vI2 = np.vectorize(I2_calc)
20

21 # now calculate I2 over a range of phi values
22 phi = np.linspace(0, 180, 100)
23 I2vals = vI2(phi)
24

25 # now make the plot
26 plt.close('all')
27 fig , ax = plt.subplots (1,1, figsize =(3 ,3), constrained_layout=

True)
28 ax.plot(phi , I2vals , '-')
29 ax.set_xlabel(r'$\phi (deg.)$')
30 ax.set_ylabel(r'$I_2$ ')
31

32 # save the plot
33 fig.savefig('../ figures/I2plot.svg')

This results in the very boring plot shown in Figure 4.10, indicating that I2
really is invariant to the definition of the coordinate axes.
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 Before Deformation

After Deformation

Figure 4.11: Location of two points,P1 andP2, before and after an applied defor-
mation.

4.4 Strain

There are 3 related definitions of the strain:

1. Engineering strain

2. Tensor strain

3. Generalized strain (large deformations, also referred to as ’finite strain’)

Each of these definitions of strain describe the way different points an object
move relative to one another when the material is deformed. Consider two
points P1 and P2, separated initially by the increments x1,x2 and x3 along the
1, 2 and 3 directions. After the deformation is applied, these points move by
the following amounts, as illustrated in Figure 4.11:

• P1 moves by an amount u⃗ = (u1, u2, u3)

• P2 moves by u⃗ + du⃗ = (u1 + du1, u2 + du2, u3 + du3)

4.4.1 Small Strains

Strain describes how much farther point to moved in three different directions,
as a function of how far P2 was from P1 initially. When P1 and P2 are close
together so that dx, dy and dz are small, we can ignore higher order terms
in a Taylor expansion for du, dv and dw and maintain only the first, partial
derivative terms as follows:
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du1 = ∂u1
∂x1

dx1 +
∂u1
∂x2

dx2 +
∂u1
∂x3

dx3

du2 = ∂u2
∂x1

dx1 +
∂u2
∂x2

dx2 +
∂u2
∂x3

dx3

du3 = ∂u3
∂x1

dx1 +
∂u3
∂x2

dx2 +
∂u3
∂x3

dx3

(4.30)

We can write this in matrix form in following way:

 du1
du2
du3

 = [F]

 dx1
dx2
dx3

 (4.31)

where [H] is the deformation gradient tensor:

[H] =


∂u1
∂x1

∂u1
∂x2

∂u1
∂x3

∂u2
∂x1

∂u2
∂x2

∂u2
∂x3

∂u3
∂x1

∂u3
∂x2

∂u3
∂x3

 (4.32)

The three normal components of the strain correspond to the change in the
displacement in a given direction corresponds to a change in initial separation
between the points of interest in the same direction:

e11 = ∂u1
∂x1

e22 = ∂u2
∂x2

e33 = ∂u3
∂x3

(4.33)

The engineering shear strains are defined as follows:

e23 = ∂u3
∂x2

+ ∂u2
∂x3

e13 = ∂u1
∂x3

+ ∂u3
∂x1

e12 = ∂u1
∂x2

+ ∂u2
∂x1

(4.34)

Note: shear strains are often represented by the lower case Greek gamma to
distinguish them from normal strains:

γ12 ≡ e12; γ23 ≡ e23; γ13 = e13 (4.35)
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4.4.2 Tensor Shear Strains

Engineering strains relate two vectors to one another (⃗x and u⃗), just as a tensor
does, but the transformation law between different coordinate systems is not
obeyed for the engineering strains. For this reason the engineering strains
are NOT tensor strains. Fortunately, all we need to do to change engineering
strains to tensor strains is to divide the shear components by 2. In our notation
we use e to indicate engineering strain and ϵ to indicate tensor strains. The
tensor normal strains are exactly the same as the engineering normal strains:

ϵ11 = e11
ϵ22 = e22
ϵzz = ezz

(4.36)

Engineering shear strains (e23, e13, e12) are divided by two to give tensor shear
strains:

ϵ23 = e23/2
ϵ13 = e13/2
ϵ12 = e12/2

(4.37)

Note that the tensor strains must be used in coordinate transformations (axis
rotation, calculation of principal strains, e1p, e2p, e3p).

4.4.3 Generalized Strain

We can also define the strain by considering a cube of side ℓ that is deformed
into a parallelepiped with dimensions of (along principal strain axes). After
deformation, the cube has dimensions of λ1pℓ, λ2pℓ, λ3pℓ. Alternatively, a
sphere of radius r0 is deformed into and ellipsoid with principal axes of λ1pr0,
λ2pr0 and λ3pr0, as shown in Figure 4.12. The quantities λ1p, λ2p , λ3p are
principal stretch ratios, and are related to the principal strains as follows:

λ
p
1 = 1 + eP

1
λ

p
2 = 1 + eP

2
λ

p
3 = 1 + eP

3

(4.38)

The true strains, et
1, are obtained as by taking the natural log of the relevant

stretch ratio. For example, for a uniaxial tensile test, the true strain in the
tensile direction (assumed to be the 1 direction here) is:

et
1 = ln (λ1) (4.39)
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Before deformation After deformation

Figure 4.12: Unit sphere deformed into a strain ellipsoid with dimensions
ofλ1, λ2, λ3.

This expression for the true strain can be obtained by recognizing that the
incremental strain is always given by the fractional increase in length dℓ/ℓ,
where ℓ is the current length of the material as it is being deformed. If the ini-
tial length is ℓ0 and the final, deformed length is ℓ f , then the total true strain,
etrue

1 is obtained by integrating the incremental strains accumulated through-
out the entire deformation history:

etrue
1 =

∫ ℓ f

ℓ0

dℓ
ℓ

= ln ℓ|ℓ f
ℓ0

= ln
(
ℓ f

ℓ0

)
= ln λ

p
1 (4.40)

The stretch ratios provide a useful description of the strain for both small and
large values of the strain. A material with isotropic mechanical properties has
the same coordinate axes for the principal stresses and the principal strains.

A more detailed description of generalized strain, with a lot of relevant ma-
trix math, is provided in the Wikipedia article on finite strain theory (https:
//en.wikipedia.org/wiki/Finite_strain_theory). If you come across con-
cepts like the Cauchy-Green deformation tensor or the Finger deformation
tensor, this article provides a useful introduction (but be prepared for a lot
of matrix math). These concepts appear in a range of useful description of me-
chanical response, including many in the biomedical field (muscle actuation,
deformation of skin, etc).

4.5 Deformation Modes

Now that we’ve formally defined stress and strain we can give some specific
examples where these definitions are used, and begin to define some elastic
constants. We’ll begin with the two most fundamental deformation states:
simple shear and hydrostatic compression. These are complementary strain
states - for an isotropic material simple shear changes the shape but not the
volume, and hydrostatic compression changes the volume but not the shape.
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Figure 4.13: Schematic representation of simple shear.

We’ll eventually show that for an isotropic material there are only two inde-
pendent elastic constants, so if we know how an isotropic material behaves in
response to these two stress states, we have a complete understanding of the
elastic properties of the material.

4.5.1 Simple Shear

Simple shear is a two dimensional strain state, which means that one of the
principal strains is zero (or one of the principal stretch ratios is 1).

The stress tensor looks like this:

[σ] =

 0 σ12 0
σ12 0 0
0 0 0

 (4.41)

From the definition of the engineering shear strain (Eq. 4.34) we have:

e12 =
u
d

(4.42)

We need to divide the engineering shear strains by 2 to get the tensor strains,
so we get the following:

[ϵ] =

 0 e12/2 0
e12/2 0 0

0 0 0

 (4.43)

We’re generally going to use engineering strains and not tensor strains, so
won’t often need to worry about the factor of two. The exception is when
we want to use a coordinate transformation to find the principal strains. To
do this we use a procedure exactly analogous to the procedure described in
Section 4.3, but we need to make sure we are using the tensor strains when we
do the calculation.

The shear modulus is simply the ratio of the shear stress to the shear strain.
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G (shear modulus) =
σ12

e12
(4.44)

Note that the volume of the material is not changed, but its shape has. In very
general terms we can view the shear modulus of a material as a measure of its
resistance to a change in shape under conditions where the volume remains
constant.

4.5.2 Simple Shear and the Mohr’s Circle Construction for Strains

Mohr’s cirlcle for strain looks just like Mohr’s circle for stress, provided that
we use the appropriate tensor components. That means that we need to plot
e12/2 on the vertical axis and the normal strains on the vertical axis, as shown
in Figure 4.14 (where we have used the common notation for the simple shear
geometry, with exy = γ). One thing that we notice from this plot is that γ is
simply given by the difference between the two principal strains:

γ = e1p − e2p = λ1p − λ2p (4.45)

For simple shear this relationship is valid, even for large strains, even though
there are other aspects of the Mohr’s circle construction that no longer work
at large strains. The primary difficulty is that the frame of reference for the
strained and unstrained case are not the same. In general, strains rotate the
frame of reference by an amount that we don’t want to worry about for the
purposes of this course. For small strains typically obtained in metals or ce-
ramics (with strain amplitudes of a few percent or less) we don’t need to worry
about this rotation, but it can become important for polymeric systems that un-
dergo very large strains prior to failure. However, if all we want a measure of
the shear strain in the material, we can still use Eq. 4.45, regardless of how
large the principal strains (and corresponding stretch ratios) actually are.

I

4.5.3 Torsion

An important geometry for characterizing the shear properties of soft materi-
als is the torsional geometry shown in Figure 4.15. In this material a cylindri-
cal or disk-shaped material is twisted about an axis of symmetry. The material
could be a long, thin fiber (Figure 4.15a) or a flat disk sandwiched between two
plates (Figure 4.15b). We obtain the shear modulus by looking at the torsional
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normal
strains

Figure 4.14: Mohr’s circle construction for SMALL strains.

d

d

(a) (b)

Figure 4.15: Fiber torsion.
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stiffness of material, i.e., the Torque, T, required to rotate the top and bottom
of the fiber by an angle θ0.

We define a cylindrical system with a z axis along the fiber axis. The other axes
in this coordinate system are the distance r from this axis of symmetry, and the
angle θ around the z axis. The shear strain in the θ − z plane depends only on
r, and is given by:

eθz = r
dθ

dz
= r

θ0

ℓ
(4.46)

The corresponding shear stress is obtained by multiplying by the shear mod-
ulus, G:

σθz = Grθ0/ℓ (4.47)

We integrate the shear stress to give the torque, T:

T =
∫ d/2

0
rσθz2πrdr =

πGθ0d4

32ℓ
(4.48)

This geometry is commonly used in an oscillatory mode, where θ is oscillated
at a specified frequency. In this case the torque response is obtained by using
the dynamic shear modulus, G∗ (defined in the section on viscoelasticity) in
place of G.

4.5.4 Hydrostatic Compression

The bulk compressive modulus, Kb, of a material describes its resistance to a
change in density. Formally, it is defined in terms of the dependence of the
volume of the material on the hydrostatic pressure, p:

Kb = −V
dp
dV

(4.49)

The hydrostatic stress state corresponds to the stress state where there are no
shear stresses, and each of the normal stresses are equal. Compressive stresses
are defined as negative, whereas a compressive pressure is positive, so the
stress state for hydrostatic compression looks like this:

σ =

 −p 0 0
0 −p 0
0 0 −p

 (4.50)

where p is the hydrostatic pressure.
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Figure 4.16: Hydrostatic Compression.

1

2

3

Figure 4.17: Uniaxial tensile deformation.

4.5.5 Uniaxial Extension

Uniaxial extension corresponds to the application of a normal stress along one
direction, which we define here as the 3 direction so that the stress tensor looks
like this:

σ =

 0 0 0
0 0 0
0 0 σ33

 (4.51)

We can measure two separate strains from this experiment: the longitudinal
strain in the same direction that we apply the stress, and the transverse strain,
e22, measured in the direction perpendicular to the applied stress (we’ll assume
that the sample is isotropic in the 1-2 plane, so e11 = e22. The strains are given
by the fractional changes in the length and width of the sample:

e33 =
∆ℓ
ℓ0

(4.52)

e22 =
∆w
w

(4.53)

32



4 STRESS AND STRAIN 4.6 Representative Moduli

Figure 4.18: Longitudinal Compression

From these strains we can define Young’s modulus, E, and Poisson’s ratio, ν:

E = σ33/e33 (4.54)

ν = −e22/e33 (4.55)

4.5.6 Longitudinal Compression

A final deformation state that we will consider is longitudinal compression.
In this state all of the compression is in one direction, which we will specify
as the 3 direction. The strains in the other two direction are constrained to be
zero, so the strain state is as follows:

e =

 0 0 0
0 0 0
0 0 e33


Note that the strain state is similar to that of uniaxial extension or compression
(Figure 4.17), but in the current case we have a single nonzero strain instead
of a single non-zero stress. Finite values of σ11 and σ22 must exist in order for
sample in order for this strain state to be maintained, but we’re not going to
worry about those for now. Instead, we’ll use the following relationship for the
longitudinal elastic modulus, Eℓ which is the ratio of σ33 to e33 for this strain
state. Note that this deformation state changes both the shape and volume of
the material, so Eℓ involves both G and Kb:

Eℓ =
σ33

e33
= Kb +

4
3

G (4.56)

4.6 Representative Moduli

A few typical values for G and K are listed in Table on the following page.
Liquids do not have a shear modulus, but they do have a bulk modulus.
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Table 4.1: Representative elastic moduli for different materials.

Material G (Pa) Kb (Pa)
Air 0 1.0x105

Water 0 2.2x109

Jello ≈ 104 2.2x109

Plastic ≈ 109 ≈2x109

Steel 8x1010 1.6x1011

4.7 Case Study: Speed of Sound

The speed of sound, or sound velocity, Vsound, is actually a mechanical prop-
erty. It is related to a modulus, M, in the following way:

Vsound =

√
M
ρ

(4.57)

Here ρ is the density of the material. The modulus that we need to use depends
on the type of sound wave that is propagating. The two most common are a
shear wave and a longitudinal compressional wave:

• Longitudinal compressional wave: M = Eℓ

• Shear wave: M = G

In a liquid or gas (like air), G = 0 and shear waves cannot propagate. In this
case there is a single sound velocity obtained by setting M = Kb. For an ideal
gas:

P =
n
V

RT (4.58)

If the compression is applied slowly enough so that the temperature of the gas
can equilibrate, we have:

Kb = −V
dP
dV

=
n
V

RT = P (4.59)

So we expect that for a gas, the compressive modulus just equal to the pres-
sure. The situation is a bit more complicated for gas, since we need to use
the adiabatic modulus, which is about 40% higher than the pressure itself.
(For a detailed explanation, see the Wikipedia article on the speed of sound
(http://en.wikipedia.org/wiki/Speed_of_sound)[5]. The brief explanation
is that for sound propagation, the derivative in Eq. 4.59 needs to be evaluated
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4 STRESS AND STRAIN 4.7 Speed of Sound

at constant entropy and not constant temperature, because the sound oscilla-
tion is so fast that the heat does not have time to escape). With ρ=1.2 kg/m3

and K = 1.4x105 Pa, we end up with a sound velocity of 344 m/s.
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5 MATRIX REPRESENTATION

Table 5.1: Definition of the matrix components of stress and strain.

Engineering stress Matrix Stress Engineering Strain Matrix Strain
σ11 σ1 e11 e1
σ22 σ2 e22 e2
σ33 σ3 e33 e3
σ23 σ4 e23 e4
σ13 σ5 e13 e5
σ12 σ6 e12 e6

5 Matrix representation of Stress and Strain

As usual, we begin by replacing the directions (x, y, and z) with numbers:
x → 1, y → 2, z → 3. Once we do this we have 6 stress components, and six
strain components. We then number these components from 1-6, so that 1, 2
and 3 are the normal components and 4, 5 and 6 are the shear components. We
do this for both stress and strain as shown in Table 5.1.

A series of elastic constants relate the stresses to the strains. We can do calcu-
lations in either of the following two ways:

1. Start with a column vector consisting of the 6 elements of an applied
stress, and use the compliance matrix to calculate the strains.

2. Start with a column vector consisting of the 6 elements of an applied
strain, and use the stiffness matrix to calculate the stresses.

In each case we use a6 × 6 matrix to relate two 6-element column vectors to
one another. The procedure in each case is outlined below.

5.1 Compliance matrix


e1
e2
e3
e4
e5
e6

 =


s11 s12 s13 s14 s15 s16
s21 s22 s23 s24 s25 s26
s31 s32 s33 s34 s35 s36
s41 s42 s43 s44 s45 s46
s51 s52 s53 s54 s55 s56
s61 s62 s63 s64 s65 s66




σ1
σ2
σ3
σ4
σ5
σ6

 (5.1)

The matrix must be symmetric, with sij = sji, so there are a maximum of 21
independent compliance coefficients:
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5 MATRIX REPRESENTATION 5.2 Stiffness Matrix

Figure 5.1: Schematic representation of an extruded sheet.


e1
e2
e3
e4
e5
e6

 =


s11 s12 s13 s14 s15 s16
s12 s22 s23 s24 s25 s26
s13 s23 s33 s34 s35 s36
s14 s24 s34 s44 s45 s46
s15 s25 s35 s45 s55 s56
s16 s26 s36 s46 s56 s66




σ1
σ2
σ3
σ4
σ5
σ6

 (5.2)

Note that the compliance coefficients have the units of an inverse stress (Pa−1).

5.2 Stiffness Matrix

The stiffness matrix (c) is the inverse of compliance matrix (note the somewhat
confusing notation in that the compliance matrix is s and the stiffness is c,
backwards from what you might expect). The stiffness coefficients have units
of stress. 

σ1
σ2
σ3
σ4
σ5
σ6

 =


c11 c12 c13 c14 c15 c16
c12 c22 c23 c24 c25 c26
c13 c23 c33 c34 c35 c36
c14 c24 c34 c44 c45 c46
c15 c25 c35 c45 c55 c56
c16 c26 c36 c46 c56 c66




e1
e2
e3
e4
e5
e6

 (5.3)

5.3 Symmetry requirements on the compliance (or stiffness)
matrix.

5.3.1 Orthorhombic symmetry

Extruded polymer sheets, like the one shown schematically in Figure 5.1 have
orthorhombic symmetry, with different elastic properties in the extrusion,
thickness and width directions. These materials have orthorhombic symme-
try.
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5.3 Symmetry Requirements 5 MATRIX REPRESENTATION

For materials with orthorhombic symmetry, the principal axes of stress and
strain are identical, and all compliance components relating a shear strain (e4,
e5 or e6) to normal stresses (σ1,σ2 orσ3) or to another shear stress must be zero.
The stiffness matrix is as shown in Eq. 5.4 below, and there are 9 independent
elastic constants. These 9 elastic constants can be identified as follows:

• E1 = 1/s11, E2 = 1/s22 and E3 = 1/s33, Young’s moduli for extension in
the 1, 2 and 3 directions, respectively.

• G1 = 1/s44, G2 = 1/s55 and G3 = 1/s66, Shear moduli for shear in the
planes perpendicular to the 1, 2 and 3 directions, respectively.

• s12, s13 and s23, which relate stresses in one direction to strains in the
perpendicular direction.

e1
e2
e3
e4
e5
e6

 =


s11 s12 s13 0 0 0
s12 s22 s23 0 0 0
s13 s23 s33 0 0 0
0 0 0 s44 0 0
0 0 0 0 s55 0
0 0 0 0 0 s66




σ1
σ2
σ3
σ4
σ5
σ6

 (5.4)

5.3.2 Fiber Symmetry

For a material with fiber symmetry, one of the axes is unique (in this case the
3 axis) and the material is isotropic in the orthogonal plane. Since the 1 and
2 axes are identical, there are now 5 independent elastic constants s33, s13, s44,
s11, s12:

e1
e2
e3
e4
e5
e6

 =


s11 s12 s13 0 0 0
s12 s11 s13 0 0 0
s13 s13 s33 0 0 0
0 0 0 s44 0 0
0 0 0 0 s44 0
0 0 0 0 0 2 (s11 − s12)




σ1
σ2
σ3
σ4
σ5
σ6

 (5.5)

Examples of materials with fiber symmetry include the following:

1. Many liquid crystalline polymers (e.g. Kevlar).

2. Materials after cold drawing (plastic deformation to high strains, carried
out below the glass transition temperature or melting temperature of the
material.)

To better understand the significance of the 5 elastic constants for fiber symme-
try, it is useful to consider the types of experiment we would need to conduct
to measure each of them for a cylindrical fiber. The necessary experiments are
described below.
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Figure 5.2: Fiber extension.

d

Figure 5.3: Fiber torsion.

1) Fiber extension along 3 direction: measurement of s33 and s13 We ob-
tain s33 and s13 by performing a tensile test along the fiber axis (the 3 direction)
as shown in Figure 5.2. The strain in the 3 direction is given by the fractional
change in the length of the fiber after application of the load, and the strains
in the 1 and 2 directions are given by the fractional changes in the diameter of
the fiber:

e3 = ∆ℓ/ℓ; e1 = e2 = ∆d/d (5.6)

We then obtain s33 and s13 from Eq. 5.5, recalling that σ3 is the only non-zero
stress component in this situation:

s33 = e33/σ3
s13 = e1/σ3

(5.7)

2) Fiber Torsion: Measurement of s44 We obtain the shear modulus by
looking at the torsional stiffness of the fiber, i.e., the torque, T, required to
rotate the top and bottom of the fiber by an angle θ0, as illustrated in Figure 5.3

We define a cylindrical system with a z axis along the fiber axis. The other axes
in this coordinate system are the distance r from this axis of symmetry, and the
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angle θ around the z axis. The shear strain in theθ − z plane depends only onr,
and is given by :

eθz = r
dθ

dz
= r

θ0

ℓ
(5.8)

The corresponding shear stress is obtained by multiplying by the shear mod-
ulus, G characterizing deformation in the 1-2 and 2-3 planes:

σθz = Grθ0/ℓ (5.9)

We integrate the shear stress to give the torque, T:

T =
∫ d/2

0
rσθz2πrdr =

πGθ0d4

32ℓ
(5.10)

So once we know the torsional stiffness of the fiber (the relationship between
the applied T and θ0) we know the shear modulus, G. This shear modulus is
simply the inverse ofs44:

G =
1

s44
(5.11)

5.3.3 Fiber compression in 1-2 plane: determination of s11 and s12

The last two elastic constants for a material with fiber symmetry can be deter-
mined from an experiment where the fiber is confined between two surfaces
and compressed as shown in Figure 5.4. The elastic constants can be deter-
mined by measuring the width of the contact region between the fiber and the
confining surface. If the confining surfaces are much stiffer than the fiber itself,
than this contact width, 2b, is determined by the elastic deformation of the ma-
terial in the 1-2 plane. If there is no friction between the fiber and the confining
surfaces the fiber is allowed to extend in the 3 direction as it is compressed and
the contact width is given by the following expression:

b2 =
2Fd0s11

ℓ
(5.12)

where P is the force applied to the fiber, d0 is its undeformed diameter and ℓ is
its length.

A practical situation that is often observed is that friction between the fiber
and confining surfaces keeps the fiber length from increasing, so the strain in
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P

2b

d

P

Figure 5.4: Transverse deformation of a fiber.

the three direction must be zero. If we express the stress state in terms of the
principle stresses in 1 and 2 directions, we have the following from Eq. 5.5:

e3 = s13

(
σ

p
1 + σ

p
2

)
+ s33σ3 (5.13)

Setting e3 to zero in this equation gives the following for σ3:

σ3 =
−s13

s33

(
σ

p
1 + σ

p
2

)
(5.14)

A consequence of this stress is that the frictionless expression for b gets modi-
fied to the following:

b2 =
2Fd0

ℓ

(
s11 −

s2
13

s33

)
(5.15)

The remaining constant, s12, is determined from a measurement of d/d0, the
ratio of the fiber width at the midplane to the original width of the fiber. This
relationship is complicated, and involves several of the different elastic con-
stants.

d
d0

= f (P, s11, s13, s33, s12) (5.16)

5.3.4 Cubic Symmetry

For a material with cubic symmetry the 1,2 and 3 axes are all identical to one
another, and we end up with 3 independent elastic constants:
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e1
e2
e3
e4
e5
e6

 =


s11 s12 s12 0 0 0
s12 s11 s12 0 0 0
s12 s12 s11 0 0 0
0 0 0 s44 0 0
0 0 0 0 s44 0
0 0 0 0 0 s44




σ1
σ2
σ3
σ4
σ5
σ6

 (5.17)

5.3.5 Isotropic systems

For an isotropic material all axes are equivalent, and the properties are
invariant to any rotation of the coordinate axes. In this case there are two
independent elastic constants, and the compliance matrix looks like this:


e1
e2
e3
e4
e5
e6

 =


s11 s12 s12 0 0 0
s12 s11 s12 0 0 0
s12 s12 s11 0 0 0
0 0 0 2 (s11 − s12) 0 0
0 0 0 0 2 (s11 − s12) 0
0 0 0 0 0 2 (s11 − s12)




σ1
σ2
σ3
σ4
σ5
σ6


(5.18)

The requirement that the material properties be invariant with respect to
any rotation of the coordinate axes results in the requirement that s44 =
2 (s11 − s12), so there are two independent elastic constants. The shear modu-
lus, G, Young’s modulus E and Poisson’s ratio, ν are given as follows:

G = 1/2 (s11 − s12) ; E = 1/s11; ν = −s12/s11 (5.19)

3) Bulk Modulus for an Isotropic Material The bulk modulus, Kb, of a
material describes it’s resistance to a change in volume (or density) when we
apply a hydrostatic pressure, p. It is defined in the following way:

Kb = −V
dP
dV

(5.20)

The stress state in this case is as follows:

σ =

 −p 0 0
0 −p 0
0 0 −p

 (5.21)
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From the compliance matrix (Eq. 5.18) we get e1 = e2 = e3 = −p (s11 + 2s12).
The change in volume, ∆V can be written in terms of the three principal exten-
sion ratios,λ1,λ2 andλ3:

∆V
V0

=
V
V0

− 1 = λ1λ2λ3 − 1 = (1 + e1) (1 + e2) (1 + e3)− 1 ≈ e1 + e2 + e3

(5.22)

Now we use the fact that for small x, (1 + x)3 ≈ 1 + 3x, so we have:

∆V
V0

= e1 + e2 + e3 = −3p (s11 + 2s12) (5.23)

dRecognizing that the derivative dP/dV in the definition of Kb can be written
as the limit of p/∆V for very small p allows us to obtain the expression we
want for Kb:

Kb = lim
p→0

−p
∆V/V0

=
1

3 (s11 + 2s12)
(5.24)

4) Relationship between the Isotropic Elastic Constants: Because there
are only two independent elastic constants for an isotropic system E and ν
can be expressed in terms of some combination of Kb and G. For E the relevant
relationship is as follows.

E =
9G

3 + G/Kb
= 2G (1 + ν) (5.25)

We can also equate the two expressions for G in Eq. 5.25 to get the following
expression forν:

ν =
3 − 2G/Kb
6 + 2G/Kb

(5.26)

Note that if Kb ≫ G, E ≈ 3G and ν ≈ 0.5. A summary of various relationships
between different moduli is included in Table 5.5.

5.3.6 Relationship between Stiffness Matrix and Compliance Matrix

The stiffness matrix is the inverse of the compliance matrix. The relationships
between the individual coefficients is quite complicated, unless there is a lot
of symmetry. It’s not too bad for the isotropic case, in which case we can use
symbolic python to do the inversion. Here’s the code:
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Figure 5.5: Relationships between the different elastic constants for an isotropic
material. The independent variables are listed in the column at the left, with the
other columns containing expressions for the other moduli in terms of these vari-
ables (adapted from ref. [6]).

Kb E G ν Eℓ

Kb, E 3KbE
9Kb−E

1
2

(
1 − E

3Kb

)
3Kb(3Kb+E)

9Kb−E

Kb, G 9KbG
3Kb+G

3−2G/Kb
6+2G/Kb

Kb + 4G/3

Kb,ν 3Kb (1 − 2ν)
3Kb(1−2ν)

2(1+ν)
3Kb(1−ν)

1+ν

E, G EG
3(3G−E)

E
2G − 1 G(4G−E)

3G−E

E, ν E
3(1−2ν)

E
2(1+ν)

E(1−ν)
(1+ν)(1−2ν)

G, ν
2G(1+ν)
3(1−2ν)

2G (1 + ν)
2G(1−ν)

1−2ν

1 from sympy import symbols , Matrix , preview
2 # specify two independent elements of s for an isotropic material
3 s11 , s12 = symbols (['s_11', 's_12'])
4

5 # define the matrix
6 s = Matrix ([[s11 , s12 , s12 , 0,0,0],
7 [s12 ,s11 ,s12 ,0,0,0],
8 [s12 ,s12 ,s11 ,0,0,0],
9 [0,0,0,2*(s11 -s12) ,0,0],

10 [0,0,0,0,2*(s11 -s12) ,0],
11 [0,0,0,0,0,2*(s11 -s12)]])
12

13 # now invert the matrix
14 c=s.inv()
15 preview(c, viewer = 'file', filename = '../ figures/sympy_c.png')

This gives the output shown here:

Note that the stiffness matrix has the same symmetry as the compliance matrix,
as it must:
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σ1
σ2
σ3
σ4
σ5
σ6

 =


c11 c12 c12 0 0 0
c12 c11 c12 0 0 0
c12 c12 c11 0 0 0
0 0 0 G 0 0
0 0 0 0 G 0
0 0 0 0 0 G




e1
e2
e3
e4
e5
e6

 (5.27)

Comparison of Eq. 5.27 to the output from symbolic_cmatrix.py gives the fol-
lowing:

G =
1

2(s11 − s12)
; c11 =

s11 + s12

s2
11 + s11s12 − 2s2

12
; c12 =

−s12

s2
11 + s11s12 − 2s2

12
(5.28)
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6 OTHER SYMMETRY-RELATED CONSTITUTIVE RELATIONSHIPS

Property Symbol Field (row) Response
(column)

tensor properties of rank 0 (scalars)
specific heat C (1x1) ∆T T∆S

tensor properties of rank 1 (vectors)
pyroelectricity p′i (3x1) ∆T Di (electric

displacement)
tensor properties of rank 2

Thermal expansion αi (6x1) ∆T ei
Dielectric

permittivity
κij (3x3) Ej (elec. field) Di (electric

displacement)
Electrical

conductivity
σij (3x3) Ej ji (current density)

Thermoelectricity Σij (3x3) ∂T
∂xj

(Temp.
gradient)

Ei (electric field)

tensor properties of rank 3
Piezoelectricity dij (3x6) σj (stress) Di (electric

displacement)
Converse

piezeoelectricty
d′ij (6x3) Ej (elec. field) ei (strain)

tensor properties of rank 4
Elasticity sij (6x6) σj ei

Table 6.1: Some symmetry-related properties.

6 Other Symmetry-Related Constitutive Relation-
ships

Elasticity is just one of many properties that relate some sort of field (like
stress) to a response (like the strain). A range of other properties also exist,
with different properties defined by the same sort of symmetry relationships
described above. Some of these are listed below in Table 6.1. A symmetry
map that relates the appropriate property coefficients for these different cases
is shown in Figure 6.1. Here we show 3 of these symmetry maps correspond-
ing to 3 of 32 symmetry classes for materials. These are discussed in more
detail in 361, but the concept is introduced here because it relates to the linear
elastic properties.
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isotropic

0
1
1
0
1
5

X

X
X

2

cubic (point group 432)

3
0
1
1
0
1
6

quartz (point group 32)

6
2
2
2
0
1
13

x -x -2x

Figure 6.1: Symmetry-property maps for 3 of the 32 point groups.
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7 CONTACT MECHANICS

r

z

rigid punch
 

Compliant Substrate

2a
undeformed

surface
 

Figure 7.1: Indentation if a soft surface with a rigid, flat-ended cylindrical punch
of radius a0.

7 Contact Mechanics

In a simple tensile test involving a sample with a uniform cross section, the
stresses and strains are both uniform throughout the entire sample. In almost
any real application where we care about mechanical properties, this is not the
case however. A simple example of this is the case where we press a rigid,
cylinder into s soft, compliant material as shown in Figure 7.1.

7.1 Sign conventions

Sign conventions have a tendency to lead to confusion. This issue is particu-
larly problematics in contact mechanics because compressive loads are consid-
ered to be positive, but a compressive stress is negative. Here’s a summary of
the sign conventions relevant to our treatment of contact mechanics:

• P (force): a positive force is compressive

• δ (displacement): a positive displacement is compressive

• σ (stress): a positive stress is tensile

• e (strain): a positive strain is tensile

In order not to get too hung up in issues related to the sign, we definePt and δt
as the tensile loads and displacements:

Pt = −P
δt = −δ

(7.1)
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2a

rigid substrate

rigid
cylinder

compliant
layerh

Figure 7.2: Flat punch contact geometry. For an elastic half space, h → ∞.

7.2 Flat Punch Indentation

(Note: Many of issues presented here are discussed in more detail in a pub-
lished review article: see ref.[7]).

Consider a flat-ended cylindrical punch with a radius of a in contact with an-
other material of thickness, h, as shown schematically in Figure 7.2. The ma-
terial being indented by a punch rests on a rigid substrate. We are interested
in the compressive force, P, that accompanies a compressive displacement, δ,
applied to the indenter.

7.2.1 Flat Punch: Approximate Result for an elastic half space.

For an elastic half space (h → ∞), the strain field under the indenter is nonuni-
form. The largest strains are confined to a region with characteristic dimen-
sions defined by the punch radius, a. We can get a very approximate expres-
sion for the relationship between the compressive load, P, and the compressive
displacement, δ from the following approximate concepts:

• The average strain in the highly deformed region of the sample must in-
crease linearly with δ. Because strain is dimensionless we need to divide
δ by some length scale in the problem to get a strain. For an elastic half
space with h = ∞ the only length scale in the problem is the punch ra-
dius, a. So the strain fields must depend on δ/a. We’ll take this one step
further and assume that δ/a is an average in a region of volume ≈ a3

under the punch:

eavg = −δ/a (7.2)

• The average contact stress, σavg under the punch can be quantitatively
defined by dividing the compressive load by the stress:

σavg = −P/πa2 (7.3)
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• An approximate relationship between P and δ is obtained by assuming
that the stress and strain are related through the elastic modulus, i.e.
σavg = Eeavg. Using the equations above for the compliance, C0:

C0 ≡ δ

P
≈ 1

πEa
(7.4)

7.2.2 Flat punch - Detailed Result

In a more general situation both of the contacting materials (the indenter and
the substrate) may deform to some extent, so the compliance depends on the
properties of both materials. If the materials have Young’s moduli of E1 and
E2 and Poisson’s ratios of ν1 and ν2, then the expression for C0 is:

C0 ≡ δ

P
=

δt

Pt
=

1
2Era

(7.5)

where Er is the following reduced modulus:

1
Er

=
1 − ν2

1
E1

+
1 − ν2

2
E2

(7.6)

Note that for a stiff indenter, (E2 ≫ E1) we have Er = E1
1−ν2

1
. This is the plane

strain modulus that appears in a variety of situations, which we derive below.

7.2.3 Plane strain modulus.

The plane strain modulus, Er, describes the response of a material when it
cannot contract in one of the directions that is perpendicular to an applied
tensile stress. It’s easy to derive this by using the compliance matrix for an
amorphous material, which must look like this;


e1
e2
e3
e4
e5
e6

 =
1
E


1 −ν −ν 0 0 0
−ν 1 −ν 0 0 0
−ν −ν 1 0 0 0
0 0 0 2 (1 + ν) 0 0
0 0 0 0 2 (1 + ν) 0
0 0 0 0 0 2 (1 + ν)




σ1
σ2
σ3
σ4
σ5
σ6


(7.7)

In writing the compliance matrix this way, we have used the fact that Young’s
modulus is 1/s11 and the Poisson’s ratio is −s12/s11, so we have s11 = 1/E
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and s12 = −ν/E. Suppose we apply a stress in the 1 direction, and require that
the strain in the 2 direction is 0. This requires that a non-zero stress develop in
the 2 direction. If we assume that σ3 = 0, we have:

e2 =
−ν

E
σ1 +

σ2

E
(7.8)

If e2 is constrained to be zero, we have:

σ2 = νσ1 (7.9)

Now we can put this value back into Eq. 7.7 and solve fore1:

e1 =
1
E

(
σ1 − ν2σ1

)
(7.10)

The plane strain modulus relates σ1 to e1, which for the case assumed above
(e2 = 0) gives:

Er =
σ1

e1
=

E
1 − ν2 (7.11)

7.3 Flat Punch Detachment and the Energy Release Rate

If adhesive forces cause the punch to stick to the substrate, we can use fracture
mechanics to understand the force required for detachment to occur. The situ-
ation is as shown in Figure 7.3 for a flat-ended cylindrical punch with a radius
of a0. The surface profile of the substrate (assumed in this case to be an elastic
half space, i.e., h = ∞) is given by the following expression[8]:

uz = (2δt/π) arcsin (a/r) (7.12)

where δt is the applied tensile displacement and a is the actual radius of the
contact area between the punch and the substrate. In Figure 7.3 we compare
the shapes of the surface for the following two cases:

• a = a0: this is the initial contact condition, where the substrate is in
contact with the full surface of the indenter.

• a = a0/2: the contact radius has been reduced to half its initial value.
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2a
0

r
z

a=a
0

a=0.5a
0

rigid punch
 

Compliant Substrate

Figure 7.3: Surface profile under a flat punch, from Eq. 7.12.

The decrease in a from a0 to a0/2 is accompanied by a decrease in the stored
elastic strain energy, and this strain energy is what drives the decrease in the
contact area. While it may not be immediately obvious from Figure 7.3, the
detachment problem is actually a fracture mechanics problem. This is because
the edge of the contact can be viewed as a crack, which grows as the con-
tact area shrinks. In the following section we describe a generalized energy
based approach to for quantifying the driving force for the contact area to de-
crease before applying this approach to the specific problem of a flat cylindrical
punch.

7.3.1 Energy Release Rate for a Linearly Elastic Material

Specifying the stress field is the same as specifying the stored elastic energy.
Fracture occurs when available energy is sufficient to drive a crack forward,
or equivalently in our punch problem, to reduce the contact area between the
punch and the substrate. To begin we define the following variables:

• W= work done on system by external stresses

• Uel= elastically stored energy

• W − Uel= energy available to drive crack forward.

The energy release rate, G, describes the amount of energy that is used to move
a crack forward by some incremental distance. Formally it is described in the
following way:

G =
d

dAc
(W − Uel) (7.13)
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where Ac is the crack area. Fracture occurs when the applied energy release
rate exceeds a critical value characteristic of the material, defined as the critical
energy release rate, GC. The fracture condition is therefore:

G = Gc (7.14)

The lowest possible value of Gc is 2γ where γ is surface energy of the material.
That’s because the minimal energy to break a material into two pieces is the
thermodynamic energy associated with the two surfaces. Some typical values
for the surface energy of different materials are listed below (note that 1 mJ/m2

= 1 erg/cm2 = 1 dyne/cm).

• Polymers: 20-50 mJ/m2 Van der Waals bonding between molecules

• Water: 72 mJ/m2 Hydrogen bonding between molecules

• Metals:≈1000 mJ/m2 Metallic bonding

We can derive a simple expression for the energy release rate if we assume
that the material has a linear elastic response. Consider, for example, an ex-
periment where we apply a tensile force, Pt, to a sample, resulting in a tensile
displacement, δt, as illustrated in Figure 7.4a. If the material has a linear elas-
tic response, the behavior is as illustrated in Figure 7.4. Suppose that the crack
area remains constant as the material is loaded to a tensile force Pt. The sample
compliance, C, is given by the slope of the displacement-force curve:

C =
dδt

dPt

∣∣∣∣
Ac

(7.15)

Now suppose that the crack area is increased by an amount dAc while the load
remains fixed at Pt, i.e. the system moves from point 1 to point two on Figure
7.4b. This increases the compliance by an amount dC, resulting in correspond-
ing increase in the displacement of PtδC. If we now unload the sample from
point 2 back to the origin, the slope of this unloading curve is given by the
enhanced compliance, C + δC. At the end of this loading cycle be have put
energy into the sample equal to the shaded area in Figure 7.4b. This is the total
work done on the system by the external stresses (W in Eq. 7.13), and given by
the following expression:

δW =
1
2

P2
t δC (7.16)
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Figure 7.4: Derivation of the compliance expression forG.

Because the sample at the beginning an end of this process is unstrained, we
have Uel =0. We can now take the limit where δAc becomes very small to
replace δW/δC with the derivative, dW/dC to obtain:

G = lim
δAc→0

δW
δAc

=
P2

t
2

dC
dAc

(7.17)

7.3.2 Stable and Unstable Contact

Two different behaviors are obtained as two contacting materials are sepa-
rated, depending on the relationship between G and the contact area A. These
behaviors are referred to as stable contact (dG/dA > 0) and unstable contact
(dG/dA < 0). The difference between these behaviors is illustrated in Fig-
ure 7.5, and can be understood by considering two surfaces that are initially
brought into contact to establish a contact area, A0. We then increase the ten-
sile load, Pt, thereby increasing the applied energy release rate. As the tensile
load and the corresponding tensile displacement are increased, G increases un-
til it reaches the critical value, Gc. The tensile load at this point is defined as
the critical load Pc, and is the load at which A begins to decrease. We fix the
tensile load at Pc and observe one of two possible behaviors:

Unstable Detachment: If dG/da < 0, a decrease in A gives rise to an increase
in G, and the contact is unstable, so that the indenter rapidly detaches from the
indenter once a starts to decrease.

Stable Detachment: If dG/dA > 0, a decrease in a corresponds to a decrease
in G. In this case the contact is stable, and the load (or displacement) must be
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Figure 7.5: Illustration of stable contact, where Pt must increase continuously in
order for the contact area to continue to decrease, and unstable contact, where the
contact area reduces rapidly to zero as soon as a critical tensile load is attained.

increased further to continue to decrease the contact area. Detachment in this
case occurs gradually as the load continues to increase.

7.3.3 Application of the Griffith Approach to the Flat Punch Problem

The edge of the contact is a crack, which advances as a decreases. We can use
Eq. 7.17 for the energy release rate to obtain the following:

G = −P2
t

2
dC
dA

= − P2
t

4πa
dC
da

(7.18)

where we have assumed that the contact area remains circular, with A = πa2.
Not that A in this expression is the contact area between the indenter and the
substrate, and NOT the crack area. The negative sign in Eq. 7.18 emerges from
the fact an decrease in contact area corresponds to an equivalent increase in
the crack area, so we have:

dC
dA

= − dC
dAc

(7.19)

With C = C0 = 1/2Era (Eq. 7.5) we obtain the following expression for G:

G =
P2

t
8πEra3 (7.20)
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In some situations it is more convenient to express the energy release rate in
terms of the tensile displacement, δt. The most general expression is used by
using C = δt/Pt to substitute Pt with δt/C in Eq. 7.17:

G = − δ2
t

2C2
dC
dA

= − δ2
t

4πaC2
dC
dA

(7.21)

If the compliance is the value for an elastic half space (Eq. 7.5), then we obtain
the following expression for the energy release rate in terms of the displace-
ment:

G =
Erδ2

t
2πa

(7.22)

It is useful at this point to make the following general observations:

• In fracture mechanic terms the contact edge is an interfacial crack. An
advancing crack corresponds to a reduction in a, and a receding crack
corresponds to an increase in a.

• In general, G is determined by the applied load and the geometry.

• Gc is a property of the interface. The crack moves forward (a decreases)
when the value of G determined by the loading conditions exceeds Gc.
The detachment criterion is that the energy release rate, G, is equal to the
critical energy release rate, Gc, when the applied tensile force is equal to
the critical pull-off force, Pc:

Gc =
P2

c
8πEra3 (7.23)

This equation can be rearranged to give the following for the pull-off
force:

Pc =
(

8πEra3Gc

)1/2
(7.24)

• Detachment from of a flat punch from an elastic half space (a/h = 0)
is unstable for load controlled (constant Pt) OR displacement controlled
(constant δt) conditions. In each of these cases the contact radius, a, is
equal to the punch radius, a0, at the beginning of an experiment.
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Figure 7.6: Electron micrograph of Gecko setae.

7.3.4 Detachment: Size Scaling

An interesting aspect of Eq. 7.24 is that the pull-off force scales with a3/2,
whereas the punch cross sectional area scales more strongly with a (A = πa2).
This behavior has some interesting consequences, which we can obtain by di-
viding Pc by the punch cross sectional area to obtain a critical pull-off stress,
σc:

σc =
Pc

πa2 =

(
8ErGc

πa

)1/2
(7.25)

Note that the detachment stress increases with decreasing punch size.

Let’s put in some typical numbers to see what sort of average stresses we end
up with:

• Er ≈ 109 Pa (typical of glassy polymer)

• Gc ≈ 0.1 J/m2 (twice the surface energy of a typical organic material)

• a ≈ 100 nm (smallest reasonably possible value)

• σc ≈ 50 MPa

In order for stresses to be obtained, the pillars must be separated so that the
stress fields in substrate don’t overlap. This decreases the maximum detach-
ment stress from the previous calculation by about a factor of 10, so that the
largest stress we could reasonably expect is≈5 MPa. That’s still a pretty enor-
mous stress, corresponding to 500 N (49 Kg) over a 1 cm2 area. This is still
difficult to achieve, however, because it requires that the pillar array be ex-
tremely well aligned with the surface of interest, a requirement that is very
difficult to meet in practice. Nevertheless, improvements in the pull-off forces
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Figure 7.7: Schematic representation of an array of pillars in contact with a flat
surface.

2a
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Figure 7.8: A thin, compliant layer being indented with a rigid, cylindrical punch.

can be realized by structuring the adhesive layer, and this effect is largely re-
sponsible for the adhesive behavior of geckos and other creatures with highly
structured surfaces.

7.3.5 Thickness Effects

When the thickness, h, of the compliant layer between a rigid cylindrical punch
punch and a rigid, flat substrate decreases, the mechanics change in a way that
makes it more difficult to pull the indenter out of contact with the compliant
layer. For the geometry shown in Figure 7.8 we can write the compliance of
the material in the following way:

C =
1

2Era
fC (7.26)
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For an elastic half space (h → ∞) fC = 1. The factor fC accounts for changes
in the compliance due to the decreased thickness of the layer. In general it de-
pends on Poisson’s ratio for the compliant layer and the confinement ratio, a/h
(the ratio of the punch radius to the thickness of the layer). For an incompress-
ible compliant layer with ν = 0.5 the following expression for fC provides an
excellent approximation to the behavior of the compliance on the aspect ratio,
a/h:[7]

fC =
[
1 + 1.33 (a/h) + 1.33 (a/h)3

]−1
(7.27)

The behavior of fC as a function of a/h is plotted in Figure 7.9. A series of
geometric correction factors can be derived from this expression for fC. The
first of these is a correction factor for the compliance of the energy release rate
expression with the tensile load, Pt, as the independent variable. In this case
we use Eq. 7.18 to get write the expression for the energy release rate in the
following form:

G = − P2
t

4πa
dC
da

=
P2

t
8πEra3 fGp (7.28)

Here fGp accounts for deviations in the compliance derivative due to the con-
finement effects, in this case determined by the ratio between the actual value
of dC/da and the value of this quantity for a/h = 0:

fGp =
dC
da

/
dC
da

∣∣∣∣
a/h=0

(7.29)

Finally, we can use the the fact that Pt = δt/C to get a similar expression for G
in terms of the tensile displacement, δt:

G =
Erδ2

t
2πa

fGδ (7.30)

In this case fGδ includes the dependence on a/h of both the compliance and
it’s derivative with respect to a. This dependence is evident from Eq. 7.21,
where G (δt) is seen to be proportional to dC/da and is inversely proportional
to C2. The a/h dependence of dC/da is accounted for by fGp, and the a/h
dependence of C is accounted for by fC, so we obtain the following for fGδ:

fGδ =
fGp

f 2
c
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Figure 7.9: Geometric correction factors for the flat punch geometry (generated
with python code given as example 3 in the appendix).

The confinement functions fGp and fGδ are both equal to one for a/h = 0
and are plotted as a function of a/h for ν = 0.5 in Figure 7.9. A practical
consequence of the decrease in fGp with decreased h is that a larger tensile force
is required in order to remove the cylinder from its contact with the compliant
layer. With a small value of fGp, a larger tensile load needs to be applied in
order for G to exceed the critical energy release rate, Gc.

7.4 Contact of Paraboloids

7.4.1 Non-Adhesive Case

Suppose that the indenter is not flat, but has a parabolic profile that can be
described by the following expression:

z = Apr2 (7.31)

Here z is the vertical distance from the apex of the parabola, r is the radial dis-
tance from symmetry axis for the paraboloid and Ap is a constant that defines
the shape of the paraboloid. A sphere has a parabolic shape near the apex,
which can be seen by considering the equation for a sphere of Radius R that
has it’s center at r = 0, z = R (see Figure 7.10):

r2 + (z − R)2 = R2 (7.32)

Solving Eq. 7.32 forz gives:
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δ
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Figure 7.10: Non-adhesive contact of a rigid, parabolic indenter into an elastic
material.

z = R
(

1 ±
√

1 − (r/R)2
)

(7.33)

For small x,
√

1 − x ≈ 1 − x/2, so for r ≪ R we have:

z =
r2

2R
(7.34)

where we have taken the solution with the smaller value of z, corresponding to
the bottom of the sphere. From a comparison of Eqs.7.32 and 7.34, we see the
paraboloid is a good approximation for the shape of a sphere, with the sphere
radius given by 1/2Ap. For this reason we use R instead of A to character-
ize the parabolic shape, since the results can be applied to contact of spheres,
provided that the the contact dimensions are much smaller than R. Generally
everything works well as long as r/R < 4.

The compressive a rigid parabolic indenter into the surface of the material (δh
in Figure 7.10) is given by the following expression:

δh = a2/R (7.35)

Note that this is a completely geometric relationship that does not depend on
the modulus of the material that is being indented. The compressive force
required to establish a contact radius of a is referred to as Ph, and is given by
the following expression:

Ph =
4Era3

3R
(7.36)

We can use Eq. 7.35 to substitute for a and obtain a relationship between Ph
andδh:
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Ph =
4Er

3
R1/2δ3/2

h (7.37)

The assumption here is that there is no adhesion between the indenter and the
substrate, i.e., G = KI = 0. The fact that there is no stress concentration at
the interface is consistent with the fact that the slope of the surface profile of
the compliant material is continuous at r = a. This surface profile is plotted in
Figure 7.10 and is given by the following expression:[8]

uz =
δ

π

{(
2 − (r/a)2

)
arcsin (a/r) + (r/a)

(
1 − (a/r)2

)1/2
}

(7.38)

7.4.2 Effects of Adhesion on Contact

The easiest way to understand the effect of adhesion on the contact between
a parabolic is to consider a hypothetical situation where we turn off the ad-
hesion and bring the indenter into contact with the surface, resulting in the
deformation illustrated in Figure 7.10. Now we we turn on the adhesion, and
begin retracting the indenter from the surface, maintaining a fixed projected
contact radius a. The situation for the case where we have retracted the tip to
the point where the tip apex is level with the undeformed surface (δt = 0) is
illustrated in Figure 7.11. The applied compressive load required to reach a
given contact radius is less than the value of Ph given by Eq. 7.36 (P < Ph).
Similarly, the compressive displacement required to reach a given contact ra-
dius is less than the value given by Eq. 7.35 (δ < δh) . These deviations from
δh and Ph are related by the system compliance, which for this geometry is C0
as given by Eq. 7.5:

δ − δh
P − Ph

= C0 =
1

2Era
(7.39)

Combination of Eqs. 7.5 and 7.39 gives the following relationship between δ,
P and Er:

δ =
a2

3R
+

P
2Era

(7.40)

This expression is the one that needs to be used in order to obtain the reduced
modulus in situations where adhesive forces between the indenter and the
substrate modify the contact radius. It use requires that the contact radius
be measured independently. This is easy to do when the contact area is big
enough to visualize directly, but is a very difficulty problem for very small
contacts (as in atomic force microscopy) where the contact is too small to visu-
alize optically.
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(b)

2a

Figure 7.11: An example of the surface profile for adhesive contact for the case
where δt = 0.

Once we know the reduced modulus of the system, we can obtain the energy
release rate. The expression for the energy release rate for curved object in
contact with surface in a way that is very similar to what we did for the flat
punch in Section7.3. The only difference is that in the absence of adhesion we
need to apply a compressive load, Ph (given by Eq. 7.36):

G = − (Pt + Ph)
2

2
dC
dA

=
(Pt + Ph)

2

8πEra3 (7.41)

This equation can be rearranged to give a3 as a function of the compressive
load, P (P = −Pt), to give an expression that was derived in 1971 by Johnson,
Kendall and Roberts [9] and commonly referred to as the JKR equation:

a3 =
3R
4Er

(
P + 3πGR +

(
6πGRP + (3πGR)2

)1/2
)

(7.42)

7.5 Indentation with Berkovich Trips

Parabolic tips are often used in measurements of adhesion or of the elastic
properties of materials. For Hardness measurements tips with sharp corners
are more commonly used. One example is the Berkovich tip shown in Figure
7.12.

The hardness, H, of a material is given by the ratio of the load to the pro-
jected contact area of the non-recoverable indent made in the material by the
indenter. In our case we obtain the hardness from the maximum load,Pmax (il-
lustrated in Figure 7.13), and from the corresponding projected area, A, of the
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Figure 7.12: Geometry of a Berkovich tip commonly used in indentation experi-
ments. The angle, a, is 65.35◦ for a standard Berkovich tip.

hardness impression:

H =
Pmax

A
(7.43)

The projected area is related to the contact depth, δc, by a relationship that
depends on the shape of the indenter[10]. For a Berkovich tip the appropriate
relationship is:

A = 24.5δ2
c (7.44)

The procedure for determining the contact depth was developed by Oliver and
Pharr, where the following expression is used to estimate the contact depth:

δc = δmax − 0.75
Pmax

S
(7.45)

where δmax is the maximum penetration depth of the indenter tip and S is the
contact stiffness, determined experimentally as the initial slope of the linear
portion of unloading curve (see Figure 7.13). From the measured values of S,
Pmax and δmax, we use Equations 7.44 and 7.45 to determine A. The reduced
modulus is then obtained from the following expression for the contact stiff-
ness, assuming a value for the contact stiffness that is the same for a circular
contact of the same area:

S =
2√
π

Er
√

A (7.46)
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Figure 7.13: Typical load-displacement curve for indentation of the polyester resin
used to embed the paint samples, labeled to illustrate the values ofPmax,hmax andS.
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Figure 8.1: Typical generic temperature behavior at different temperatures.

8 Fracture

The stress-strain behavior for a many material can exhibit a range of phenom-
ena, depending on the temperature. This is particularly true of many poly-
mers, which can show the range of behaviors in a uniaxial tensile test shown
in Figure 8.1. While not all of these behaviors are necessarily observed in the
same material, the following general regimes can often be identified, based on
4 different temperature regimes (T1, T2, T3 and T4).

• T1: Brittle behavior. This is generally observed at sufficiently low tem-
peratures.

• T2: Ductile behavior (yield before fracture)

• T3: cold drawing (stable neck)

• T4: uniform deformation

Here we are concerned with brittle behavior(T1), or in some cases situations
where there is a small degree of ductility in the sample (T2).. There are two
equivalent approaches for describing the fracture behavior. The first of these is
the energy based approach described in the previous section, where an existing
crack in a material grows when the applied energy release rate is larger than
some critical value. In this section we explore the second approach, where
characteristic stress field in the vicinity of a crack exceeds some critical value.

8.1 Fracture Modes

Different fracture modes are defined by the relationship between the applied
stress and the crack geometry. These are illustrated schematically in Figure
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Mode I: 
Opening

Mode II: 
In-plane shear

Mode III: 
Out-of-plane shear

Figure 8.2: Fracture Modes .

8.2 Fracture of a homogeneous material fracture generally occurs under Mode
I conditions, and this is the most important condition. Mode II conditions,
where a shear stress is applied in the direction perpendicular to the crack front,
is often important for interfacial fracture, including the adhesive bonding of
materials with different properties. Mode III is generally not important for
our purposes.

8.2 Stress Concentrations

In the previous section on contact mechanics we introduced the concept of
the energy release rate, G, which can be viewed as the driving force for crack
propagation. Failure occurs when G exceeds a critical value, Gc. This energy-
based approach was originally formulated by Griffith, and is referred to as the
Griffith model for this reason. We can also describe the driving force for crack
propagation in terms of the detailed stress field in the vicinity of the tip of a
propagating crack. This approach was developed by Irwin, and is referred to
here as the Irwin model. The key concept here is that stresses are enhanced, or
’concentrated’ in the vicinity of a defect like a crack. The easiest way to start
thinking about this is to look at the nature of the stress distribution around a
circular hole in a two-dimensional plate (Figure 8.3). A stress is a force per
unit area, so we can imagine dividing up the stress into individual force lines,
which are equidistant when the stress is uniform. Near a defect the lines of
force are closer to one another, indicating that the stress is higher in this area.
The maximum tensile stress at the sides of the hole is three times the average
applied stress.

For an ellipse of with axis ac perpendicular to the applied stress and axis bc
parallel to the applied stress (see Figure 8.4), the maximum stress in this case
is given by the following expression:

σmax = σ0

(
1 + 2

ac

bc

)
(8.1)
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Figure 8.3: Force lines around a circular defect.

Note that we recover the behavior described above for a circular whole, where
ac = bc and σmax/σ0=3. We can also write this in terms of the radius of curva-
ture of the ellipse, ρc, at the point of maximum stress:

ρc =
b2

c
ac

(8.2)

Combination of Eqs. 8.1 and 8.2 gives:

σmax = σ0

(
1 + 2

√
ac/ρc

)
(8.3)

We are usually interested in very sharp cracks, where ac/ρc ≫ 1. In this case
we can ignore the factor of 1 in Eq. 8.3 and we get the following proportional-
ity:

σmax ∝ σ0
√

ac (8.4)

This combination of parameters, with the applied stress multiplied by the
square root of the crack length, plays a very important role in fracture me-
chanics, as we describe in more detail below.

8.3 Stress Intensity Factor

Consider a planar crack in the x-z plane, as shown conceptually Figure 8.5. The
stress in the vicinity of the crack tip can be expressed in the following form:

σ =
K√
2πd

f (θ) (8.5)

where K is the stress intensity factor, d is the distance from the crack tip and
f (θ) is some function of the angle θ that reduces to 1 for the direction directly
in front of a crack (θ = 0). Different functional forms exist for f (θ) for the
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Figure 8.4: Elliptical crack with a crack tip radius of curvature,ρc.

(a)

x

y

z

(b)

 2

1

θcrack (length = a)

Figure 8.5: Cartesian (a) and polar (b) coordinate axes use d to define stresses in
the vicinity of a crack tip.

different stress components σxx, σyy, etc. The detailed stress fields depend on
the loading mode (Mode I, II or II, or some combination of these), and the
corresponding stress fields are specified by the appropriate value of K (KI for
mode I, KI I for mode II or KI I I for mode III).

Mode I loading

The stresses in the vicinity of a mode I crack are given by the following[11]:

 σ11
σ22
σ12

 =
KI√
2πd

cos
θ

2

 1 − sin θ
2 sin 3θ

2
1 + sin θ

2 sin 3θ
2

cos 3θ
2 sin θ

2

 (8.6)

This compact notation is used to specify the three relevant values of f (θ) . For
example, for σ11 we have the following:

σ11 =
(

KI/
√

2πd
)

cos (θ/2)
(

1 − sin
θ

2
sin

3θ

2

)
(8.7)
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Figure 8.6: An internal crack in a homogeneous solid.

These expressions assume that the crack tip is very sharp, with a very small
radius of curvature,ρc. If d is comparable to ρc, these equations no longer ap-
ply. Consider for example, the presence of an internal crack of length ac and
radius of curvature ρc in a thin sheet of material, shown schematically in Fig-
ure 8.6. In this case the stress at the crack edge is σmax as given by Eq. 8.3. An
assumption in the use of Eq. 8.6 is that the stresses are substantially less than
σmax. In other words, K describes the stress field close to the crack tip, but still
at distances away from the crack tip that are larger than the crack trip radius
of curvature, ρc.

The mode I stress intensity factor for this geometry is given by the applied
stress, σ0 and the crack length ac:

KI = σ0
√

πac (8.8)

For values ofd that are substantially larger thanρc but smaller thanac, we can
determine the stresses from Eq. 8.6, withKI as given by Eq. 8.8.

Mode II loading

For mode II loading the crack tip stress fields are given by the following set of
expressions[11]:

 σ11
σ22
σ12

 =
KI I√
2πd


− sin θ

2

(
2 + cos θ

2 cos 3θ
2

)
sin θ

2 cos θ
2 cos 3θ

2
cos θ

2

(
1 − sin θ

2 sin 3θ
2

)
 (8.9)

It is generally difficult to determine KI I in a straightforward way, and finite
element methods must often be used to determine it for a given loading condi-
tion and experimental geometry. Once KI I is known, the crack tip stress fields
can be obtained from Eq. 8.9.
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Mode III loading

While mode III loading is often encountered in practical applications, it is gen-
erally avoided in experiments aimed at assessing the fracture behavior of ma-
terials, and is not considered further in this text.

8.4 Fracture condition

In the stress-based theory of fracture, the material fails when the stress inten-
sity factor reaches a critical value that depends on the material. For mode I
loading, we refer to this critical stress intensity factor as KIC. Setting σ0 to the
fracture stress, σf , and setting KI to KIC in Eq. 8.8 gives:

KIC = σf
√

πac (8.10)

Rearranging gives:

σf = KIC/
√

πac (8.11)

So the fracture stress decreases as the flaw size, ac, increases. This is why a
material can appear to be fine, even though small cracks are present in the
material. The cracks grow very slowly, but when the reach a critical size for
which Eq. 8.11 is satisfied, the material fails catastrophically.

The fracture toughness, KIC has strange units - a stress multiplied by the
square root of a length. In order to understand where this characteristic stress
and the characteristic length actually come from, we need to consider the ac-
tual shape of the crack tip. Using Eq. 8.3 we see that the maximum stress in
front of the crack tip, σ

f
max , at the point of fracture is:

σ
f
max ≈ 2σf

√
ac/ρc (8.12)

where we have assumed that
√

ac/ρc ≫ 1, so that we can ignore the extra
factor of 1 in Eq. 8.3. Now we can use Eq. 8.10 to substitute KIC for σf . After
rearranging we get:

KIC ≈ σ
f
max

√
π

2
√

ρc ≈ σ
f
max

√
ρc (8.13)

This expression is really only valid for a crack tip with a well-defined radius of
curvature, which is often not the case. Models that aim to predict and under-
stand the fracture toughness of materials are all based on understanding the
details of the yielding processes very close to the crack tip, and the resulting
crack shape. We’ll return to this issue later. For now we can summarize the
stress-based approach fracture mechanics as follows:
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• With the exception of a very small region near the crack tip, all of the
strains are elastic.

• There is a very small plastic zone in the vicinity of a crack tip, with a
characteristic dimension,ρ that is determined by the details of the way
the material plastically deforms.

• Fracture occurs when the stress field defined by KI reaches a critical
value.

8.5 General relationship between K and G

The stress intensity factor and the energy release rate are related to one another
through the following expression:

G =
K2

I + K2
I I + K2

I I I
Er

(8.14)

Here Er is the reduced modulus that is slightly different for plane stress and
plane strain conditions:

Er = E (Plane stress conditions)
Er =

E
1−ν2 (Plane strain conditions) (8.15)

Plane stress conditions generally apply for very thin samples, whereas plane
strain conditions apply for thick samples, and also for the axisymmetric punch
problems that we have discussed earlier in this text.

The fact that G ∝ K2
I for a mode I fracture experiment is illustrated in Figure

8.7, which we use to show the relationship between stress and stored elastic
energy for an elastically deformed sample. The energy input to the sample up
to the point of fracture, which we refer to asU f , is the area under the stress
strain curve:

U f =
1
2

σf e f =
1
2

σ2
f

Er
(8.16)

The stress intensity factor, KI at the fracture point is proportional to the stress,
σf , and the strain energy release rate, G, at the point of failure is proportional
to the total stored elastic energy, U f . This means that the following propor-
tionality must hold:

G∝
K2

I
Er

(8.17)

This is consistent with Eq. 8.14, but we need to do a more detailed analysis to
get the prefactor exactly right.

72



8 FRACTURE 8.6 Some Specific Geometries

x

Figure 8.7: Schematic stress/strain curve for a brittle material in the presence of a
crack.

Figure 8.8: Double cantilever beam geometry.

8.6 Some Specific Geometries

8.6.1 Double cantilever beam geometry

The double cantilever beam geometry illustrated in Figure 8.8 is a common
test used to measure crack propagation in materials. It is commonly used to
measure the adhesion between two materials that have been glued together. It
consists of to beams, each with width, w, and thickness, t. The crack length, ac
in this geometry is the distance between the parts of the beam where the force
is applied and the beginning of the region of the sample where the two beams
are in contact with one another.

For the double cantilever beam geometry the compliance is given by the fol-
lowing expression:

C ≡ δt

Pt

=
8a3

c
Ewt3 (8.18)

The crack area, Ac is obtained by the crack length, ac by the width of the sam-
ple:
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Ac = wac (8.19)

So we have:

dC
dAc

=
1
w

dC
dac

(8.20)

We now combine Eqs. 8.18 and 8.20 to obtain the following for the energy
release rate:

G =
P2

t
2w

dC
dac

=
12a2

c P2
t

Ew2t3 (8.21)

At fixed load, G increases as the crack length increases - unstable geometry!

can use We Eq. 8.18 to substituteδt forPt and write the compliance in the fol-
lowing way.

G =
3δ2

t t3E
16a4

c
(8.22)

At a fixed displacement, crack will grow until G = Gc and then stop. This is a
better way to do the experiment.

8.6.2 Flat Punch Geometry: Thick Compliant Layer

For the flat punch case, the following analytic expression exists for the shape
of the normal tress distribution directly under the punch (the plane withz = δt
in Figure 7.3):

σzz

σavg
= 0.5

(
1 − (r/a)2

)−1/2
(8.23)

Here the average stress,σavg is defined as follows:

σavg ≡ P
πa2 (8.24)
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Note that σzz diverges at the edge of the punch (r = a). We know that this
must be the case because of the stress concentration that exists at the edge of
the punch. To get an expression for stress concentration,KI at this edge, we
first defined as the distance from the punch edge:

d ≡ a − r (8.25)

Substituting d for r in Eq. 8.23 gives:

σzz

σavg
=

1
2

[
2d/a − (d/a)2

]−1/2
(8.26)

The stress intensity factor describes the stress field near the contact edge,
where a/d is small. We can ignore the term involving the square of a/d to
obtain the following expressionσzz that is valid near the contact edge:

σzz

σavg
≈ 1

23/2

(
d
a

)−1/2
(8.27)

by comparing to Eq. 8.6 forKI we obtain the following:

KI =
1
2

σavg (πa)1/2 (8.28)

Now we can use the following equation to obtain the following expression
forG (assumingKI I = KI I I = 0):

G =
K2

I
2Er

=
πaσ2

avg

8Er
=

P2
t

8πEra3 (8.29)

This is the same result that we got above (see Eq. 7.20), so everything checks
out okay. Note that the extra factor of two in the relationship between G andKI
in Eq. 8.29 comes from the fact the punch is rigid, so it has no stored elastic
energy. Because elastic energy is stored only on one side of the interface, the
value of G for crack propagation at the interface with the rigid indenter (Figure
7.3) is half the value of G for a crack propagating through an elastic material
(Figure 8.5, for example).

8.6.3 Flat Punch Geometry: Thin Compliant Layer

Decreasing the thickness of the compliant layer also changes the distribution
of normal stresses in contact with the layer. These normal stresses are plotted
for different values ofa/h in Figure 8.10.
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Figure 8.9: Comparison of the full solution for the flat punch contact stresses (Eq.
8.23) with thed−1/2 singularity obtained fromKI (Eq. 8.28).
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Figure 8.10: Dependence of the stress distribution under a flat punch for different
values of the confinement ration,a/h.
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• Max. stress in center for thin, incompressible layers (ν = 0.5).

• Decrease in edge stress singularity (decrease KI) for thin layers.

Since for very thin layers failure does not initiate from the edge because the
driving force for this ’edge crack’ vanishes as h becomes very thin. Instead,
failure initiates from small defects within the central part of the contact zone
where σzz is the highest. The mode I stress intensity factor for a circular, inter-
nal crack of radius ac is given by the following expression:

KI =
2√
π

σzz
√

ac (8.30)

Note that the prefactor in this expression is slightly different than what is given
in Eq. 8.8 because of the different crack geometries. Eq. 8.8 is for a rectangular
crack and Eq. 8.30 is for a circular crack. The energy release rate for the circular
crack is given by using the relationship between KI and G valid for a mode I
crack at the interface between compliant and rigid materials (Eq. 8.29):

G =
K2

I
2Er

=
2acσ2

zz
πEr

(8.31)

8.7 Fracture Toughness of Materials

In the Griffith (energy-based) model of fracture, material fracture occurs when
the applied energy release rate, G, exceeds a threshold value, GC, which is
characteristic of the material. This value is called the critical strain energy
release rate, and is a measure of the fracture toughness of the material, just as
the critical stress intensity factor is a measure of the fracture toughness. The
critical values of K and G are related to one another through Eq. 8.14. For
mode I fracture, KI I = KI I I = 0, and this equation reduced to the following:

GIC =
K2

IC
Er

(8.32)

Note that we have added the subscript ’I’ to G to remind ourselves that this
number corresponds to mode I fracture condition.

Values of GC are a bit easier to understand conceptually than values of KIC,
sinceGc is simply the energy required to break a sample. We can obtain some
estimates of GC by making some assumptions about where energy goes. Typi-
cal values of Gc are as follows:

• GC = 2γ
(
≈ 0.1 J/m2) if only work during fracture is to break Van der

Waals bonds

77



8.7 Fracture Toughness of Materials 8 FRACTURE

Table 8.1: Typical fracture toughness values (plane strain) for different material.

Material E (GPa) KIC (MPa
√

m) GIC J/m2

Steel 200 50 12,000
Glass 70 0.7 7

High M polystyrene or PMMA 3 1.5 750
High Impact Polystyrene 2.1 5.8 16,000

Epoxy Resin 2.8 0.5 100
Rubber Toughened Epoxy 2.4 2.2 2,000
Glass Filled Epoxy Resin 7.5 1.4 300

• GC ≈ 1 − 2 J/m2 if only work during fracture is to break covalent or
metallic bonds across interface

• GC ≫ 1 J/m2 if fracture is accompanied by significant plastic deforma-
tion of the sample. For the whole fracture mechanics formulation we
are using to be valid, the zone of plastic deformation where this energy
dissipation is occurring should be small compared to the overall sample
size.

Actual values of GC are much larger than these values (see Table 8.1) because
a significant amount of plastic deformation occurs near the crack tip.

We can use numbers from Table 8.1 to say something about the size of the
plastically deformed zone in front of a crack tip. We know that in the elastic
region directly in front of a propagating crack, the stress scales as KI/

√
2πd,

where d is the distance in front of the crack tip. If the maximum stress is equal
to the yield stress, σy, then this the material must be yielded for values of r that
give a stress exceeding σy. A propagating crack has KI = KIC, so if the size of
the plastic zone is hp, we have:

σy ≈ KIC√
2πhp

(8.33)

Rearranging gives:

hp ≈
K2

I
2πσ2

y
≈ GIC

σy

E
2πσy

(8.34)

This formula is approximate because it neglects the fact that yielding of the ma-
terial actually changes the stress distribution. The details of what is going on
in the plastic zone depend on the materials system of interest. Below we give
a case study for what happens for some common amorphous, glassy polymers
(non-crystalline polymers deformed at temperatures below their glass transi-
tion temperature).
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8.8 Case Studies in Fracture

8.8.1 Case Study: Transformation Toughening of Zirconia

First of all, why do we care about a material like zirconia (ZrO2)? It makes a
pretty artificial diamond if we can get it in its cubic crystal form, but it is also
an important material in a certain class of fuel cells. Fuel cells are classified by
the type of electrolyte that enables ions to be transported between the anode
and cathode of the fuel cell. In a solid oxide fuel cell, the electrolyte is typically
zirconia, heated to a high temperature typically ∼ 1000 ◦C, in order to provide
sufficient mobility of the oxygen ions, which move through the electrolyte via
a vacancy diffusion mechanism. The electrolyte is part of composite structure,
in contact with the anodes and cathodes, and with multiple cells stacked in
series to give a structure of the sort shown in Figure 8.11b. Thermal stresses
arising as a result of the different thermal expansion coefficients for the differ-
ent elements can be substantial, and need to be managed appropriately.

e–
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Unused
Gases
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Fuel and

Water

Anode Cathode
Electrolyte

Electric Current

Air InFuel In

H2O

H2
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Figure 8.11: a) Schematic of a solid oxide fuel cell utilizing a zirconia solid elec-
trolyte [12]. b) Image of a fuel cell stack, with several fuel cells stacked in series
with one another.

An additional problem with the use of zirconia is that different phases are
present at equilibrium at different temperatures. In its pure form, zirconia has
three different crystal phases: a monoclinic phase at equilibrium at room tem-
perature, a tetragonal phase at equilibrium at between 1170 ◦C and 2370 ◦C,
and a cubic phase at equilibrium above 2370 ◦C. These structures are shown
schematically in Figure 8.12. The phases have different densities with the cubic
phase having the highest density (smallest volume for a given mass of mate-
rial) and with the monoclinic phase having the lowest density (highest volume
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per a given mass of material). Volume changes occurring during processing,
when the sample is cooled from high temperatures where the cubic phase is
stable, give rise to substantial cracking of the material, making pure zirconia
unprocessible. A common solution to this problem is to add an alloying ele-
ment that stabilizes the cubic phase to lower temperatures. Yttrium is a com-
mon alloying element, and can be added in its oxidized form (Y2O3,or Yttria),
to form yttria stabilized zirconia (YSZ).

Figure 8.12: Crystal structures of Zirconia (from ref. [? ]).

The phase diagram for the Yttria/Zirconia system is shown in Figure 8.13. A
typical composition has 8% of the Zr atoms replaced with Y. At room temper-
ature this composition consists of the cubic phase in equilibrium with a sub-
stantial volume fraction of monoclinic phase particles. In general, however, the
tetragonal phase particles formed at high temperature remain in the material
as metastable particles. When a crack begins to propagate through the mate-
rial, the tensile stresses in the vicinity of the crack transform these metastable
tetragonal particles to the higher-volume, monoclinic particles. The material
expansion of associated with this transformation reduces the stress field in
front of the crack as illustrated in Figure 8.14, resulting in a substantial tough-
ening of the material.

8.8.2 Tempered Glass

Glass tempering is a process that leaves the external surfaces of the material
in a state of compression. This compressive stress acts against the growth of
any defects that exist in the material. The net forces on a material at rest must
sum to zero, so if the external portion of the sample is in compression, the
internal portions of the sample must be in tension. All of these tensile and
compressive stresses store a lot of strain energy, so the sample will fracture in
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Figure 8.13: ZrO2/Y2O3 Phase Diagram (from ref. [13]).

dramatic fashion if a crack manages to make into the compressive region of the
sample. This effect is illustrated by “Prince Rupert’s drops”, which are formed
by rapidly quenching molten glass droplets by dropping them into water. For
an entertaining and useful description of tempered glass, see the following
video:

https://www.youtube.com/watch?v=xe-f4gokRBs

8.8.3 Fiber Composites

8.8.4 Nondestructive Testing of a Fiber Laminate Composite
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Figure 8.14: Illustration of the transformation toughening mechanism of Zirconia.

Figure 8.15: Comparison of tempered glass and float glass samples that have been
fractured. (from http://www.bharatsafety.com/tempered_glass.html).

Figure 8.16: Laminated safety glass.
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Figure 8.17: Schematic representation of crack prop-
agation through a fiber-reinforced composite. (from
http://www.aml.engineering.columbia.edu/ntm/level2/ch05/html/l2c05s02.html)

Figure 8.18: use of Composites in the Boeing 787 Dreamliner

Figure 8.19: Views of a carbon fiber/epoxy compos-
ite perpendicular (left) and parallel (right) to the fiber di-
rection.(from http://www.scielo.br/scielo.php?pid=S1516-
14392010000300022&script=sci_arttext).
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Figure 8.20: Laminate plies in a carbon fiber composite.

Figure 8.21: SEM image of failure of crack propagation in a carbon fiber composite
(left), and a corresponding schematic representation of the crack path (right).

Figure 8.22: Nondestructive evaluation of damage in a carbon fiber composite.
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9 Weibull Analysis of Failure

Failure of brittle materials is determined by the largest flaw size, since the
largest flaw size will have the largest value of K for a given applied stress. As
an example of the use of Weibull statistics, consider the adhesive transfer of a
thin layer of a material from a flat, flexible substrate to a rigid, curved indenter
as illustrated in Figure 9.1. The basic geometry of the experiment is illustrated
in Figure 9.1a, and consists of a thin, viscoelastic film that is coated on an elas-
tomeric substrate. A hemispherical glass indenter is brought into contact with
the film and is then pulled away from the surface. The system is designed so
that the adhesion of the film to the glass indenter is stronger than the adhesion
to the elastomeric substrate, the film will be transfered from the substrate to
the indenter. The process occurs by the sequence of steps illustrated in parts
b-e of Figure 9.1:

• b) A crack is nucleated at a defect site at the interface between the film
and the substrate at a region where the hydrostatic pressure is maxi-
mized.

• c) This crack propagates under the indenter as the material is the inden-
ter is pulled away from the substrate.

• d) Eventually the entire film in has detached from the substrate over the
region where it is contact with the indenter. The remainder of the film
begins to peel away from the substrate surface.

• e) The film breaks at the edge of the area of contact with the indenter.

Details of this experiment can be found in reference[14]. The most important
thing to keep in mind is that the whole transfer process is controlled by the
initial appearance of a cavity at the indenter/substrate interface (Figure 9.1b).
This happens when pmax, the maximum hydrostatic tension at the film/sub-
strate interface, reaches a critical value that we refer to as pcav. Qualitatively
we find that pcav is close to Esub, the elastic modulus of the substrate, but cav-
itation occurs for different values of pcav. The Weibull distribution for the
survival probability, Ps (the probability that cavitation has NOT occurred) is as
follows:

Ps = exp

[
−
(

pmax

pcav

)M
]

(9.1)

Here M is the Weibull modulus, which is a measure of the distribution of fail-
ure probabilities. We generally want M to be large, so that the distribution
stresses is very narrow. For example, if M → ∞, Ps = 0 for pmax > pcav and
Ps = 1 for pmax < pcav.
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Figure 9.1: Adhesive transfer of a thin, viscoelastic film.

We can take natural logs of both sides a couple of times to convert Eq. 9.1 to
the following:

ln [ln (1/Ps)] = M ln pmax − M ln pcav (9.2)

This means that we can obtain the Weibull modulus as the slope of a plot of
ln [ln (1/Ps)] vs. pmax. The procedure for obtaining Ps as a function of pmax is
as follows:

1. Start with a data set that includes the measured values of the critical
stress at which the sample failed. In our example this would be a list of
values of pmax at the point where the sample failed.

2. Organize this list from the lowest value of pmax to the highest value.

3. Use the list to obtain the survival probability, Ps, for each value of pmax.
The survival probability is the fraction of samples that did NOT fail for
the given value of pmax. For example, if our data set has 50 samples in
it then the survival probability for the lowest measured value of pmax
is 49/50. The survival probability for the next highest value of pmax is
48/50, etc. We do this for all of the samples except for the one with the
highest value of pmax, since a value of 0 for Ps would cause problems in
the analysis.

In our example the stress is expressed as local maximum in the hydrostatic
tension, pmax, and pcav is a characteristic value of pmax for which a substantial
fraction of samples have failed. From Eq. 9.1 we see that the survival proba-
bility is 1/e=1/2.72=0.37. A Weibull analysis can be applied in a range of sit-
uations, including tensile failure of brittle glass rods. In this case the Weibull
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analysis applies, with the tensile stress σ as the dependent variable, and with
a characteristic tensile stress, σavg for which the survival probability is 37%:

Ps = exp

[
−
(

σ

σavg

)M
]

(9.3)

The point of the Weibull analysis is to obtain an expression that can be sensibly
extrapolated to survival probabilities that are very close to 1. With exp (−x) ≈
1 − x for small x, and with Pf = 1 − Pf , we have the following expression for
failure probability, assuming Pf is low:

Pf ≈
(

σ

σavg

)M
(9.4)
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10 Toughening Mechanisms

Factors that increase the hardness or tensile strength (σts) of a material gen-
erally decrease the toughness, KIC, so that the possible values of these two
materials lie along a curve like the one shown in Figure 10.1. This type of re-
lationship exists a certain degree of yielding is necessary in order to increase
the characteristic crack tip radius of curvature, ρc (recall that KIC ∝

√
ρc as

described by Eq. 8.13. The mode I toughness of a material can be expressed in
terms of a critical stress intensity factor, KIC, or a critical energy release rate,
GC, which are related to one another through the following version Eq. 8.14:

GC =
KIC
Er

(10.1)

It is common to consider the intrinsic toughness and the extrinsic toughness
of a material. Extrinsic toughening is based on the modification of the stress
field in the region of a growing crack. We can describe it by dividing the macro-
scopic stress intensity factor,KI , into two parts,Ktip andKs:

KI = σ0
√

πa = Ktip + Ks (10.2)

Here Ktip describes the stress distribution very close to the crack tip in the
usual way. For example, the tensile stress directly in front of a crack tip is
given as:

σzz(d) =
Ktip√
2πd

(10.3)

The factor Ks describes a reduction in Ktip compared to KI because of other
internal stresses that are applied in some way to the sample in the vicinity of
the crack tip. We’ll consider two examples: transformation toughening and
crack bridging in fiber reinforced composites. In transformation toughening,
compressive stresses result from a phase transition in front of the crack tip to
a lower density (higher volume) phase, thereby accommodating some of the
strains in the stress field defined by KI , so that Ktip < KI (Ks > 0). The second
example is a conceptually similar crack bridging example, where fibers bridge
the crack, (much like craze fibrils in the polymer crazing example discussed
above).

10.1 Hydraulic Fracturing (Fracking)

https://www.youtube.com/watch?v=VY34PQUiwOQ
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10 TOUGHENING MECHANISMS 10.1 Hydraulic Fracturing (Fracking)

Figure 10.1: Schematic representation of toughness vs. tensile strength.

Figure 10.2: The hydraulic fracturing (fracking) process.
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Figure 11.1: Tensile testing sample and representative data for a ductile sample.

11 Yield Behavior

The yield point of a material corresponds to the onset of permanent deforma-
tion, originating for example from the movement of dislocations. The stress/s-
train curve for a simple tensile test is shown in Figure 11.1, with the tensile
yield stress, σy, corresponding to the onset of permanent, irreversible defor-
mation in the material. For most materials this corresponds to the onset of
non-linearity in the stress-strain curve (rubber is the exception, and that case
is discussed in more detail in 331). What we need is a generalized criterion
that can be used to determine the onset of yield for any stress state. These
yield criteria all focus on the importance of the shear stress.

11.1 Critical Resolved Shear Stress

The simplest criterion for the yield of a material is that the resolved shear
stress, τRSS, exceeds a critical value referred to simply as the critical resolved
shear stress, τCRSS. The resolved shear stress is obtained from the applied
stress and the orientation of the slip plane as illustrated in Figure 11.2. For a
single crystal the relevant resolved shear stress is the shear stress on acting on
the slip plane, in the direction of the Burgers vector. In a tensile experiment
it is given by the applied tensile stress, σ, the angle ϕ between the slip plane
normal and the tensile axis, and the angle λ between the tensile axis and the
slip direction:

τRSS = σ cos ϕ cos λ (11.1)

In other words, τRSS = τCRSS when σ = σy, where σy is the tensile yield
strength. Substituting τCRSS for τRSS and σy for σ in Eq. 11.1 and solving
for σy gives:
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Figure 11.2: Resolved shear stress.

σy =
τCRSS

cos ϕ cos λ
(11.2)

The factor cos ϕ cos λ is called the Schmid factor, and slip occurs along the slip
system that the largest value of this quantity. The sum of ϕ and λ must be at
least 90◦, and it can be shown that cos ϕ cos λ is maximized when ϕ = λ = 45◦,
in which case the yield stress is twice the critical resolved shear stress. We refer
to this value of the yield stress as the minimum value, σmin

y :

σmin
y = 2τCRSS (11.3)

Measured values of the critical resolved shear stress for different metals are
shown in Table 11.1.

For polycrystalline materials, the situation is more complicated, since all crys-
tal orientations will have a different value of the Schmid factor. In a polycrys-
talline material, each grain has a different value of the Schmid factor, so the
situation is more complicated. However, we can get a reasonable approxima-
tion by using an appropriate average value for the Schmid factor instead of
the maximum possible value that this value can have. We actually need the
quantity, M, which is the average of the reciprocal Schmid factor for all of the
grains in a material:

M =

〈
1

cos ϕ cos λ

〉
(11.4)

Here the average is taken over all possible grain orientations of the material.
The tensile yield stress is given by the following expression:

σy = MτCRSS =
M
2

σmin
y (11.5)
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Table 11.1: Shear moduli and values ofτcrss for different metals.

Material G (GPa) τcrss (MPa)
Silver 4.6 0.37

Aluminum 4.2 0.78
Copper 7.2 0.49
Nickel 12.2 3.2-7.35

Iron 13.2 27.5
Molybdenum 19 71.6

Niobium 5.8 33.3
Cadmium 3.8 0.57

Magnesium (basal slip) 2.8 0.39
Magnesium (prism slip) 2.8 39.2

Titanium (prism slip) 6.3 13.7
Beryllium (basal slip) 23.4 1.37
Beryllium (prism slip) 23.4 52

This value of M is typically between 2.7 and 3, so we end up with a yield stress
in a polycrystalline material that is between 35 and 50 percent larger than the
minimum possible value given by Eq. 11.3.

11.2 Yield Surfaces

The full stress state of a material is defined by the 3 principal stresses, σ
p
1 ,

σ
p
2 and σ

p
3 . The stress state of a material can therefore be specified on a 3-

dimensionsal space where the values of these 3 principal stresses are plotted
on three orthogonal axes. The yield surface is the surface in this space that
separates the stress states where yielding will occur from those where it will
not occur. Here we describe two of the most common yield surfaces, those
defined by the Tresca and Von Mises yield criteria.

11.2.1 Tresca Yield Criterion

The Tresca yield criterion is the simplest one in that we just assume that shear
occurs whenever the maximum shear stress in the sample exceeds some crit-
ical value value τc. In mathematical terms, yield occurs under the following
conditions:

∣∣∣σp
i − σ

p
j

∣∣∣
max

2
> τc (11.6)
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Figure 11.3: Cross sections of the Tresca and Von Mises yield surfaces at the σ
p
3 = 0

plane, and viewed down the hydrostatic line
(

σ
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1 = σ

p
2 = σ

p
3

)
.

where the ’max’ subscript indicates that we take the principal stress difference
(σp

1 − σ
p
2 , σ

p
2 − σ

p
3 or σ

p
1 − σ

p
3 ) with the largest magnitude. The yield stress,

σy, is typically measured in a uniaxial tensile experiment, where σ
p
2 = σ

p
3 =

0, and plastic yielding of the material occurs when σ
p
1 > σy. In a uniaxial

tensile experiment, the maximum shear stress is half the applied tensile stress,
so τcrit = σy/2.

11.2.2 Von Mises Yield Criterion

A more complicated yield criterion is that yield occurs when the Von Mises
stress, σe, exceeds some critical value. The Von Mises stress is given as follows:

σe =

√
2

2

√(
σ

p
2 − σ

p
1

)2
+
(

σ
p
3 − σ

p
1

)2
+
(

σ
p
3 − σ

p
2

)2
(11.7)

For uniaxial deformation, as in a simple compression or tensile test, yielding
occurs when σe > σy. The Tresca and Von Mises yield surfaces for a two di-
mensional stress state (σp

3 =0) are shown in Figure 11.3a. Yielding does not
occur inside the surface, but does occur outside the surface. Figure 11.3a is
one particular cross section through a 3d yield surface. Another representa-
tion is shown in Figure 11.3b, which shows the yield surface viewed along the
hydrostatic axis (σp

1 = σ
p
2 = σ

p
3 ) .

Exercise: The tensile yield stress of a materials is measured as 45 MPa by a
uniaxial tensile test.
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1. What will the shear stress of the material by if the materials yields at a
critical value of the Tresca stress?

2. How does your answer change if the material yields at a specified value
of the Von Mises stress?

Solution:

1. The shear yield strength prediction, according to the Tresca criterion, is
simply given by the maximum shear stress, at the yield point, which
for a uniaxial tensile test is σy/2 = 22.5 MPa.

2. Suppose the stress for the tensile experiment is oriented in the 3 direc-
tion, so at the yield point, σ

p
3 = σy and σ

p
1 = σ

p
1 = 0. Substitution

of these values into Eq. 11.7 gives σe = σy, as it should (the prefac-
tor of

√
2/2 was chosen to force this to be the case). Now suppose

that we apply a shear stress in the 1-2 plane, so we have σ
p
1 = τ,

σ
p
2 = −τ and σ

p
3 = 0. Putting these values into Eq. 11.7 gives σe =

√
3τ.

Rearranging to give an expression for τ, and taking σe = σy gives
τ = σy/

√
3 = 26 MPa.

11.2.3 Coulomb Yield Criterion

The Coulomb yield criterion is a modification of the Coulomb criterion that
takes into account that the critical shear stress will be modified by the normal
stress acting on the shear plane. We would expect a compressive normal stress
to increase the shear stress, whereas a tensile normal stress will decrease the
critical shear stress. If the critical shear stress varies linearly with the normal
shear stress we have the following:

τc = τ0
c − µσN (11.8)

Consider a sample that is subjected to a uniaxial compressive stress with a
magnitude of σ1 shown in Figure 11.4. According to the Coulomb yield crite-
rion (Eq. 11.8) yield will occur on the plane for which τ + µσN is maximized,
which means we need to maximize sin (2θ)− µ cos (2θ) to determine the plane
on which yielding will occur. We have:

d
dθ

(sin (2θ)) = µ
d
dθ

(cos (2θ))

Solution of this equation gives tan (2θ) = −1/µ. After a bit more trigonom-
etry, we get find that the yield condition is first met for θ = 45◦ + ϕ (and the
corresponding mirror plane about the y axis), with µ = tan (2ϕ).
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Figure 11.4: Normal stress and shear stress on a plane inclined by an angle θ with
respect to horizontal.

11.3 Localized Deformation

A material that obeys the strain hardening law of Eq. 11.18 will fail when a
portion of the sample becomes thinner than the remainder of the sample. The
overall behavior of the sample is a balance between the fact that the strain is
larger in this region, and can therefore support a larger true stress, but the
cross section is larger, so that a larger true stress is needed just to maintain
a constant force along the length of the sample. To understand how to think
about this we need to consider the relationship between the true stress and the
engineering stress.

Consider a sample that is being deformed in uniaxial extension, as illustrated
in Figure 11.5. A sample with an undeformed cross sectional area of A0 and
undeformed length of ℓ0 is stretched with a force, P. The engineering tensile
stress, σeng, is obtained by dividing the load by the undeformed cross section,
and the true tensile stress, σt is obtained by dividing the load by the actual
cross sectional area of the deformed sample:

σeng = P/A0 (11.9)

σtrue = P/A (11.10)

In general, the bulk modulus of a material is much larger than its yield stress,
so the applied stresses associated with yield phenomena are not large enough
to significantly change the volume. As a result, the sample deforms at constant
volume, so we have:

Aℓ = A0ℓ0 (11.11)
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Figure 11.5: Uniaxial tensile test.

The relationship between the true stress and the engineering stress is therefore
as follows:

σt = σengℓ/ℓ0 = σengλ (11.12)

11.3.1 Considére Construction

The Considére construction is a simple construction that can be used to deter-
mine the stability of regions in a sample at large tensile deformations. It can
be used in to distinguish between unstable and unstable necking of a sample,
illustrated schematically in Figure 11.6. We begin by considering a region of
the sample that has a slightly thinner cross section than the rest of the sample.
The true stress in this region of the sample will be higher than the rest of the
sample because we are dividing the applied load by a lower cross section . Two
things can happen at this point, the first possibility is that the larger stress in
this region of the sample leads to greater deformation, and the sample breaks
as the necked region begins to thin down. This is the unstable necking condi-
tion illustrated on the left side of Figure 11.6. In this case the maximum force,
P, applied to the sample is the force where the neck begins to form.

The second possibility is that the increased strain in the necked region leads to
substantial strain hardening, so that this region of the sample is able to support
the larger true stress in that region. Under the appropriate conditions the cross
section of the necked region will stabilize at a value that is determined by the
stress/strain relationship for the material. The sample deforms by ’drawing’
new material into this necked region, as illustrated on the right side of Figure
11.6.

To understand when stable or unstable necking occur, we begin by recognizing
that the onset of neck formation corresponds to a maximum tensile force that
the material is able to sustain. In mathematical terms:
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Initial Neck Formation Stable NeckUnstable neck

Figure 11.6: Schematic representation of stable and unstable necking of a sample
under tensile loading conditions.

dP
dλ

= 0 (11.13)

Since the engineering stress is the load divided by the undeformed cross sec-
tional area, which is a constant, we can write Eq. 11.13 as follows:

dσeng

dλ
= 0 (11.14)

We can rewrite this expression in terms of the true stress by recognizing that
σeng = σt/λ (see Eq. 11.12), from which we obtain:

λ
dσt

dλ
− σt = 0 (11.15)

which we rearrange to the following:

dσt

dλ
=

σt

λ
(11.16)

This condition is met when a line drawn fro the origin of a plot of σt vs. λ is
tangent to the curve.

11.3.2 Stable and Unstable Necking

Use of the Considére construction is illustrated in Figure 11.7, where we show
curves of the true stress vs. extension ratio for a material that does not form
a stable neck (part a) and one that does form a stable neck (part b). In part a
it is only possible to draw one line originating from the origin that is tangent
to the stress-strain curve (point A in Figure 11.7). A necking instability forms
when the true stress reaches this value, resulting in a thinned-down region of
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the sample. This region continues to thin down until the sample breaks. The
maximum engineering stress that the sample sees prior to failure is given by
the slope of the tangent line in Figure 11.7a.

In Figure 11.7b, it is possible to draw two lines from the origin that are tan-
gent to the curve, with tangent points labeled as A and B. The tangent at point
B represents a maximum in the applied force (the stress-strain curve lies be-
low the tangent line) and the tangent at point B represents a minimum in the
applied force (the stress-strain curve lies above the tangent line). At point B
the neck stabilizes. Additional material is drawn into the necked region with
a characteristic draw ratio that given by the value of λ at point B. The engi-
neering stress at which this drawing occurs is less than the engineering stress
required to form the neck in the first place. This means that the load during
the drawing process to form the stable neck is lower than the stress required
to form the neck in the first place. This phenomenon is generally observed
in glassy polymeric materials (T < Tg) or semicrystalline polymers for which
stable neck formation is observed.

dσt

dλ
=

σt

λ
(11.17)

11.3.3 Case Study - Power Law Strain Hardening

The following equation is often used to describe the behavior of a material
after the yield point:

σt = Ken
t (11.18)

where:

• σt= true stress (force over actual cross sectional area in a tensile test)

• et= true strain (ln (ℓ/ℓ0) = ln λ in a tensile test).

• K= strength coefficient (true stress at true strain of 1)

• n= strain hardening coefficient (dimensionless)

Limiting behavior: n = 1 is perfectly elastic behavior, whereas n = 0 corre-
sponds to perfectly plastic behavior. Actual values of n fall somewhere be-
tween these two extremes, and are listed in Table11.2 for a variety of metals.
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Neck Forms
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"Natural Draw Ratio"
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Figure 11.7: Considére construction for a material that does not form a stable neck
(a) and a material that does form a stable neck (b).

Table 11.2: Strain Hardening Coefficients for Various Materials (From Hertzberg,
Table 2.8).

Material Strain Hardening Coefficient
Stainless Steel 0.45-0.55

Brass 0.35-0.4
Copper 0.3-0.35

Aluminum 0.15-0.25
Iron 0.05-0.15
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11.3.4 Necking Instability in a Power-Law Strain Hardening Material

If we write the true stress appearing in Eq. 11.18 as ln λ, we have:

σt = K (ln (λ))n (11.19)

Differentiating with respect to λ gives:

dσt

dλ
=

nK (ln (λ))n−1

λ
=

nKen−1
t

λ

and then using Eq. 11.16 to equate dσλ/dλ toσ/λ gives the following:

nKen−1
t

λ
=

σ

λ
=

Ken
t

λ

We can see that this equation is only true when the following condition holds:

n = ϵt (11.20)

So a measurement of the strain where the necking instability is observed can
be used to determine the strain hardening exponent.
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Atom before twinning
Atom after twinning

C A B C A C B A

A C B A

FCC  (111)
twin boundary

Figure 12.1: Example of a series of twin boundaries in an FCC crystal (from
ref.[15], adapted with permission from Macmillan Publishers Ltd.).

12 Deformation Twinning

Deformation twinning is a mechanism of deformation in crystalline materials
that doesn’t involve dislocation motion. Instead, it involves the concerted,
simultaneous motion of may atoms to form a twin boundary in the material.
Twin boundaries were discussed in 316-1, and are low-energy, coherent grain
boundaries corresponding to a change in stacking sequence in an FCC lattice.
The easiest ones to visualize correspond to changes in the stacking sequence
of the close-packed layers in face centered cubic (FCC) and hexagonal close
packed (HCP) crystals. An example of a twin boundary in and FCC crystal is
shown in Figure 12.1.

A useful demonstration of deformation twinning is available from here: http:
//www.doitpoms.ac.uk/ldplib/acoustic/intro.php
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12 DEFORMATION TWINNING

Figure 12.2: Undeformed material (a) and deformed material after slip (b) and
deformation twinning (c).
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Figure 13.1: Schematic illustration of a Frank-Read source.

13 Strengthening Mechanisms in Metals

Yield in metals occurs by dislocation motion. This means that if we want to
increase the yield stress of a material we have two choices:

1. We can make a material with a very low dislocation density, thereby
eliminating dislocation as a yield mechanism.

2. We can do something to the material to make it more difficult for the
dislocations to move.

In almost all cases, we choose option two. This is because mechanisms exist
for dislocations to be created during the deformation of a bulk material. More
specifically, dislocations multiply when they are pinned in some way, as il-
lustrated by the representation of the operation of a Frank-Read dislocation
source in Figure 13.1. (See the 316-1 text to review Frank-Read sources if you
don’t recall the details.) As a result, even if we manage to create a material
with a very low dislocation density, a sufficient number of dislocations will
always be created once deformation starts. An exception to this rule is sin-
gle crystalline whiskers, which are so small that the dislocation density can
be reduced essentially to zero. This is because it is energetically favorable for
dislocations to move to the free surface of the material, maintaining a very low
density of dislocations in the material itself. Many of the details of dislocation
structure and the relationship to material deformation was covered in 316-2.
Our focus on this section is on the factors that control the stress required for
dislocations to move through a material. Our discussion is relatively brief, and
should be supplemented by the reading the corresponding Wikipedia articles
on the different strengthening mechanisms[16, 17, 18, 19], which are written at
an appropriate level of detail for 332.
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13.1 Review of some Dislocation Basics

The basics of dislocations are covered in 316-1. Here are the most important
concepts to remember and use:

1. Dislocations correspond to a discontinuity of the displacement field. This
continuity is quantified by the Burgers vector, b⃗.

2. Dislocations move along slip planes that contain both b⃗ and the disloca-
tion line.

3. When a dislocation exits the sample, portions of the sample on either
side of the slip plane are displaced by b⃗.

4. The energy per length of a dislocation, Ts, is proportional to Gb2, where b
is the magnitude of b⃗. This energy per unit length has the dimensions of
a force, and can be viewed as a ’line tension’ acting along the dislocation.

5. The resolved shear stress required to bend a dislocation through a radius
of curvature of r is Ts/rb.

6. Dislocations interact with each other through their stress fields (’like’ dis-
locations repel, ’opposite’ dislocations attract.

Strengthening schemes based on reducing the mobility of dislocations can be
divided into the following general categories, which we will discuss in more
detail below:

• Work hardening

• Grain boundary strengthening

• Solid solution hardening

• Precipitation hardening

13.2 Interactions Between Dislocations

Dislocations interact through the long range strain fields induced by the dislo-
cations. Consider two screw dislocations with Burgers vectors b⃗1 and b⃗2 that
separated by d. The stress at dislocation 2 due to the presence of dislocation 1
is given by the following expression:

τ⃗ =
G⃗b

2πd
(13.1)
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Figure 13.2: Interactions between screw dislocations of the same sign (solid line)
and opposite sign(dashed line).

We use a vector notation for the stress here to remind us that the force associ-
ated with the shear stress is directed along b⃗.

This stress induces a force on the dislocation, given by the following expres-
sion:

Fτ
s =

G⃗b2 · b⃗1

2πd
(13.2)

If b⃗1 and b⃗2 are pointing in the same direction, the force is positive and the
interaction is repulsive. If they are pointing in the opposite direction, the force
is negative (attractive). Because the force scales as 1/d it has a very long range.

We can also make a qualitative argument based on the energetics to see what
is going on. From Eq. 13.2 we see that E ∝ b2. If the dislocations have opposite
signs, the dislocation come together and the net b is zero. If they have the
same sign, then they form a total Burgers vector with a magnitude of 2b, and
an energy of 4b2. So the energy is twice as large as it was originally. The
energy as a function of separation must look the plot shown in Figure 13.2.
If the energy of each individual dislocation is E1 for d → ∞, then the total
dislocation energy at d = 0 is zero for dislocations of opposite sign and 4E1 for
dislocations of the same sign.

Screw dislocations are easy to think about because the stress field is axially
symmetric about the dislocation line, and the stress field is always pure shear.
We already know from our previous discussion of stress fields that edge dislo-
cations are more complicated. A simple limiting case involves two edge dislo-
cations on the same slip plane, since within the slip plane we are in a state of
pure shear. In this case the discussion from the previous section is still valid,
and we get the following expression for the interaction force:
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Figure 13.3: Overlapping stress fields for two adjacent dislocations of the same
sign.

Fτ
s =

G⃗b2 · b⃗1

2π (1 − ν) d
(13.3)

The expression is the same as the expression for the screw dislocations, with
the extra factor of 1 − ν.

If the two edge dislocations do not lie on the same slip plane the situation is
more complicated, but we can still make some qualitative arguments based
on the nature of the strain fields around the dislocations. Consider two edge
dislocations on glide planes that are separated by a distance h, as illustrated in
Figure 13.3. In this case the Dislocations begin to line up due to cancellation
of the strains in the regions where these strain field overlap. The tensile strain
induced below the upper dislocation is partially compensated for by the com-
pressive strain above the lower dislocation. As a result the dislocations move
along their respective glide planes so that they lie on top of one another.

Dislocations with the same sign repel each other when they are in the same
glide plane (see Figure 13.2), but they move toward each other so that they
line up on top of one another when they are in different glide planes (see Fig-
ure 13.3). The overall situation is summarized in Figure 13.4, which shows the
regions of attractive and repulsive interactions for the dislocations. These in-
teractions can be understood in terms of the edge dislocation stress field. The
different regions correspond to the different orientations of the shear stress.
The important aspect is the direction of the shear force (right or left, in the
blue boxes) acting on the top part of the each diagram showing the shear ori-
entation. This can be viewed as the shear force that is acting on the extra half
plane on the second dislocation, as a result of the stress field setup up by the
first dislocation. This second dislocation moves to the left or the right in re-
sponse to this force.

Dislocations can also interact with point defects or other atoms. The reason
for this is that point defects also distort the lattice, giving strain fields that
overlap with the strain field of a dislocation. This effect is easiest to visualize
for edge dislocations, as illustrated in Figure 13.5. Substitutional impurities
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Figure 13.4: Map showing the regimes where two edge dislocations move toward
one another with attractive interaction (-) or apart from one another with a repul-
sive interaction (+). One of the dislocations is at the origin, with ŝ pointing into
the plane of the figure. The other dislocation is assumed to have the same value
for ŝ and b⃗. Both dislocations move in glide planes that are perpendicular to the
y axis. These dislocations move toward each other if the second dislocation is lo-
cated within a region that is attractive (-), and apart from one another if the second
dislocation is located in a region that is repulsive (+).

Figure 13.5: Favored locations the segregation of substitutional impurities to the
core of an edge dislocation.

with different sizes than the majority component atoms can reduce the strain
fields surrounding the dislocation by moving to the appropriate region near
the dislocation. Large atoms will tend to substitute for atoms in regions where
the local strain is tensile, and small atoms will tend to substitute for atoms
in regions where the local strain is compressive. Interstitial impurities will
segregate to regions of tensile stress as well.

As a result of this impurity segregation, dislocations collect ’clouds’ of impu-
rity atoms. For a dislocation to move, it must either break away from this
atmosphere or move the impurity atoms along with it. The net result in either
case is an increase in the critical resolved shear stress, a process referred to as
solid solution strengthening.
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Figure 13.6: Qualitative relationship between strength and dislocation density.

13.3 Work Hardening

(Required supplementary reading:

Wikipedia article on work hardening[19]).

Work hardening originates from interactions between dislocations. Disloca-
tions impede the motion of other dislocations, so the multiplication of dis-
locations that occurs as a material is deformed results in a harder material.
The effect is illustrated in Figure 13.6, which shows the relationship between
the shear strength of a material and the dislocation density. In the absence of
dislocations, the strength approaches the maximum theoretical shear strength
of≈ G/6, implying a tensile strength of≈ G/12. The introduction of disloca-
tion reduces the strength of the material because the critical resolved shear
stress to required to move a dislocation in its slip plan is much less than
G/6. As more dislocations become available to introduce a macroscopic plastic
strain, the strength of the material goes down as shown in Figure 13.6. Above
some critical dislocation density, dislocations interact with each other through
their stress fields and the material becomes stronger as the dislocation density
increases. The dislocation density at which the strength is minimized is actu-
ally quite low. In typical materials the dislocation density is high enough so
that the material becomes stronger as it is deformed and the dislocation den-
sity increases. In other words, the typical range for actual density is in the
increasing part of the strength vs. dislocation density curve, as illustrated in
Figure 13.6.

13.4 Grain Boundary Strengthening

(Required supplementary reading:

Wikipedia article on grain boundary strengthening[16]).

Grain boundaries act as barriers to dislocation motion. As a result samples
with small grain sizes, which have more grain boundaries in a given volume of
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sample, have higher yield stresses than samples with large grain sizes (as long
as the grain size isn’t extremely small - in the range of tens of nanometers). The
Hall-Petch equation is commonly used to describe the relationship between
the yield strength, σy and the grain size, d:

σy = σi + kyd−1/2 (13.4)

Hereσi and ky are factors determined by fitting to experimental data. Note that
the Hall-Petch equation is based on experimental observations, and is not an
expression derived originally from theoretical considerations.

13.5 Precipitation Hardening

(Supplementary reading:

Wikipedia article on precipitation hardening[17]).

When a dislocation encounters a second phase particle it can either cut directly
through the particle and continue on its way through the matrix phase, or it
can bend around the particle, as shown for example in the illustration of the
Frank-Read source in Figure 13.1. We know from 316-1 bending mechanism is
going to require the larges shear stress when the particles are small, and close
together. If the particles are too close together, however, it may be easier for
the dislocation to move through the particle itself. The sheared particle has a
slightly larger surface area, and the extra energy required to create this surface
gives a contribution to the stress required to move the dislocation through
the particle, although this contribution to the stress is generally not a primary
contribution to the resolved shear stress.

13.6 Solid Solution Strengthening

(Required supplementary reading:

Wikipedia article on solid solution strengthening[18]).

Solid solution hardening is somewhat related to work hardening in that dislo-
cations are interacting by stress fields originating from defects in the material.
In work hardening these defects are other dislocations, whereas for solid so-
lutions the stress fields originate from the presence of either substitutional or
interstitial impurities in the material.
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14 HIGH TEMPERATURE CREEP

Figure 14.1: Absolute melting temperatures (K) for the elements.

creep
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x sample failure

(rupture)

Figure 14.2: Qualitative difference between creep behavior under constant load
and constant stress conditions.

14 High Temperature Creep in Crystalline Materi-
als

by ’high’ temperature for a metal, we generally mean temperatures above half
the absolute melting temperature, which we list below in Figure 14.1.

Typical creep response for a metal is shown in Figure 14.2. The easiest way to
do the experiment is under constant load conditions. Because the cross sec-
tional area of the sample decreases as the material deforms, the true stress
increases during a constant load creep experiment. If the experiment is done
under conditions where the load is reduced to maintain a constant true stress,
the creep rate does not increase as fast at the longer times. The increase in
the creep rate at long times for the constant load test can be attributed to the
increased true stress in the sample at the later stages of the creep experiment.
Failure of the sample during a constant load test is referred to as the creep
rupture point. The creep rupture time decreases with increasing temperature
and increasing applied engineering stress, as illustrated by the data for an iron
alloy in Figure 14.3.

Different creep regimes during an engineering (constant load) creep rupture
test are illustrated in Figure 14.4. At the beginning off the experiment the dislo-
cation density increases with increasing strain, the sample strain hardens, and
the strain rate decreases with time. This stage in the experiment is referred to
as stage I, or primary creep. Following this there is often a linear regime (stage
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Figure 14.3: Creep rupture data for an iron-based alloy.

II in Figure 14.4, referred to as secondary creep) where the strain rate and dis-
location density are constant. In this regime dislocations are being created and
destroyed at the same rate. The strain rate in this steady state regime is the
steady state creep rate, ϵ̇ss. Steady state creep data for TiO2 at different times
and temperatures are shown in Figure 14.5. The final stage in the creep exper-
iment is the tertiary regime, Regime III, where the disloction density is again
increasing, ultimately leading to the formation of voids in the sample and to
eventual fracture. In many cases the steady state creep regime corresponds to
the majority of the experiment. If this is the case, and the failure is independent
of the applied stress, then the creep rupture time will be inversely proportional
to the steady state creep rate. We’ll focus on the secondary, steady-state creep
regime in the following discussion.

The data in Figure 14.3 indicate that the effects of stress and temperature are
separable, with the same activation energy of 280 J/mol obtained for each of
the different stress levels. The overall steady state creep rate in this case can be
expressed in the following way:

ϵ̇I I = f (σ) exp
(
− Qc

kBT

)
(14.1)

For the specific case of power law creep, the stress dependence is given by a
simple power law:

f (σ) = Aσn (14.2)

where n is an empirically determined exponent, with typical values ranging
between 1 and 7.

In the high temperature regime, the activation energy for creep, Qc, is very
similar to the activation energy for self-diffusion in the metal (see Figure 14.6),
indicating that high temperature creep is controlled by the same processes that
control self diffusion. As we describe below, this common process is vacancy
diffusion. Vacancy diffusion can contribute to the creep behavior by enabling
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(from ref.[21]).

dislocation climb, or by changing the shapes of individual grains in a man-
ner that does not require the existence of dislocations. These mechanisms are
Nabarro-Herring creep and Coble Creep, as described below.

14.1 Dislocation Glide

The primary deformation mechanism we have talked about so far is disloca-
tion glide, where a dislocation moves laterally in a plane containing the Burg-
ers vector. Dislocation glide can only occur when the resolved shear stress
acting on it exceeds some critical value that depends on the curvature of the
dislocation. The deformation rate due to dislocation glide is obtained from
following relationship between strain rate for dislocation glide, the dislocation
density, ρd (the total dislocation length per volume, which has units of 1/m2),
the magnitude of the Burgers vector for the dislocations, b, and the dislocation
glide velocity, Vg:

de
dt

∣∣∣∣
glide

= ρdVgb (14.3)

Dislocation glide is a thermally activated process, and therefore be described
by a model similar to the Eyring model discussed in Section 17.4:

Vg ∝ sinh ((σ − σcrit) v/2kBT) exp
(
−Qglide/kBT

)
(14.4)

There is a temperature dependence of dislocation glide, since there is a finite
activation energy for dislocation motion, which we refer to as Qglide. In most
cases however, the stress dependence is much more important than the tem-
perature dependence, and we simply say that the sample deforms plastically
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Figure 14.7: Conceptual illustration of Nabarro-Herring creep.

for σ > σcrit. Some deformation mechanisms are still available below. These re-
quire atomic diffusion and have an activation energy that is larger than Qglide,
but become important at high temperatures (greater than about half the abso-
lute melting temperature. These mechanisms are discussed below. The first of
these (Nabarro-Herring creep and Coble creep) involve changes in shape of the
overall object that mimic the changes shapes of individual grains, with grain
shape changing as atoms diffuse between portions of the grain boundaries that
are experiencing different stress states. The third mechanism involves disloca-
tion climb.

14.2 Nabarro-Herring Creep: Bulk Diffusion Within a Grain

Nabarro-Herring creep is the mechanism by which vacancies move away from
regions of the largest tensile stress in the sample. The mechanism is as illus-
trated in Figure 14.7. The mechanism is based on the effect that stresses have
on the local concentration of vacancies in the system.

In the absence of an applied stress the equilibrium number of concentration of
vacancies, C0

v is given by the vacancy formation energy, Gv:

C0
v =

1
Ω

exp
(
− Gv

kBT

)
(14.5)

where Ω is the atomic volume (also equal to the volume of a vacancy). Now
suppose we have a grain that is experiencing a tensile stress of magnitude
σ at the top and bottom, and a compressive force of this same magnitude at
the sides. We’ll call the vacancy concentrations in the tensile and compressive
regions of the sample Ct

v and Cc
v, respectively, so we have:

Ct
v = C0

v exp (σΩ/kBT)
Cc

v = C0
v exp (−σΩ/kBT)

(14.6)
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We can now use Fick’s first law to to calculate the steady state flux of vacancies,
Jv, from the tensile region to the compressive region:

Jv = −Dv
dCv

dx
(14.7)

We approximate the the vacancy concentration gradient, dCv/dx, as the differ-
ence in vacancy concentrations in the tensile and compressive regions of the
grain, divided by the grain size,d:

dCv

dx
≈ Ct

v − Cc
v

d
(14.8)

Combining Eqs.14.7 and14.8 gives:

Jv ≈ −Dv

(
Ct

v − Cc
v

d

)
(14.9)

In order to relate the flux (units of vacancies/m2·s) to the velocity of the grain
edge (in m/s), we need to multiply Jv by the atomic volume, Ω:

v = ΩJv ≈ ΩDv

(
Ct

v − Cc
v

d

)
(14.10)

Now we get the strain rate by dividing this velocity by d :

de
dt

=
ΩJv

d
≈ ΩDv

(
Ct

v − Cc
v

d2

)
=

2Dv

d2 sinh
(

σΩ
kBT

)
exp

(
− Gv

kBT

)
(14.11)

For real systems the stresses are small enough so that σΩ ≪ kBT , so we can
use the fact that sinh (x) ≈ x for small x to obtain:

de
dt

≈ 2Dv

d2
σΩ
kBT

exp
(
− Gv

kBT

)
(14.12)

Vacancy diffusion is a thermally activated process, so we can express the va-
cancy diffusion coefficient in the following form:

Dv = Dv
0 exp

(
−

Qv
D

kBT

)
(14.13)

where Qv is the activation free energy for vacancy motion. We can define a
combined quantity, Qvol that combines the the free energy of vacancy forma-
tion with the activation free energy for vacancy diffusion:
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Qvol = Qv + Gv (14.14)

Combination of Eqs. 14.12-14.14 gives the following for the strain rate:

de
dt

≈ 2D0

d2
σΩ
kBT

exp
(
−Qvol

kBT

)
(14.15)

Here Qvol is the overall activation energy that accounts for the both both the
formation and diffusive motion of vacancies diffusing through the interior of
the grain.

14.3 Coble Creep: Grain Boundary Diffusion

If diffusion occurs predominantly along the grain boundaries, the mechanisms
is slightly different and is referred to as Coble Creep. The expression for the
strain rate is very similar to the expression for Nabarro-Herring creep, with
two difference. First, we replace the bulk vacancy diffusion coefficient, Dv in
Eq. 14.7 with the grain boundary diffusion coefficient, Dgb, which is generally
larger than Dv. In addition, we modify the relationship between Jv to account
for the fact that vacancies are not diffusing throughout the entire grain, but
only along a narrow grain of width dgb. As a result we need to multiply the
velocity in Eq. 14.10 by the overall volume fraction of the grain boundary,
which is proportional to dgb/d. The net result is the following expression for
the strain rate for Coble creep:

de
dt

∝
2Dgbdgb

d3
σΩ
kBT

exp
(
− Gv

kBT

)
(14.16)

The grain boundary diffusion is also a thermally activated process, so we can
combine fold the activation free energy for grain boundary diffusion into an
overall activation energy, which we define as Qgb:

Dgb = Dgb
0 exp

(
−

Qgb
D

kBT

)
(14.17)

Qgb = Qv + Gv (14.18)

de
dt

∝
2Dgb

0 dgb

d3
σΩ
kBT

exp
(
−

Qgb

kBT

)
(14.19)

Here Qgb is less than Qvol , so Coble creep will be favored over Nabarro-
Herring creep at low temperatures.
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Figure 14.8: Conceptual illustration of Coble creep.

Figure 14.9: Schematic representation of dislocation climb.

14.4 Weertman model of Creep by Dislocation Climb

In 1957 Johannes Weertman (one of the early and most important members of
the Materials Science and Engineering Department at Northwestern Univer-
sity) developed a creep model that conforms to Eqs.14.1 and14.2, but with a
specific exponent, n, of 4.5.

In the Weertman model the creep rate is controlled by dislocation climb, illus-
trated schematically in Figure 14.9. The following relationship for the strain
rate was obtained from theoretical considerations:

de
dt

= Aσ3 sinh
(

Bσ1.5/kBT
)

exp (−Qvol/kBT) (14.20)

14.5 Deformation mechanism maps

The different deformation mechanisms discussed above all have different de-
pendencies on temperature and stress. We can put place them all on a de-
formation map as shown in Figure 14.10. The different regions correspond to
combinations of stress and temperature where the indicated mechanism gives
the highest deformation rate, and therefore dominates the deformation pro-
cess. Note the following features:
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Figure 14.10: Deformation mechanism map.

• Coble creep and Nabarro-Herring (N-H) creep both occur in polycrys-
talline materials, where the overall shape of the object mimics the change
in shape of an individual grain. These mechanisms are suppressed by in-
creasing the grain size, and do not occur at all in large, single crystals.

• The boundary between Coble creep and Nabarro-Herring creep is a ver-
tical line, since the stress dependence for both measurements is the same.

• Nabarro-Herring creep occurs at higher temperatures than Coble creep,
because diffusion through grains (the Nabarro-Herring mechanism) has
a higher activation energy than diffusion at grain boundaries (the Coble
mechanism).

• The Coble creep mechanism occurs at grain boundaries, it will be favored
for materials with more grain boundaries, i.e., materials with a smaller
grain size. As the grain size decreases, the line separating the Coble and
Nabarro-Herring regions will move to the right.

• The line separating the Nabarro-Herring and Dislocation climb regions
is horizontal because these mechanisms have the same temperature de-
pendence, i.e., the activation energy is the same for both cases (see Figure
14.6).
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Figure 15.1: Structure of an amorphous polymer.

Figure 15.2: Structure at different length scales for a semicrystalline polymer.

15 Deformation of Polymers

The deformation mechanisms in polymeric materials are completely different
from those in metals and ceramics, and (almost) never have anything to do
with the motion of dislocations. To begin with, we can separate into the poly-
mers that are partially crystalline and those that are not. As one would expect,
the structures of these non-crystalline (amorphous) and semicrystalline poly-
mers are very different, as shown schematically in Figure Crystallization and
glass formation are the two most important concepts underlying the physical
properties of polymers. The ways in which the molecules are organized in
non-crystalline (amorphous) polymers and semicrystalline polymers are very
different, as illustrated in Figures 15.1 and 15.3. Polymers crystallize at tem-
peratures below Tm (melting temperature) and form glasses at temperatures
below Tg (glass transition temperature). All polymers will form glasses un-
der the appropriate conditions, but not all polymers are able to crystallize.
The classification scheme shown in Figure Polymers classification scheme. di-
vides polymeric materials based on the locations of Tg and Tm (relative to the
use temperature, T) and is a good place to start when understanding different
types of polymers.
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Figure 15.3: Polymers classification scheme.
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Figure 15.6: Yield surface for PMMA at 20◦C and at 90◦C. For comparison a map
of the Tresca yield criterion (where normal forces do not matter) shown as the
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Figure 15.7: Molecular weight dependence of fracture toughness for polystyrene
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Figure 15.9: Conceptual drawing of fibrils at the interface between the crazed and
uncrazed material (from ref.[22])

15.0.1 Case Study: Fracture toughness of glassy polymers

Deformation is significant, but GIc is still small compared to other engineering
materials.

1) Deformation Mechanisms Suppose we do a simple stress strain exper-
iment on polystyrene. Polystyrene deforms by one of two different mecha-
nisms:

1. Shear bands due to strain softening (decrease in true stress after yield in
shear).

2. Crazing - requires net dilation of sample (fracture mechanism for PS and
PMMA).

Crazes are load bearing - but they break down to form cracks - failure of spec-
imen.

2) Crazing Fibrils are cold drawn polymer. Extension ratio remains con-
stant as craze widens

Crack propagation:
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Figure 15.10: Meniscus instability mechanism for the formation of craze fibrils.

1. 1) new fibrils are created at the craze tip

2. 2) fibrils break to form a true crack at the crack tip

3. Crazing requires a stress field with a tensile hydrostatic componentσ1 +
σ2 + σ3 > 0 (crazes have voids between fibrils)

4. Crazing occurs first for PMMA in uniaxial extension (σ2 = 0)

5. GIc is determined by energy required to form a craze (≈ 1000 J/m2)

6. Crazing requires strain hardening of fibrils - material must be entangled
(M > Mc),Mc typically≈30,000 g/mol.

7. In general, shear yielding competes with crazing at the crack tip

Meniscus instability mechanism (fibril formation at craze tip)

Material near the craze tip is strain softened, and can flow like a fluid between
two plates.

http://n-e-r-v-o-u-s.com/blog/?p=1556

Competition between Shear Deformation and Crazing Shear deformation
is preferable to crazing for producing high toughness.

Plane stress - shear yielding and crazing criteria (for PMMA)
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Figure 15.11: Deformation map for the shear yielding and crazing for plane stress
conditions (σp

3 = 0)
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Figure 15.12: Crack tip stresses in the Dugdale model.

3) Dugdale model Earlier we considered the maximum stress in front of an
eliptical cra

Assumptions:

1) Tensile stress throughout plastic zone is constant value,σc

2) This stress acts to produce a crack opening displacementδc

GIC = δcσc (15.1)

The Dugdale zone (the craze in our polystyrene example) modifies the stress
field so that it doesn’t actually diverge to infinity, since infinite stresses are not
really possible.

High Impact Polystyrene: Polystyrene (PS) is a big business - how do we
make it tougher? High impact polystyrene (HIPS) is a toughened version of
polystyrene produced by incorporating small, micron-sized rubber particles
in the material. The morphology is shown in Figure 15.13, and consists small
PS inclusions embedded in rubber particles that are in turn embedded in the
PS matrix materials. The rubber particles act as stress concentrators that act as
nucleation points for crazes.
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Rubbery, polybutadiene particles with
         PS inclusions

PS matrix

Figure 15.13: Morphology of high impact polystyrene.

Figure 15.14: Multiple crazes in high impact polystyrene.

Tensile Behavior: In Figure 15.15 we compare the tensile behavior of normal
polystyrene (PS) and high impact polystyrene (HIPS). The rubber content in
the material reduces the modulus but substantially increases the integrated
area under the stress/strain curve up to the point of failure, which is a measure
of the toughness of the material. We can summarize the differences between
PS and HIPS as follows:

• PS is brittle, with E =3GPa and relatively low fracture toughness

• HIPS is ductile, with a lower modulus, (E = 2.1 GPa) and a much larger
energy to fracture.

This area under the stress/strain curve is not a very quantitative measure of
toughness because we don’t have any information about the flaw size respon-
sible for the eventual failure of the material.
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Figure 15.15: Schematic stress-strain curves for polystyrene (PS) and high impact
polystyrene (HIPS) in the absence of a crack.
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Figure 15.16: Schematic stress-strain curves for polystyrene (PS) and high impact
polystyrene (HIPS) in the presence of a crack.

deformation via crazing in vicinity of rubber particles (stress concentrators)
throughout sample

Samples with Precrack:

(measurement of KIC or GIC)

• Deformation limited to region around crack tip

• Much more deformation for HIPS - higher toughness
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Figure 15.17: Charpy impact test.

Figure 15.18: Izod impact geometry.

Impact Tests Impact tests are designed to investigate the failure of materials
at high rates. Two common standardized are the Izod impact test and the
Charpy impact test. They both involve measuring the loss in kinetic energy
of a swinging pendulum as it fractures a sample. The geometry of a Charpy
impact test is illustrated in Figure 15.17 Decrease in pendulum velocity after
breaking sample gives impact toughness. For a useful discussion of a Charpy
impact test, see https://www.youtube.com/watch?v=tpGhqQvftAo.

For most materials the fracture toughness is rate dependent, but same general
features for toughening materials often apply at both high and low fracture
rates. For example, high impact polystyrene is much tougher than polystyrene
at high strain rates, for the same general reasons outlined in Section 3).
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16 LINEAR VISCOELASTICITY

16 Linear Viscoelasticity

Silly Putty is an obvious example of a viscoelastic material, with mechanical
properties that depend on the time scale of the measurement. The simplest
situation to start with is the small strain region, where the stresses are propor-
tional to the strains, but depend on the time of the experiment. This linear
viscoelastic regime is the focus of this Section.

16.1 Time and Frequency Dependent Moduli

A variety of elastic constants can be defined for an isotropic material, although
only two of these are independent. All of these elastic constants can be time
dependent, although in this Section we focus on the specific case of a uniaxial
tensile test, used to define the Young’s modulus, E, for an elastic material. Vis-
coelastic materials have mechanical properties that depend on the timescale of
the measurement. The easiest way to think about this is to imagine a tensile
experiment where a strain of e0 is instantaneously applied to the sample (see
the time-dependent strain for the relaxation experiment in Figure 16.1). In a
viscoelastic material, the resulting stress will decay with time while we main-
tain the strain at this fixed value. The time dependence of the resulting tensile
stress, σ, enables us to define a time-dependent relaxation modulus, E (t):

E (t) =
σ (t)

e0
(16.1)

We are often interested in the application of an oscillatory strain to a material.
Examples include the propagation of sound waves, where wave propagation
is determined by the response of the material at the relevant frequency of the
acoustic wave that is propagating through the material. In an oscillatory ex-
periment, referred to as a dynamic mechanical experiment in Figure 16.1, the
applied shear strain is an oscillatory function with an angular frequency, ω,
and an amplitude, e0:

e (t) = e0 sin (ωt) (16.2)

Note that the strain rate, de
dt , is also an oscillatory function, with the same an-

gular frequency, but shifted with respect to the strain by 90◦:

128



16 LINEAR VISCOELASTICITY 16.1 Time-Dependent Moduli

1

2

3

Relaxation Experiment

Dynamic Mechanical
Experiment

Figure 16.1: Experimental geometry and time dependent strain for for the deter-
mination of the time-dependent relaxation modulus and the frequency-dependent
dynamic moduli.

de
dt

= e0ω cos (ωt) = γ0ω sin (ωt + π/2) (16.3)

The resulting stress is also an oscillatory function with an angular frequency
of ω, and is described by its amplitude and by the phase shift of the relative to
the applied strain:

σ (t) = σ0 sin (ωt + ϕ) (16.4)

Now we can define a complex modulus with real and imaginary components
as follows:

E∗ = E′ + iE′′ = |E∗| eiϕ (16.5)

There are a couple different ways to think about the complex modulus,E∗. As
a complex number we can express it either in terms of its real and imaginary
components (E′ andE′′, respectively), or in terms of its magnitude,|E∗| and
phase,ϕ. The magnitude of the complex modulus is simply the stress ampli-
tude normalized by the strain amplitude:

|E∗| = σ0/e0 (16.6)
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Figure 16.2: Time dependent stress and strain in a dynamic mechanical experi-
ment.

The phase angle, ϕ, describes the lag between the stress and strain in the sam-
ple. Examples forϕ = 90◦ (the maximum value, characteristic of a liquid) and
ϕ = 45◦ are shown in Figure 16.2.

In order to understand the significance of the real and imaginary components
of E∗ we begin with the Euler formula for the exponential of an imaginary
number:

eiϕ = cos ϕ + i sin ϕ (16.7)

use this expression in Eq. 16.5, we see that the storage modulus, E′ gives the
stress that is in phase with the strain (the solid-like part), and is given by the
following expression:

E′ = |E∗| cos ϕ (16.8)

Similarly, the loss modulus, E′′, gives the response of the material that is in
phase with the strain rate (the liquid-like part):

E′′ = |E∗| sin ϕ (16.9)

We can combine Eqs. 16.8 and 16.9 to get the following expression for tan ϕ,
commonly referred to simply as the loss tangent:

tan ϕ =
E′′

E′ (16.10)

The loss tangent gives the ratio of the energy dissipated in one cycle of an
oscillation to the maximum stored elastic energy during this cycle.
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Figure 17.1: Linear creep model.

17 Creep Behavior

In a creep experiment we apply a fixed stress to a material and monitor the
strain as a function of time at this fixed stress. This strain is generally a function
of both the applied stress, σ and the time, t, since the load was applied. Much
of this section is general, and applicable across different materials classes, al-
though the focus here is on concepts that are particularly relevant to polymeric
materials.

17.1 Creep in the Linear Viscoelastic Regime

In the linear viscoelastic regime the strain is linearly dependent on the applied
stress, σ, allowing us to define the creep compliance function, J (t), in the
following way:

J (t) ≡ e (σ, t)
σ

(17.1)

An example of the sort of spring/dashpot model used to describe creep behav-
ior of a linear viscoelastic material is shown in Figure 17.1. The model consists
of a single Kelvin-Voigt element in series with a spring and a dashpot. In this
example the strain obtained in response to a jump in the stress from 0 to σ at
t = 0 can be represented as the sum of three contributions: e1, e2, and e3:

e (σ, t) = e1 (σ) + e2 (σ, t) + e3 (σ, t) (17.2)

In this equation e1 corresponds to an instantaneous elastic strain, e2 is the re-
coverable viscoelastic strain and e3 is the plastic strain, with the three different
components illustrated in Figure 17.2, and given by the following expressions:
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Figure 17.2: Strain contributions in a nonlinear creep model.

e1 = σ
E1

e2 = σ
E2

[1 − exp (−t/τ2)]

e3 = σ
η3

t
(17.3)

In many cases we are interested in situations where the strain does not increase
linearly with the applied stress. The yield point is one obvious example of
nonlinear behavior. In ideally plastic system, we only have elastic strains for
stresses below the yield stress, but above the yield stress the strains are much
larger.

17.2 Nonlinear Creep: Potential Separability of Stress and
Time Behaviors

The situation becomes much more complicated in the nonlinear regime, where
it is no longer possible to define a stress-independent creep compliance func-
tion. In general the strain in the nonlinear regime is a complex function of
both the time and the applied stress. In some cases, however, we can separate
the stress dependence from the time dependence and write the stress in the
following way:

e (σ, t) = f (σ) J (t) (17.4)

If this sort of separability holds, then it is possible to make predictions of creep
based on limited experimental data. The procedure is illustrated in Figure 17.3
and involves the following steps:

1. Measure e(t) at different different stresses (σ1 and σ2) in Figure 17.3. If the
ratio e (σ1, t) /e (σ2, t) is constant for all value of t, then the separability
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Figure 17.3: Creep response of a material with separable dependencies on stress
and time.

into stress dependent and time-dependent functions works (at least for
these two stress levels). These experiment enable us to obtain the time
dependent function J (t).

2. To get the stress-dependent function, f (σ), it is sufficient to make a series
of measurements at a single, experimentally convenient time.

17.3 Use of empirical, analytic expressions

The procedure outlined in the previous Section only works if the ratio
e (σ1, t) /e (σ2, t) is independent of the time. This is not always the case. How-
ever, it is often possible to fit the data to relatively simple models. These mod-
els are similar to the spring and dashpot models of Section16, but a linear stress
response is not necessarily assumed. One example corresponds to a nonlinear
version of the linear model shown in Figure 17.1. As with the linear model, the
strain components are assumed to consist of an elastic strain, e1, a recoverable
viscoelastic strain, e2 and a plastic strain, e3. However, we now use nonlinear
elements to describe e2 and e3, with these two strain components given by the
following expressions:

e1 = σ
E1

e2 = C1σn [1 − exp (−C2t)]
e3 = C3σnt

(17.5)

Not that the material behavior is specified by 5 constants,E, C1, C2, C3, n, that
we need to obtain by fitting to actual experimental data. For a linear response
(n = 1) we can make a connection to the spring and dashpot models described
earlier. In this case the behavior of the material is represented by the model of
linear viscoelastic elements shown in Figure 17.4, and the constants appearing
in Eq. 17.5 correspond to the following linear viscoelastic elements from Figure
17.1:
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Figure 17.4: Nonlinear creep model.

E = E1
C1 = 1/η2

C2 = E2/η2
C3 = 1/η3

(17.6)

This is just one possible nonlinear model that can be used. An additional non-
linear element is obtained from Eyring rate theory, and is described in the fol-
lowing Section.

17.4 Eyring Model of Steady State Creep

The Eyring rate model of creep is a very general model aimed at understand-
ing the effect of the stress on the flow properties of a material. It can be used
to describe a very wide range of materials, and is based on the modification of
the activation energy for material for flow by the applied stress.

17.4.1 Material Deformation as a Thermally Activated Process

Our starting point is to realize that material deformation is a thermally ac-
tivated process, meaning that there is some energy barrier that needs to be
overcome in order for deformation to occur. The general idea is illustrated in
Figure 17.5. The stress does an amount of work on the system equal to σv,
where σ is the applied stress and v is the volume of the element that moves
in response to this applied stress. The quantity v is typically referred to as an
activation volume. The net result of the application of the stress is to reduce
the activation barrier for motion in the stress direction by an amount equal
to vσ/2 and to increase the activation barrier in the opposite direction by this
same amount.

1) Eyring Rate Law We can develop an expression for the strain rate by
recognizing that the net strain rate is given by the net frequency of hops in the
forward direction. The frequency of hops in the forward and reverse direc-
tions, which we refer to as f1 and f2, respectively, are given as follows:

f1 = f0 exp
(
−Q∗ − vσ/2

kBT

)
= exp

(
− Q∗

kBT

)
exp

(
vσ

2kBT

)
(17.7)
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Energy

Deformation

Figure 17.5: Effect of an applied stress on a thermally activated creep process.

f2 = f0 exp
(
−Q∗ + vσ/2

kBT

)
= exp

(
− Q∗

kBT

)
exp

(
−vσ

2kBT

)
(17.8)

The net rate of strain is proportional to f1 − f2, the net frequency of hops in the
forward direction:

de
dt

= A ( f1 − f2) = A f0 exp
(
− Q∗

kBT

) [
exp

(
vσ

2kBT

)
− exp

(
−vσ

2kBT

)]
(17.9)

Where A is a dimensionless constant. Using the following definition of the
hyperbolic sine function (sinh):

sinh (x) =
(
ex − e−x) /2 (17.10)

we obtain the following expression for the strain rate:

de
dt

= 2A f0 exp
(
− Q∗

kBT

)
sinh

(
vσ

2kBT

)
(17.11)

Before considering the behavior of the Eyring rate equation for high and low
stresses, it is useful to consider the overall behavior of the sinh function, which
is illustrated in Figure 17.6. Note that for small x, sinh x ≈ x, and for large x,
sinh (x) ≈ 0.5 exp (x).

2) Low Stress Regime In the low-stress regime we can use the approxima-
tion sinh (x) ≈ x to get the following expression, valid for vσ ≪ kBT.

de
dt

=
A f0vσ

kBT
exp

(
− Q∗

kBT

)
(17.12)
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Figure 17.6: Behavior of the hyperbolic sine function.

In this regime the strain rate is linear in stress, which means that we can define
a stress-independent viscosity from the following expression:

de
dt

=
σ

η
(17.13)

Comparing Eqs.17.12 and17.13 gives the following for the viscosity:

η =
kBT
A f0v

exp
(

Q∗

kBT

)
(17.14)

So the Eyring theory reduces to and Arrhenius viscosity behavior in the linear,
low-stress regime.

3) High Stress Regime In the high-stress regime, we use the fact that
sinh (x) ≈ exp(x)

2 for large x to obtain the following expression for vσ ≫ kBT:

de
dt

= A f0 exp
(
− Q∗

kBT

)
exp

(
vσ

2kBT

)
(17.15)

Equivalently, we can write the following:

de
dt

= A f0 exp
(
−Q∗ − vσ/2

kBT

)
(17.16)

The effective activation energy decreases linearly with increasing stress, giving
a very nonlinear response. In practical terms the activation volume is obtained
by plotting ln (de/dt) vs. σ, with the slope being equal to v/2kBT.
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Figure 17.7: Illustration of the activation volume.

Figure 17.8: Nonlinear creep model, including an Eyring rate element for the
steady-state creep component.

4) Physical significance of v Eyring rate models are most often used for
polymeric systems. In this case the activation volume can be viewed as the
volume swept out the portions of a polymer molecule which move during a
fundamental creep event, as illustrated schematically in Figure 17.7. A large
activation volume means that cooperative deformation of a large region of the
material is required in order for the material to flow. Low values of the acti-
vation volume indicate that the deformation is controlled by a very localized
event, corresponding, for example, to the rupture of a single covalent bond.

17.4.2 Additional Nonlinear Dashpot Elements

Nonlinear elements based on the Eyring rate model can also be included in
our spring and dashpot models of viscoelastic behavior. For example, we can
use an Eyring rate model to describe the stress dependence of the steady state
creep of a nonlinear model, in which case Figure 17.4 gets modified to Figure
17.8. The steady state component is specified by the prefactor A f0 the activa-
tion energy Q∗, and the activation volume, v.

137



18 MATERIALS SELECTION

Figure 18.1: Schematic representation of the space elevator.

18 Materials Selection: A Case Study

The concept of a space elevator is illustrated in Figure 18.1. The idea is that we
run a cable directly from the earth out to a point in space. If the center of mass
is at a geosynchronous orbit, the entire assembly orbits the earth at the same
angular velocity at which the earth is rotating. To get into space, we no longer
need to use a rocket. We can simply ’climb’ up the cable at any velocity that
we want. The concept is certainly appealing if we can get it to work. But could
the concept ever actually work? That is determined by the availability (or lack
thereof) of materials with sufficient strength for the cable. We’ll need to start
with some analysis to figure out what sort of properties are needed.

Consider a mass, m, that is located a distancer from the center of the earth, as
illustrated in Figure 18.2. The net force on the object is a centripetal force act-
ing outward (positive in our sign convention) and a gravitational force acting
inward (negative in our sign convention):

F = mω2r − Ggr Mem/r2 (18.1)

where Ggr is the gravitational constant and Me is the mass of the earth. The
angular velocity of the earth is 2π radians per day, or in more useful units:

ω =
2π

(24 hr) (3600 s/hr)
= 7.3x10−5 s−1

It is convenient to rewrite the first term in terms of g0, the gravitational accel-
eration at r = r0 (at the earth’s surface):

g0 =
Ggr Me

r2
0

(18.2)
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earth

Figure 18.2: Radial forces acting on an orbiting mass.

The net force on the mass at r can be written as follows:

F = mω2r − mg0

( r0

r

)2
(18.3)

The net force is zero for r = rs (geosynchronous orbit):

rs =

(
g0r2

0
ω2

)1/3

= 4.1x107 m (22, 000 miles) (18.4)

This is an easier number to remember than the angular velocity of the earth,
so we use this expression for rs to eliminate ω from Eq. 18.3, obtaining the
following:

F = mg0r2
0

(
r
r3

s
− 1

r2

)
(18.5)

Now consider a cable that extends from the earths surface (r = r0) to a distance
rℓ from the earth’s surface, as shown in Figure 18.3. We need the cable to be
in tension everywhere so that it doesn’t buckle. If we design so that the cable
is in tension at the earth’s surface (r = r0) we’re in good shape. The mass
increment for a cable of length dr is ρAdr, where A is the cross sectional area
of the cable and ρ is the density of the material from which it was made. We
obtain the total force, F0 at the earth’s surface by integrating contributions to
the force from the the whole length of the cable:

F0 = ρAg0r2
0

∫ rℓ

r0

(
r
r3

s
− 1

r2

)
dr (18.6)

After integration we get:

F0 = ρAg0r2
0

[
1

2r3
s

(
r2
ℓ − r2

0

)
+

(
1
rℓ

− 1
r0

)]
(18.7)
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Figure 18.3: A cable extending from the surface of the earth to a distancerℓ away
from the earth’s center.

90,000 miles

22,000 miles

4,000 miles

Figure 18.4: F0 as given by Eq. 18.7.

F0 is plotted in Figure 18.4:

Note that the cable is in compression at the earth’s surface (F0 < 0) for all
values of ℓ less than a critical length rℓ, which is equal to 90,000 miles. The
maximum tension is at r = rs, and is obtained by integrating contributions to
the force from rs to rℓ:

Fmax = ρAg0r2
0

[(
1
rℓ

− 1
rs

)
+

1
2r3

s

(
r2
ℓ − r2

s

)]
(18.8)

We have the following numbers:

• r0 = 6.4x106 m (4,000 miles)

• rs = 4.1x107 m (22,000 miles)

• rℓ = 1.5x108 m (90,000 miles)

• g0 = 9.8 m/s2

From these numbers we get Fmax
ρA = σmax

ρ = 4.8x107 N/m2

Kg/m3 .
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slope = 1

Figure 18.5: Ashby plot of tensile strength and density.

Let’s compare that to the best materials that are actually available. An Ashby
plot of tensile strength (σf ) and density is shown in Figure 18.5. A line with a
slope of 1 on this double logarithmic plot corresponds to a range of materials
with a constant value of σf /ρ. The line drawn on Figure 18.5 corresponds to
σf /ρ is≈2.8x106 (in Si units), which is the most optimistic value possible for
any known material - corresponding to the best attainable properties for dia-
mond. Forgetting about any issues of cost, fracture toughness, etc., we could
imagine that we see that we are a factor of 20 below the design requirement.
So there’s no way this is ever going to work, no matter how good your team
of materials scientists is.

All is not lost yet, however, since we really haven’t optimized the geometry.
The design we considered above has a constant cross-sectional area, which
we would really not want to have. What if we optimize the geometry so that
material has the largest cross section at r = rs (where the load is maximized).
We’ll consider a design where the actual cross section varies in a way that
keeps the stress (tensile force divided by cross sectional area) constant. The
analysis is a bit more complicated than we want to bother with here, but we
get a simple expression for the maximum cross sectional area, As (at r = rs), to
the cross sectional area at the earth’s surface (A0, at r = r0) :

As

A0
= exp

(
0.77r0ρg0

σ

)
(18.9)

If we assume σ/ρ = 2.8x106 N/m2

Kg/m3 , so that the system is operating at the value

of σ/ f corresponding to the solid line in Figure 18.5 gives As
A0

= 110. So in this
case cable with a diameter of 1 cm at r = r0 needs to have a diameter of ≈ 10

141



18 MATERIALS SELECTION

cm at r = rs. We don’t have much leeway in decreasing σ/ρ, however. If the
best we can do is σ/ρ = 1.0x106 N/m2

Kg/m3 , we get As
A0

= 1021, which is clearly not
workable. So we are stuck with the requirement that the cable have a specific
tensile strength equivalent to the best known material on earth without a single
critical defect over a length of 90,000 miles. Good luck with that.
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19 Review Questions

19.1 Stress and Strain

• How are E, G, K, ν measured?

• How are these quantities related to one another for an isotropic material?

• What are principal stresses and strains?

• What does the strain ellipsoid lake for a state of pure/simple shear and
for hydrostatic tension/compression?

• How are engineering shear strains related to principal extension ratios.

• When can the Mohr circle construction be used, and what is determined
from it?

• How do we calculate the resolved shear stress and the resolved normal
stress?

19.2 Linear Elasticity

• How do I use the stiffness and compliance matrices?

• What do these matrices look like for materials with different symmetries?

• What are typical moduli for metals, plastic and rubber.

• Under what conditions is the Poisson’s ratio very close to 0.5? For what
materials is this true?

• What is the relationship between elastic moduli and the sound velocity?

• What’s the difference between a shear wave and a longitudinal wave?
Which ones can travel in liquids and gases, and why?

19.3 Fracture Mechanics

• What is meant by a mode I, II or III crack? Which mode is most relevant
for tensile failure of a homogeneous material, and why?

• What do the stress fields look like in front of a mode I crack?

• How is KI related to the crack length and crack tip radius of curvature,
and applied tensile load?

• How is K related to G?

143



19.4 Yield Behavior 19 REVIEW QUESTIONS

• What is the significance of KIC and Gc?

• How is G related to the compliance of a sample?

• How is G determined in a double cantilever beam test?

• What is the difference between E and the reduced modulus E∗ deter-
mined from a contact mechanics experiment?

• How is E∗ determined from an indentation test with flat-ended cylindri-
cal punch on a thick material?

• What happens to the normal stress distribution under a flat punch as
an indented, low-modulus layer gets thinner and thinner? How is this
related to the behavior of the compliance (C), and of G andKI .

• How does adding a rubber to polystyrene increase its toughness?

• How does transformation toughening work inZrO2?

• What does the load-displacement relationship look like for a rigid,
curved indenter indenting a soft material? How does this depend on
the materials stiffness and the indenter size?

• What is a Weibull distribution of failure probabilities look like? What is
the significance of the Weibull modulus?

19.4 Yield Behavior

• What are the Tresca and Von Mises yield Criteria? How are they used to
relate yield criteria for different experimental geometries (simple shear,
uniaxial extension, etc.)?

• How is the yield stress obtained from a single crystal if you know the
critical and the orientation of the slip system?

• How does this change for a polycrystal?

• How can you tell if a material forms a neck by looking at the true stress
as a function of engineering strain or extension ratio? How do you de-
termine the natural draw ratio of the material?

• What are the common strengthening mechanisms for metals, and how
do they work?

• How does the strength of a metal depend on its grain size?

• How are the hardness and reduced modulus obtained from a nanoinden-
tation curve with a Berkovich indenter?
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19.5 Viscoelasticity

• How is the shear modulus obtained from a torsional resonator? What is
the significance of the imaginary part of a complex frequency, and where
does this complex frequency come from?

• What is the significance of the magnitude and phase of a complex mod-
ulus? What about the real and imaginary components?

• What do G′ and G′′ look like for a Maxwell model and for a Kelvin-Voigt
model?

• How are springs and dashpots uses to describe viscoelastic behavior?

• How do Maxwell elements and a standard linear solid behave at high
and low frequencies?

• What is a viscosity?

19.6 Creep

• What are the assumptions of the Eyring model?

• What is the significance of the activation volume, and how is it obtained
from real experimental data?

• What are the creep mechanisms for dislocation creep, Nabarro-Herring
creep and Coble creep? What determines the activation energy for each
of these processes? How do they each depend on the applies stress, tem-
perature and grain size?

• How is a creep deformation map used? How can you use this map to de-
termine which processes have the larges stress dependence or activation
energy?

20 Finite Element Analysis

Finite element analysis (FEA) or the finite element method (FEM), is a method
for numerical solution of field problems. A field problem is one in which the
spatial distribution of one or more unknown variables need to be determined.
Thus, we may employ FEA to obtain the spatial distribution of displacements
in a structure under load, or the distribution of temperature in an engine block.
Mathematically, a field problem is described by a differential equation, or by
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an integral expression. Finite elements are formulated from such mathematical
expressions of the problem.

Individual finite elements can be visualized as small pieces of the structure
or domain of interest. Let’s assume that the field quantity in question is a
function ϕ(x, y, z). In each element ϕ is approximated to have only a simple
spatial variation, e.g., linear, or quadratic. The actual variation in the region is
in most cases more complex, so FEA provides an approximate solution. The
elements are connected at points called nodes, and the particular arrangement
of elements and nodes is called a mesh. Numerically, the FE mesh leads to
a system of algebraic equations (a matrix equation) that is to be solved for
the unknown field quantities at the nodes. Once the nodal values of ϕ are
determined, in combination with the assumed spatial variation of ϕ within
each element, the approximated field is completely determined within that
element. Thus the function ϕ(x, y, z) is approximated element by element, in
a piecewise manner. The essence of FEA, then, is the approximation by piecewise
interpolation of a field quantity.

There are many advantages of FEA over other numerical methods:

• FEA is applicable to a diverse range of problems: heat transfer, stress
analysis, magnetic fields, fluid flow and so on.

• There is no restriction on the geometry. The body or region to be ana-
lyzed may have very complex shapes.

• Boundary conditions and loading are not restricted. Any combination
of distributed or concentrated forces may be applied to different parts of
the body.

• Material properties may be linear or nonlinear, isotropic or anisotropic.

In this introductory class, we will consider only linear, steady-state problems
that are displacement-based, that is, where the unknown field quantity is the
displacement.

20.1 The direct stiffness method

In this Section we survey the entire computational process of linear steady-
state FEA. The FEA process consists of the following steps:

1. formulation of element matrices,

2. their assembly into a structural matrix,

3. application of loads and boundary conditions,
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4. solution of the structural equations,

5. extraction of element stresses and strains.

The procedures are generally applicable regardless of element type, and there-
fore, we will make use of the simplest of elements - the two-node bar element.
For this simple element, we can apply physical arguments to obtain the matri-
ces that represent the element behavior, and for a simple structure consisting of
a few bar elements, the computations can be done entirely by hand, allowing
the various steps to be carefully examined.

20.1.1 Bar element

The simplest structural finite element is the two-node bar element. A bar, in
structural terminology, can resist only axial loads. Consider a uniform elastic
bar of length L and elastic modulus E. Often a bar element is represented as a
line, as in Figure 20.1, but the element has cross Section al area A. A node is
located at each end, labeled 1 and 2. The axial displacements at nodes are u1
and u2, which are the degrees of freedom of the bar element. The forces acting on
the nodes are f1 and f2, respectively. The internal axial stress σ can be related
to nodal forces f1 and f2 by free-body diagrams,

Aσ + f1 = 0, −Aσ + f2 = 0. (20.1)

In turn, σ is related to elastic modulus E and axial strain ε,

σ = Eε, ε =
u2 − u1

L
. (20.2)

Thus, we obtain

AE
L

(u1 − u2) = f1 (20.3)

AE
L

(u2 − u1) = f2 (20.4)

or, in matrix form,

[k] d⃗ = f⃗ (20.5)

Here [k] is the element stiffness matrix:

[k] =
[

k −k
−k k

]
where k =

AE
L

, (20.6)

and d⃗ and f⃗ are the element nodal displacement and the element nodal force
vectors, respectively,

d⃗ =

{
u1
u2

}
, f⃗ =

{
f1
f2

}
. (20.7)
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Note than AE/L can be regarded as k, the stiffness of a linear spring. A bar and
a spring therefore have the same behavior under axial load and are represented
by the same stiffness matrix.

1 2

u
1

u
2

L

x

f
1

f
2

f
1

f
2

σA σA

Figure 20.1: A two-node bar element of length L and cross-Section area A, with
nodal forces f1 and f2, showing internal stressσ and nodal d.o.f. u1 and u2.

20.1.2 Structure of bar elements

Now consider a bar structure that consists of three segments attached end-
to-end as shown in Figure 20.2(a). Each of these segments has length, cross-
Sectional area and elastic modulus of L(1), A(1), E(1), L(2), A(2), E(2), and
L(3), A(3), E(3), respectively. Since abrupt discontinuities in cross-Sectional
area will lead to stress concentrations at the segment junctions, we will let
A(1) = A(2) = A(3). The structure is attached to a rigid wall at its left end,
and a force F⃗ is applied to its right end. In a time-independent analysis, each
segment of the structure can be modeled by a two-node bar element, result-
ing in a finite element mesh consisting of three elements and four nodes. For a
known applied force F⃗, the objective is to determine the displacements in the
structure, in particular, the displacement of the nodes u1, u2, u3, and u4.

The nodal displacement vector D⃗ and the nodal force vector F⃗ are:

D⃗ =


u1
u2
u3
u4

 , F⃗ =


f1
f2
f3
f4

 . (20.8)

The stiffness equation for the overall structure can be written as

F⃗ = [K] D⃗ (20.9)

where [K] is the 4 × 4 global stiffness matrix.
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Fk(1) = E(1)A(1)/L(1) k(2) = E(2)A(2)/L(2) k(3) = E(3)A(3)/L(3)

Figure 20.2: (a) A bar consisting of three segments, with stiffnesses k(1) =

E(1)A(1)/L(1), k(2) = E(2)A(2)/L(2) and k(3) = E(3)A(3)/L(3), respectively, has
a force F applied on its right end while the left end of the structure is fixed to a
rigid wall. The structure is discretized with each segment represented by a two-
node bar element. (b) The three elements and their element nodal displacements
and forces.

The global stiffness matrix K is obtained through a process of breakdown and
assembly. The goal of the breakdown step is to obtain the element stiffness equa-
tions. We start by ignoring all loads and supports, and disconnecting the ele-
ments in the structure as shown in Figure 20.2(b). The element stiffness rela-
tion of each two-node bar element then simply obeys the following equation:

k(e)d(e) = f(e), (20.10)
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so that [
k(1) −k(1)

−k(1) k(1)

]{
u(1)

1
u(1)

2

}
=

{
f (1)1
f (1)2

}
,

[
k(2) −k(2)

−k(2) k(2)

]{
u(2)

2
u(2)

3

}
=

{
f (2)2
f (2)3

}
, (20.11)

[
k(3) −k(3)

−k(3) k(3)

]{
u(3)

3
u(3)

4

}
=

{
f (3)3
f (3)4

}
.

Note that each element quantity is denoted by a superscript (e), where e =
1, 2, 3 is the element number, while the subscripts on the u and f indicate the
node number. The element stiffnesses are given by the relationship k(e) =

E(e)A(e)/L(e).

Now let’s reconnect the elements and consider the structure as a whole. First,
it is clear that for the structure to be physical, the displacements must be com-
patible. In other words, when elements meet at a node, the displacements of
the common node for all the elements that share the node must be the same.
Otherwise, there would be gaps in the structure at those nodes. In our struc-
ture example, it means u(1)

2 = u(2)
2 , and u(2)

3 = u(3)
3 . Therefore, the element

superscripts can be dropped from the nodal displacements in equation (11)
without any ambiguity. The element stiffness relations, equation (11) can now
be expanded to include all the nodal degrees of freedom, using 0’s as place-
holders: 

k(1) −k(1) 0 0
−k(1) k(1) 0 0

0 0 0 0
0 0 0 0




u1
u2
u3
u4

 =


f (1)1
f (1)2
0
0

 ,


0 0 0 0
0 k(2) −k(2) 0
0 −k(2) k(2) 0
0 0 0 0




u1
u2
u3
u4

 =


0

f (2)2
f (2)3
0

 , (20.12)


0 0 0 0
0 0 0 0
0 0 k(3) −k(3)

0 0 −k(3) k(3)




u1
u2
u3
u4

 =


0
0

f (3)3
f (3)4

 .

Second, the total force acting on a node must be equal to the sum of all the
element nodal forces. In our example, therefore f2 = f (1)2 + f (2)2 , and f3 =

f (2)3 + f (3), where the absence of a superscript denoting the element number
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indicates a global or structure nodal force. The global force vectorF is therefore

F = f(1) + f(2) + f(3) =
(

k(1) + k(2) + k(3)
)

D = K D (20.13)

where the element stiffness matrices and force vectors refer to the expand ed
matrices and vectors of equation (12). The global stiffness matrixK is thus

K =


k(1) −k(1) 0 0

−k(1) k(1) + k(2) −k(2) 0
0 −k(2) k(2) + k(3) −k(3)

0 0 −k(3) k(3)

 , (20.14)

and the global stiffness equation is
k(1) −k(1) 0 0

−k(1) k(1) + k(2) −k(2) 0
0 −k(2) k(2) + k(3) −k(3)

0 0 −k(3) k(3)




u1
u2
u3
u4

 =


f1
f2
f3
f3

 . (20.15)

This process of merging element stiffness equations to form the global equa-
tion is calledassembly.

20.1.3 Boundary conditions

However, the system as stated in equation (15) cannot be solved for the dis-
placements because the stiffness matrixK is singular. The singularity is due to
unsuppressed rigid body motions. In other words, the structure is free to float
around in space, and a unique solution for the nodal displacements cannot be
determined. To eliminate rigid body motions the physical support conditions
must be applied asboundary conditions. The support condition that prevents
our structure from floating around in space is the attachment of the left end of
the structure to a rigid wall. In other words, weknow thatu1 = 0. Therefore,u1
ceases to be a degree of freedom and can be removed entirely from equation
(15). Thereduced stiffness equation is thenk(1) + k(2) −k(2) 0

−k(2) k(2) + k(3) −k(3)

0 −k(3) k(3)

u2
u3
u4

 =

0
0
F

 (20.16)

which can be solved to determine the unknown displacementsu2,u3 and u4 for
a prescribed value ofF.

20.1.4 Internal stresses

Once the nodal displacements are known, the average axial stress in each ele-
ment can be found by σ(e) = E(e)ε(e). The element axial strainε(e) = e(e)/L(e),
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wheree(e) is the elongation of the element. For example, the average axial stress
of element 2 can be determined as

σ(2) =
E(2)

L(2)
(u3 − u2). (20.17)

20.1.5 Reaction forces

by solving equation (16) for the unknown displacementsu2,u3 and u4, the en-
tire displacement vector is determined sinceu1 = 0 is prescribed by the bound-
ary conditions. Multiplying the complete displacement solution by K we get


k(1) −k(1) 0 0

−k(1) k(1) + k(2) −k(2) 0
0 −k(2) k(2) + k(3) 0
0 0 −k(3) k(3)




u1
u2
u3
u4

 =


−k(1)u2

0
0
F

 . (20.18)

Note that we have recovered thereaction force at the support: f1 = −k(1)u2. It is
easy to check that the complete system is in force equilibrium.

20.1.6 Plane Truss Problem

What if there are more than one degree of freedom per node rather than a
single degree of freedom per node? Let’s consider the 7-bar plane truss of Fig-
ure 20.3. Each node of the truss has two degrees of freedom, thex-direction
displacementu, and they-direction displacementv. The nodal forces also con-
sist ofx and y components. Then, each displacementui in the nodal displace-
ment vector becomes a vector

[
ui vi

]T , each nodal force fi in the force vector

becomes a vector
[

fix fiy
]T , and each entry in the stiffness matrix becomes a

2 by 2 matrix. The global displacement vectorD and the global force vectorF
for the plane truss of Figure 20.3 are therefore

D⃗ = [u1 v1 u2 v2 u3 v3 u4 v4 u5 v5]
T

F⃗ =
[

f1x f1y f2x f2y f3x f3y f4x f4y f5x f f y

]T (20.19)

while the stiffness matrix K that relates the displacements and forces in the
relationK D = F is a10 × 10 matrix.
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Figure 20.3: A plane truss loaded by a forceF.

20.2 Preliminaries

As we’ve seen in the previous Section , the basic concept in FEM is the subdi-
vision of the domain (structure) into non-overlapping elements. The response
of each element is expressed in terms of a finite number of degrees of freedom
characterized as the value of an unknown function, or functions, at a set of
nodal points. The simple elements such as bar or beam elements allow direct
formulation of the element matrices from physical arguments as we have seen.
However, this is not the norm; the formulation of most elements for structural
analysis rely on well-established tools of stress analysis, including stress-strain
relations, strain-displacement relations, and energy considerations.

20.2.1 Equilibrium equations

Moving beyond the simple free-body diagram approach of Figure 20.1, the
more general forces and stresses acting on a differential 2D elementdx × dy is
shown in Figure 20.4. Body forces,Fx and Fy, acting in thex and y directions
respectively, are defined as forces per unit volume. The static balance of forces
in thex and y directions lead to the differential equations for equilibrium (in
2D) as:

σx,x + τxy,y + Fx = 0
τxy,y + σy,y + Fy = 0 (20.20)

or, in matrix form,
∂T σ + F = 0, (20.21)

where

∂ =


∂

∂x 0
0 ∂

∂y
∂

∂y
∂

∂x

 , σ =

 σx
σy
τxy

 , F =

{
Fx
Fy

}
. (20.22)
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The objective of most structural finite element problems is to find the displace-
ment field that satisfies equation (21) for prescribed applied loads and bound-
ary conditions.
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Figure 20.4: Stresses and body forces that act on a 2D differential element. The
equilibrium equations (20) state that the differential element is in equilibrium.
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The stresses and strain in an element are related through the constitutive ma-
trix E that contains the elastic constants,

σ = Eε. (20.23)

In two-dimensions, the strain vectorε =
[
εx εy γxy

]T , and

E =

E11 E12 E13
E21 E22 E23
E31 E32 E33

 . (20.24)

For example, in isotropic, plane stress conditions,E takes the form

E =
E

1 − ν2

1 ν 0
ν 1 0
0 0 1−ν

2

 , (20.25)

whereE is the elastic modulus and ν is the Poisson’s ratio of the material.

Note that the unknown field quantity are the displacements. The strain-
displacement relation,ε = ∂u, together with the constitutive equation (23),
relates the stresses in the element to the displacements, whereu =

[
u v

]T ,
and u and v are the displacements in thex and they directions, respectively.
The equilibrium equation (21) can thus be written in terms of, and solved for,
the displacements.

20.2.2 Interpolation and Shape Functions

For the simple linear bar problem of the earlier example, it is clear that once the
nodal displacements are determined, the entire displacement field of the struc-
ture is known. The displacement field within each element simply varies lin-
early between the two nodal values. For most problems, however, the relation
between the values of the unknown field at the nodes and its variation within
the element is not known. In the finite element method, therefore, weassume a
simple (e.g., linear or quadratic) variation of the field within each element, by
interpolation of the nodal values. To interpolate is to formulate a continuous
function that satisfies prescribed conditions at a finite number of points. In
FEA, the points are nodes of an element, and the prescribed conditions are the
nodal values of a field quantity.

1) Linear Interpolation Linear interpolation between two points(x1, u1)
and (x2, u2). The linear interpolating functionû is

û(x) = a0 + a1x, (20.26)

so that
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u1 = a0 + a1x1
u2 = a0 + a1xx

(20.27)

Solving fora0 and a1 and rearranging, we obtain

û(x) = N1(x)u1 + N2(x)u2 = Nu, (20.28)

where

N =
[
N1 N2

]
, u =

{
u1
u2

}
, (20.29)

and

N1(x) =
x2 − x
x2 − x1

, N2(x) =
x − x1

x2 − x1
, (20.30)

are the two linear shape functions.

Figure 20.5(a) shows a two-node element with linear interpolation of the un-
known fieldu(x) of the two nodal valuesu1 and u2. Note that the shape
functionN1 = 1 at node 1, and N1 = 0 at node 2, and vice versa forN2
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Figure 20.5: (a) Linear interpolation and shape functions. (b) Quadratic interpola-
tion and shape functions.
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2) Quadratic Interpolation Quadratic interpolation fits a quadratic func-
tion to the three points(x1, u1),(x2, u2), and (x3, u3). The interpolation function
is

û(x) = N1(x)u1 + N2(x)u2 + N3(x)u3 = Nu, (20.31)

where

N =
[
N1 N2 N3

]
, u =

u1
u2
u3

 , (20.32)

and the three shape functions are

N1 =
(x2 − x)(x3 − x)
(x2 − x1)(x3 − x1)

, N2 =
(x1 − x)(x3 − x)
(x1 − x2)(x3 − x2)

, N3 =
(x1 − x)(x2 − x)
(x1 − x3)(x2 − x3)

(20.33)
Figure 20.5(b) shows a three-node element with quadratic interpolation of the
unknown fieldu(x) of the three nodal valuesu1,u2 and u3. Note again that the
shape functionN1 = 1 at node 1 whileN1 = 0 at nodes 2 and 3, and similar
behaviors forN2 and N3.

3) Linear Triangle So far, we have only described interpolation of functions
of a single variable,x. In 2D and 3D problems, the field or fields are func-
tion of two (x, y) or three (x, y, z) independent variables. These interpolations
are extensions of the one-dimensional interpolations. A linear triangle is an
example of a 2D element, and was the first element devised for plane stress
analysis. It has 3 nodes and 6 degrees of freedom, as shown in Figure 20.6.
The unknown fields are the displacement in thex-directionu(x, y), and in they-
directionv(x, y).
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1

v
1

u
3
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3

Figure 20.6: A linear triangle element.

The linear triangle uses linear interpolations for both u and v, we will call the
interpolating functionsû and v̂:

û = a1 + a2x + a3y
v̂ = a4 + a5x + a6y (20.34)
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From the values of u and y at the 3 nodes, equation20.34 can be rearranged as

û = N1u1 + N2u2 + N3u3
v̂ = N1v1 + N2v2 + N3v3

(20.35)

where the shape functions are

N1 (x, y) = 1 − x
x2

+ (x3−x2)y
x2y3

N2 (x, y) = − x
x2

− x3y
x2y3

N3 (x, y) = y
y3

(20.36)

Notice that the same shape functions are used for bothû and v̂.

4) Linear Rectangle (Q4) The linear rectangle is a 4 node element with 8
degrees of freedom as shown in Figure 20.7. The displacementsu(x, y) and
v(x, y) are again interpolated in bothx- and y-directions with the same linear
variation, so we have:

û (x, y) = N1 (x, y) u1 + N2 (x, y) u2 + N3 (x, y) u3 + N4 (x, y) u4
v̂ (x, y) = N1 (x, y) v1 + N2 (x, y) v2 + N3 (x, y) v3 + N4 (x, y) v4

(20.37)

where the shape functions are given by

N1 (x, y) = (a−x)(b−y)
4ab , N (x, y) = (a+x)(b−y)

4ab
N3 (x, y) = (a+x)(b+y)

4ab , N (x, y) = (a−x)(b+y)
4ab

(20.38)
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a a

b

b
1 2

34

Figure 20.7: A bilinear quadrilateral element.
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5) Number of Nodes and Order of Interpolation As noted previously, dis-
placements (or other degrees of freedom) are calculated at the nodes of the
element. At any other point in the element, the displacements are obtained by
interpolating the nodal displacements. In most cases, the order of interpola-
tion is determined by the number of nodes in the element. Elements that have
nodes only at their corners, such as the linear triangle, linear rectangle, and the
8-node brick element shown in Figure 20.8(a) use linear interpolation in each
direction and are often called linear elements or first-order elements. Elements
with midside nodes, and possibly interior nodes, such as the 20-node brick el-
ement shown in Figure 20.8(b) use quadratic interpolation and are often called
quadratic elements or second-order elements.

Figure 20.8: (a) Linear and (b) quadratic 3D elements.

20.2.3 Element Size

Imagine a one-dimensional FE structure that has an exact solutionu(x) as
shown in Figure 20.9. Assuming that the nodal values are exact (which is not
always the case), the finite element solution obtained with linear elements is
piecewise linear, and coincides with the exact solution only at the nodes. At
all other points, there is an error between the exact and finite element solu-
tions. When the mesh is refined, however, the piecewise linear solution ap-
proximates the exact solution more closely, and the error is reduced.

A correct FE formulation therefore converges to the exact solution of the math-
ematical model as the mesh is infinitely refined. Since an infinitely dense mesh
is far from practical, the ideal case would be an acceptable accuracy at a rea-
sonable mesh density. The rate of convergence, which describes how fast the
solution converges to the exact one, varies for different element types, and can
be obtained by analysis, or by a study of results from a sequence of succes-
sively refined meshes. In general, the convergence rate of a linear element is 1
for the displacement, which means that if the element length is halved, the er-
ror in the displacement is halved as well. A quadratic or second-order element
converges more rapidly, with a convergence rate of 2 for the displacement,
meaning that if the element length is halved, the error in the displacement is
quartered.
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xx

Exact solution, u(x)

Finite element solution
(piecewise linear)

Error

Error

(a) (b)

Figure 20.9: The piecewise linear finite element solution converges to the exact
solution as the mesh is refined. Note that the error, which is the difference between
the exact and finite element solutions, is much smaller in the refined mesh of (b).

20.3 Example Problem

As an example of finite element analysis, consider the problem shown in Fig-
ure 20.10. The beam is of uniform cross Section , and the material is linearly
elastic, isotropic and homogeneous. We wish to find the stresses and deflec-
tions due to the loading of the cantilever beam.

Figure 20.10: A loaded cantilever beam.

20.3.1 Finite Element Analysis

Any general-purpose FEA software involves the following steps.

1. Preprocessing: Input data describes geometry, material properties, loads
and boundary conditions. Software can automatically prepare much of
the FE mesh, but the analyst must choose one or more element formu-
lations that suit the mathematical model, and state the mesh density, in
other words, how large or small the elements should be in selected por-
tions of the model.

2. Numerical analysis: Software automatically generates matrices that de-
scribe the behavior of each element, merges these element matrices into
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the global matrix equation that represents the FE structure, and solves
these equations to determine the values of field quantities (usually dis-
placements) at nodes. If the problem is nonlinear or time dependent,
additional directions regarding the solution steps are needed from the
analyst.

3. Postprocessing: The FEA solution (e.g., displacements) and derived quan-
tities (e.g., stress) are listed or graphically displayed, as the analyst
chooses. In stress analysis, typical visualizations include the deformed
shape and various stress measures.

In particular, you will have used Abacus/CAE to solve this problem.

20.3.2 Checking the Results

Once the FEA solution is found, the first step in checking that the solution is
correct is to examine the results qualitatively and ask if they“look right”, in
other words, are there obvious errors? Boundary conditions are often mis-
represented; does the deformed FE structure show displacements where there
should not be any? Are expected symmetries present in the solution? Beyond
these questions, FEA solutions should be compared with solutions from pre-
liminary analysis, or any other useful information that may be available.

For the example problem, the deformed shape is shown in Figure 20.11 (the
deformation is exaggerated), showing that the fixed boundary of the left end
has indeed not moved, and the deformation is mostly in the vertical down-
ward direction as expected. In fact, we can do better that these qualitative
assessments, as the tip displacementδ of a cantilever beam under distributed
loading is known:

δ =
FL3

8EI
=

(0.5 × 106)(0.02)(0.025)(0.23)

8(209 × 109) 1
12 (0.025)(0.023)

= 7.177 × 10−5m. (20.39)

The result from Abaqus/CAE using linear incompatible elements, C3D8I, with
252 nodes isδ = 7.127 × 10−5m, an error of 0.7%, which is acceptable in most
cases. Using quadratic elements, C3D20, with the same number of elements
but now with 849 nodes gives δ = 7.155 × 10−5m, an error of 0.3%. It also
takes longer for the analysis job to finish. On the other hand , using linear
elements without incompatible modes, C3D8, results inδ = 7.071 × 10−5m, an
error of1.5%.
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Figure 20.11: The deformed cantilever beam.

In most cases, the exact solution is not known. One way to judge the ade-
quacy of a discretization is to look at plots of stress. Software can plot either
stress contours or“stress band s,” which are zones of color, with different colors
representing different levels of stress. Stress is related to the gradients of the
displacement, and in most cases, stress band s discontinuous across element
boundaries. Strong discontinuities indicate that the discretization is too coarse
while practically continuous band s suggest unnecessarily fine discretization.
Software can be instructed to display stress contours from nodal average val-
ues of the stress, which removes the inter-element discontinuities. This results
in a more visually pleasing display, but information useful in judging the qual-
ity of computed results is lost. The stress contours for the example problem
is shown in Figure 20.12, for both averaged and unaveraged stresses, where
C3D8I elements were used. The stress contours in Figure 20.12(a) show mild
discontinuities across the elements, and the discretization may be adequate in
most cases.

Figure 20.12: Top: Stress contours without nodal averaging, showing stress dis-
continuities across elements. Bottom: Stress contours with nodal averaging, stress
values are continuous, but important information is lost.
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20.3.3 Expect to Revise

A first FE analysis is rarely satisfactory. There may be obvious mistakes, or
large discrepancies between expected and computed results. The discretiza-
tion may be inadequate, requiring mesh revision. In analyzing a new prob-
lem, it is almost always best to begin with a simple FE model, to which detail
is added as you learn more. Each revision is a step to an adequate solution.

20.4 Going further with Abaqus/CAE

20.4.1 Partitioning Your Part

In some of your projects, different portions of your model have different ma-
terials properties. What to do? For all the projects, your model will require
only one part. In this case, the easiest way is to partition your part and assign
different Section s to each partition. Look at Figure 20.13. The cantilever beam
of the example now consists of two parts, each of a different material. You
shouldn’t have to start a new model from scratch - when you want to modify
an existing model, such as the one you’ve created for the cantilever problem
of Figure 16, right-click on the model and select Copy Model. This creates an
exact copy of your model, which you can then modify as you need.

To partition the part, one way is to use the Create a datum point toolset on
one of the edges, at the correct location. Then, use Partition cell:define cutting
plane toolset to partition the part by choosing the point just created, and an
edge to be normal to the cutting plane. The partitioned beam part is shown in
Figure 20.14.

Now, two materials have to be created with different material properties. Steel,
and aluminum alloy, each with their elastic modulus and Poisson’s ratio. Two
Section s will have to be created as well, one with steel as the material, and the
other with aluminum alloy as the material. Assign the correct Section to each
partition.

Steel Aluminum alloy

80 mm

Figure 20.13: A loaded cantilever beam of two materials.
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Figure 20.14: A loaded cantilever beam of two materials.

20.4.2 Meshing with Uneven Density

For the most efficiency, the mesh should be finest where the stress gradients
are high, such as near discontinuities or other areas of stress concentration. In
order to obtain a mesh that is unevenly spaced, you can seed the mesh along
each edge separately. In the Mesh module, select Seed→Edges. When you
have picked the edges you want seeded, the Local Seeds dialogue box will
come up. Select Size for the Method, and choose Single for Bias, and enter5
and 15 for Minimum and Maximum Size, respectively. The red arrow along the
edges you picked should point towards the direction where the seeds become
spaced closely. If not, click the button Select for Flip Bias. For the edges that
you want even spacing, choose None for Bias. Make sure that all the edges are
seeded.

Figure 20.15: A mesh that is finer near the interface of the two materials.

20.4.3 Changing the Contour Plots

The quantity that is plotted in the contour plot can be changed by selecting
Result→Field Output from the main menu bar. Choose the variable from
thePrimary Variable tab.
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Select Result→Options from the main menu bar to choose whether to average
the output over the nodes or not.

The minimum and maximum values shown in the contour plot can be com-
puted by Abaqus/CAE, or may be specified by you. The contour limits, con-
tour type, and intervals may be specified by selecting Options→Contour from
the main menu bar.

20.4.4 Creating X-Y Plots

An X-Y data object is a collection of ordered pairs that Abaqus/CAE stores in
two columns - an X-column and a Y-column. The X-Y data can come from the
output database, or entered from a keyboard. You can also combine existing
X-Y data objects to create new X-Y data. Abaqus/CAE can display X-Y data in
the form of an X-Y plot, a two-dimensional graph of one variable vs. another.

For example, let’s say you want to create a plot of the displacement of the
beam along the length of the beam. The X-Y data will be specified from the
Field Output of the database, along a path that you specify. First let’s create
a path. In the Results tree, double click on Path to bring up a create path
dialogue box, and choose a name for your path, and Node list as Type. In
Viewport selections, choose Add After, then choose the nodes along the path
as shown in Figure 20.16 (hold down the shift key as you click on each node
with your mouse ). Once the path is defined, double click XYdata from the
Results tree, and choose Path as Source. Choose the path you just defined. For
the Y Values, click on Step/Frame button to choose the frame that you want
to read the data from (in our example, it is Frame 1 of the BeamLoad step),
then click on Field Output button to choose U.U2. Click Plot. The X-Y plot of
displacement U2 along the length of the beam will be displayed as shown in
Figure 20.17. You can also save the X-Y data by clicking Save As, and write
out the data by selecting Report→XY.

Figure 20.16: Selection of nodes for creating a path.
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Figure 20.17: An X-Y plot of the vertical displacement along the length of the
beam.

Nomenclature

δ Compressive displacement.
δt Tensile displacement.
G Energy release rate
ν Poisson’s ratio
ρ Density (kg/m3)
ρc Crack tip radius of curvature
σ Stress
σf Fracture strength
A Contact area
A0 Undeformed cross section
bc Minor axis of elliptical crack
C Compliance
C0 Flat punch compliance for a rigid punch with a circular cross section

in contact with an elastic half space.
d Diatance from crack tip.
E Young’s modulus
Er Reduced modulus
G Shear modulus
h Thickness of the compliant layer
hp Plastic zone size
Kb Bulk modulus
P Compressive force.
P Force (with components P1, P2, P3)
p Hydrostatic pressure
Pt Tensile force
Pt Tensile force.
W Work done on system
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21 Python Code Examples

1. Rotation of a Tensor: MATLAB version on page ??.

1 #!/usr/bin/env python3
2 # -*- coding: utf -8 -*-
3

4 import numpy as np
5 sig=np.zeros((3, 3)) #% create stress tensor and set to

zero
6 sig[0, 0] = 5e6; # this is the only nonzero component
7

8 sigp=np.zeros((3, 3)) # initalize rotated streses to zero
9

10 phi = 45
11

12 theta = [[phi ,90-phi ,90], [90+phi ,phi ,90], [90 ,90 ,0]]
13 theta = np.deg2rad(theta) # trig functions need angles in

radians
14 for i in [0, 1, 2]:
15 for j in [0, 1, 2]:
16 for k in [0, 1, 2]:
17 for l in [0, 1, 2]:
18 sigp[i,j]=sigp[i,j]+np.cos(theta[i,k])*np.

cos(theta[j,l])*sig[k,l]
19

20 print(sigp) # display the transformed tensor components

2. Calculation of the Principal Stresses (Eigenvalues and Eigenvectors of a
Tensor): MATLAB version on page ??.

1 import numpy as np
2

3 # write down the stress tensor that we need to diagonalize
4 sig=1e6*np.array ([[2.5 ,2.5 ,0] ,[2.5 ,2.5 ,0] ,[0 ,0 ,0]])
5

6 # get the eigen values and eigen vectors
7 [principalstresses , directions ]=np.linalg.eig(sig)
8

9 # the columns in 'directions ' correspond to the dot product
of the

10 # principal axes with the orignal coordinate system
11 # The rotation angles are obtained by calculating the

inverse cosines
12 theta=np.arccos(directions)*180/( np.pi)
13

14 # print the results (or just look at them in the variable
explorer in Spyder)

15 print ('theta =\n', theta)
16 print ('principal stresses =\n', principalstresses)

3. Geometric Correction factors for the Energy Release Rate (Figure 7.9).

1 # finite size correction factors for the flat punch problem
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2

3 # import the python modules that we need
4 from sympy import symbols , diff , lambdify , simplify
5 import numpy as np
6 import matplotlib.pyplot as plt
7

8 # make and label axes
9 fig , ax = plt.subplots (1,1, figsize =(3 ,3))

10 ax.set_xlabel('a/h')
11 ax.set_ylabel('correction factor ')
12 fig.tight_layout ()
13

14 # create the symbolic functions that we need
15 ah = symbols('ah')
16 fC =(1+1.33*( ah)+1.33*( ah) ** 3)**( -1)
17 fGp = -(ah ** 2)*diff(fC/ah , ah)
18 fGd = fGp/fC**2
19

20

21 # convert symbolic functions to callable numpy functions and
plot them

22 ah_vals=np.linspace (0.01 , 5, 100)
23 sym_functions = [fC, fGp , fGd]
24 markers = ['-','--', ':']
25 labels = [r'$f_C$ ', r'$f_{\ mathcal{G}p}$', r'$f_{\ mathcal{G

}\delta}$']
26 for i in np.arange(len(sym_functions)):
27 func = lambdify(ah , sym_functions[i], 'numpy ')
28 ax.semilogy(ah_vals , func(ah_vals), markers[i], label=

labels[i])
29

30 # add legend , clean up some details of the figure and save
the image file

31 ax.legend ()
32 ax.set_xlim(left =0)
33 ax.set_xticks(np.arange (6))
34 fig.savefig('../ figures/flat_punch_finite_size_corrections.

svg')
35

36 #%% plot of normalized G vs. displacement (from Rebecca
Webber 's paper)

37 plt.close('all')
38 ah_vals=np.linspace (0.01 , 2, 100)
39 Gd_norm = (2/(3* np.pi))*(1/ah)*fGd
40 Gd_norm2 = (2/(3* np.pi))*fGd
41 Gd_func = lambdify(ah , Gd_norm , 'numpy ')
42 Gd_func2 = lambdify(ah, Gd_norm2 , 'numpy ')
43

44 fig2 , ax2 = plt.subplots (1,2, figsize =(6,3))
45 ax2 [0]. plot(ah_vals , Gd_func(ah_vals),'-')
46 ax2 [0]. set_ylim ([1 ,5])
47 ax2 [0]. set_xlabel('a/h')
48 ax2 [0]. set_ylabel(r'$\mathcal{G}h/E_r\delta_t ^2$')
49

50 ax2 [1]. plot(ah_vals , Gd_func2(ah_vals),'-')
51 ax2 [1]. set_xlabel('a/h')
52 ax2 [1]. set_ylabel(r'$\mathcal{G}a/E_r\delta_t ^2$')
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53

54 fig2.tight_layout ()
55 fig2.savefig('../ figures/confinement_normGd.svg')
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22 332 PROBLEMS

22 332 Problems

Notes:

• If you use MATLAB or Python to solve any of these problems, include
the code that you used.

22.1 Course Organization

1) Send an email to Prof. McCue (ian.mccue@northwestern.edu),
Qihua Chen (r6p5t6@u.northwestern.edu), and Donghoon Shin
(donghoonshin2023@u.northwestern.edu). If you have not taken CE 216
or the MSE 316 sequence, let us know why. Otherwise, let us know how
comfortable you feel with the material from CE 216 and MSE 316-1. Also let
us know what you have enjoyed most about MSE so far, what you like least
(if such a thing exists!) and if you are involved in any research within the
department or elsewhere.

22.2 The Stress Tensor

2) Consider the following stress tensor:

σij =

 4 3 0
3 1 2
0 2 6

 x106 Pa

(a) Calculate the stress tensor for coordinate axes rotated by 30◦ about the z
axis (the 3 axis).

(b) Repeat the calculation for a 30◦ rotation around the x axis (the 1 axis).

(c) Calculate the three principal stresses.

(d) Calculate the maximum shear stress in the sample.

3) Consider the following stress tensor:

σij =

 −2 1.4 0
1.4 6 0
0 0 2

 x106 Pa

(a) Draw a Mohr circle representation of the stress contributions in the xy
plane
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22 332 PROBLEMS 22.3 Strains

(b) What are the three principal stresses?

(c) Show that the the sum of the diagonal components from original stress
tensor is equal to the sum of the three principal stresses. What is the
hydrostatic pressure for this stress state?

22.3 Strains

4) An engineering shear strain of 1 (100%) is applied to a rubber cube with
dimensions of 1cm×1cm×1cm. Young’s modulus for the rubber sample is 106

Pa, and you can assume it is incompressible.

(a) Sketch the shape of the object after the strain is applied, indicating the
dimensions quantitatively.

(b) On your sketch, indicate the magnitude and directions of the forces that
are applied to the object in order to reach the desired strain.

(c) Calculate the 3 principal extension ratios characterizing the final strain
state.

22.4 Typical Moduli

5) Calculate the sound velocities for shear and longitudinal waves travel-
ing through the materials listed in the ’Representative Moduli’ table from the
course text.

22.5 Matrix Representation of Stress and Strains

6) For an isotropic system there are only two independent elastic constants,
s12 and s11. This is because if properties are isotropic in the 1-2 plane, the com-
pliance coefficient describing shear in this plane,s44, is equal to2 (s11 − s12).
We can use the Mohr’s circle construction to figure out why this equality must
exist.

(a) Start with the following pure shear stress and strain states:

σ =

 0 σ12 0
σ12 0 0
0 0 0

 ; e =

 0 e12 0
e12 0 0
0 0 0


Use the matrix formulation to obtain a relationship between σ12 and e12
in this coordinate system.
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(b) Rotate the coordinate system by 45◦ so that the stress state looks like this:

σ =

 σ
p
1 0 0
0 σ

p
2 0

0 0 0

 ; e =

 ep
1 0 0
0 ep

2 0
0 0 0


Use the Mohr’s circle construction to write these principal stresses and
strains in terms of σ12 and e12. Then use the matrix formulation to obtain
an expression betweenσ12 ande12 in this rotated coordinate system.

(c) For an isotropic system, the relationship between σ12 ande12 should
not depend on the orientation of the coordinate axes. Show that the
only to reconcile the results from parts a and b is for s44to be equal to
2 (s11 − s12).

7) Consider a material with orthorhombic symmetry, with different prop-
erties along the 1, 2 and 3 directions. Young’s moduli are measured along the
3 different directions, and we obtain the following results:

E1 = 5.5 GPa; E2 = 2.0 GPa; E3=3GPa

(a) Is this material a metal, a ceramic or a polymer? How do you know?

(b) The compliance matrix, s, is a symmetric 6x6 matrix as shown below. For
this material, cross out all of the elements that must be zero.


s11 s12 s13 s14 s15 s16
s12 s22 s23 s24 s25 s26
s13 s23 s33 s34 s35 s36
s14 s24 s34 s44 s45 s46
s15 s25 s35 s45 s55 s56
s16 s26 s36 s46 s56 s66


(c) What are the values of s11, s22 and s33 for this material?

(d) A value of 0.38 is obtained for Poisson’s ratio is measured in the 1-2 plane
by applying a tensile stress in the 1 direction and measuring the strains
in the 2 direction. What is the value of s12 for this material?
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8) Consider a material with elastic constants given by the following com-
pliance matrix:

sij =


14.5 −4.78 −0.019 0 0 0
−4.78 11.7 −0.062 0 0 0
−0.019 −0.062 0.317 0 0 0

0 0 0 31.4 0 0
0 0 0 0 61.7 0
0 0 0 0 0 27.6

GPa−1

(a) Describe the symmetry of this material, and explain your reasoning.

(b) What is the highest value for Young’s modulus that you would expect
for this material? What direction does it correspond to?

(c) Calculate the value of Poisson’s ratio obtained from an experiment where
the materials is pulled in the 3 direction and change in sample width in
the 2 direction is measured.

22.6 Other Linear Properties

9) Quartz has the 32 point group which has a coefficient map that looks
like this:

6
2
2
2
0
1
13

x -x -2x

(a) Consider the converse piezoelectric effect, where an electric field is ap-
plied along a particular direction and we are interested in determining
the resulting strains in the material. Will any strains be generated in the
material if I apply an electric field along the ’3’ direction of the crystal?
Why or why not?

(b) Compare the normal strains in the 1 and 2 directions that are obtained
when an electric field is applied in the 1 direction.

(c) Are any shear strains developed in the material when an electric field
is applied in the 1 direction? If so describe the orientation of this shear
strain.
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(d) How many independent elastic constants are there for quartz?

(e) Does the shape of a chunk of single crystal quartz change when you heat
it up? (Note: this is another way of asking if the thermal expansion of
quartz is isotropic).

22.7 Yield Criteria

10) A cube of material is loaded triaxially resulting in the following prin-
cipal stresses at the point

of plastic yielding: σ
p
1 =140 MPa, σ

p
2 =20 MPa, and σ

p
3 =35 MPa.

(a) What is the shear strength of the material according to the Tresca yield
criterion?

(b) If the the value of σ
p
3 were increased to 70 MPa, how does this change

your result? Explain.

11) From the work of D. C. Jillson, Trans. AIME 188, 1129 (1950), the fol-
lowing data were taken relating to the deformation of zinc single crystals:

Table 22.1: Applied tensile force for slip of single crystal Zn.

ϕ λ P (N)
83.5 18 203.1
70.5 29 77.1
60 30.5 51.7
50 40 45.1
29 62.5 54.9
13 78 109.0
4 86 318.5

In this table ϕ is the angle between the loading axis and the normal to the
slip plane,λ is the angle between the loading axis and the slip direction andP
is the force acting on the crystal when yielding begins. The crystals have a
cross-sectional area,A0, of 122x10−6m2.

(a) What is the slip system for this material.

(b) For each combination of P, ϕ and λ, calculate the resolved shear stress,
τRSS and normal stress, σN acting on the slip plane when yielding begins.
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(c) From your calculations, does τRSS or σN control yielding?

(d) Plot the Schmid factor versus the applied stress, P/A0, acting on the rod.
At what Schmid factor value are these experimentally-measured yield
loads at a minimum? Does this make sense?

12) The tensile yield stress of a materials is measured as 45 MPa by a uni-
axial tensile test.

(a) What will the shear stress of the material by if the materials yields at a
specified value of the Tresca stress?

(b) Now calculate the same quantity (shear yield stress) if the material yields
at a specified value of the Von Mises stress.

(c) Suppose the material is a glassy polymer like Plexiglas, and Tresca yield
stress is obtained from a uniaxial compression experiment and from a
uniaxial tensile experiment. Which of these experiments to you expect to
give the largest Tresca yield stress?

13) What is the effect of the resolved normal stress on the yield behavior
of crystalline metals and ceramics? What about polymers? Describe any dif-
ferences between the two cases.

14) A sample of pure iron has a uniaxial tensile yield strength of 100 MPa.
Assume that the yield behavior is described by the Von Mises yield criterion.

(a) What do you expect for the yield strength of the material in a state of
uniaxial compression?

(b) What will the yield strength be under a stress state of pure hydrostatic
pressure?

(c) What is the shear yield strength of the material.

15) Consider the following two stress-strain curves obtained from a glassy
polymer material. In these plots σt is the true stress and λ is the extension ratio
(1+e, wheree is the tensile strain).
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(a)

x
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x50

(a) Sketch the behavior of the engineering stress vs extension ratio that you
expect for each of these samples in a uniaxial tensile test. Be as quantita-
tive as possible. Briefly describe why you drew the curves the way you
did.

(b) Which of these samples can be cold drawn? What value do you expect
for the draw ratio? (The plastic strain in the drawn region of the sample)?

(c) Suppose the cross sectional area of each sample is 1 cm2. What is the
maximum load that the sample will be able to support prior to failure
for each of the two samples?

16) Consider a material with the following true stress vs. engineering
strain behavior, measured in uniaxial extension:
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(a) Suppose the cross sectional area of this material is 1 cm2. Calculate the
maximum force that this material would be able to support prior to fail-
ure.

(b) Will this material form a stable neck? If so, what is the characteristic
strain in the necked region?
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17) The following stress tensor describes the state of stress of a material at
its yield point:

σ =

 0 3 0
3 0 0
0 0 −5

MPa

Suppose the same material is subjected to stress state of simple shear. At what
value of the applied shear stress do you expect yielding to occur, assuming
that the material obeys a Tresca yield criterion.

22.8 Strengthening Mechanisms

18) Consider the two red dislocations at the center of the two diagrams
shown below: (All of the dislocations are perpendicular to the plane of the
paper.) We are interested in the effect that the central dislocation has on each
case on the 4 surrounding black dislocations.

R = right-handed screw dislocation;  L = left-handed screw dislocation

RR

R

L

(a) For each of the 5 black edge dislocations, indicate the slip planes with a
dashed line.

(b) Draw an arrow on each of the black edge dislocations, showing the di-
rection of the force within its slip plane that is exerted by the red disloca-
tion. If there is no force within the slip plane, circle the black dislocation
instead.

(c) For the three black screw dislocations, draw an arrow on them to indicate
the direction of the slip force exerted by the red dislocation. If the slip
force is zero, circle the black screw dislocation instead.
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19) Consider the two edge dislocations shown below. Suppose dislocation
1 remains fixed in place, but that dislocation 2 is able to move on its glide
plane.

(a) Assume that the sense vector, s⃗, for each dislocation is defined so that
s⃗ points into the page. Indicate the direction of b⃗ for each of the two
dislocations.

1

2

(b) Indicate the glide plane for dislocation 2 with a dotted line.

(c) Indicate with an X the location of dislocation 2 at the position within its
glide plane that minimizes the total strain energy of the system.

(d) Now suppose that dislocation 1 is a fixed, left-handed screw dislocation
and dislocation 2 is a mobile right-handed screw dislocation.

i Use a dotted line to indicate the plane on which you expect disloca-
tion 2 to move in order to minimize the overall strain energy of the
system.

ii Plot the overall strain energy of the system as a function of the dis-
tance between the two screw dislocations.

20) The figure below shows the yield strength of a precipitation hardened
aluminum alloy as a function of aging time at different temperatures. Note
that the yield strength initially goes through maximum and then decreases
with time. Explain why this happens in as much detail as possible.
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21) The following plot shows values of the yield strength of copper sam-
ples as a function of the grain size of these samples.
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(a) Describe why the yield stress decreases with increasing grain size.

(b) Describe the procedure you would use to determine the limiting value
of the yield strength in the absence of grain boundaries.

22) The yield point for a certain plain carbon steel bar is found to be 135
MPa, while a second bar of the same composition yields at 260 MPa. Metallo-
graphic analysis shows that the average grain diameter is 50 μm in the first bar
and 8 μm in the second bar.

(a) Predict the grain diameter needed to give a yield point of 205 MPa.

(b) If the steel could be fabricated to form a stable grain structure of 500 nm
grains, what strength would be predicted?

23) The lattice parameters of Ni and Ni3Al are 3.52×10−10 m and 3.567 ×
10−10 m, respectively. The addition of 50 at% Cr to a Ni-Ni3Al superalloy
increases the lattice parameter of the Ni matrix to 3.525 × 10-10 m. Calculate
the fractional change in alloy strength associated with the Cr addition, all other
things being equal.

24) General Knowledge

How are G, ν and K related to one another for an isotropic material?
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What are typical values of G and K for metals, ceramics and polymers?

22.9 Contact Mechanics

25) Consider the contact of a flat rigid punch with a thin elastic layer, as
shown schematically below:

2a

rigid substrate

rigid
cylinder

compliant
layerh

Suppose the compliant layer is incompressible gel (ν = 0.5), with a Young’s
modulus,E, of 104 Pa. The critical energy release rate for failure at the
gel/punch interface is 0.1 J/m2. The punch radius, a, is 3 mm.

(1) What is the tensile force required to separate the punch from the layer if
the layer is infinitely thick?

(2) What is the stress intensity factor, KI , just prior to detachment of the
punch from the surface?

(3) How close to the punch edge to you need to be for the tensile stress at
the punch/layer interface to be equal to the modulus of the layer?

26) Describe in qualitative terms what happens to the following quantities
as the thickness, h, of the compliant layer from the previous problem decreases:

(1) The overall compliance of the system.

(2) The load required to detach the indenter from the substrate.

(3) The displacement at which the indenter detaches from the substrate.

(4) The shape of the tensile stress distribution at the punch/substrate inter-
face.
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22.10 Nanoindentation

27) Commercial nanoindenters are generally not suitable for the charac-
terization of soft materials. To understand why this is the case, consider the
following indentation data from the Hysitron web site (this is for the same
instrument that Northwestern has in the NUANCE facility):

(1) If the data in this figure are obtained with a rigid spherical indenter of
radius R, use the data from this figure to estimate the value of R. Assume
that the material is being indented elastically and that adhesion can be
neglected. (You’ll need to look up mechanical property data for silicon).

(2) Suppose that the material is replaced by an elastomer with a modulus
of 106 Pa. What value of R would need to be used to obtain the same
Force displacement curve for this much softer material? (Assume that
the effects of adhesion can eliminated by performing the indentation in
a suitable liquid).

28) Suppose an elastomeric sphere with a radius of 1 mm and a reduced
modulus, E∗, of 106 Pa is placed on a flat, rigid substrate. Suppose also that
the adhesion between the sphere and the substrate is characterized by a critical
energy release rate of 0.05 J/m2, independent of the crack velocity or direction
of crack motion. Calculate the radius of the circular contact area that develops
between the elastomer and the surface, assuming that there is no external load
applied to the sphere (apart from it’s weight).

29) Obtain the hardness and elastic modulus from the following nanoin-
dentation curve, obtained from a Berkovich indenter:
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22.11 Fracture Mechanics

30) The stress fields in the vicinity of a crack tip in a material are deter-
mined by the distance, d, from the crack, and the polar angle θ, defined in the
following diagram.

y

x

 

σ0

σ0

(1) For a fixed value of d, plot the behavior of σxx, σyy and σxy for a mode I
crack as a function of θ.

(2) What happens to the stresses for θ = 180◦? Why does this make sense?

(3) A mode I crack will travel in the direction for which the normal stress
acting across the crack surfaces is maximized. What direction is this?

31) Look up the fracture toughness (KIC) and Young’s modulus (E) for
window glass. Assuming that the maximum local stress is ≈ E/10, estimate
the crack tip radius of curvature for a crack propagating through window
glass.
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32) As a crack advances, what happens to the stiffness of the cracked body?
What happens to the compliance?

33) A set of double cantilever beam adhesion test specimens was fabri-
cated from a set of aluminum alloy samples. The geometry as as shown below:

Suppose each of the two beams has a thickness (t) of 10 mm, a width (w) of 20
mm and a length of 80 mm. The double cantilever beam sample was produced
by using an adhesive to glue the two beams together. Assume the precrack
with a length, ac, of 10 mm. The critical energy release rate for the adhesive is
65J/m2.

(1) Calculate the values of the tensile load, P, and the displacement, ∆,
where the crack starts to propagate.

(2) In a load-controlled experiment, Pt is held constant once the crack starts
to propagate, and in a displacement controlled test ∆ is held constant
once the crack starts to propagate. From the relationship between G and
Pt, ∆ and a, describe why the load controlled experiment results in un-
stable crack growth, but the displacement controlled experiment results
in stable crack growth.

(3) From your answer to part b, describe how you would design an experi-
ment where you measured the energy release rate required to propagate
the crack at a specified velocity.

34) What is crack tip shielding?

35) Describe the difference between a crack and a craze? How is the maxi-
mum width of a craze related to Gc and KIC?

36) Describe how transformation toughening works to increase the tough-
ness of a ceramic material like ZrO2.

37) What is a Charpy impact test conducted, and what does it measure?
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38) What the difference between the side windows of your car and the
windshield? Include the role of tempering, thermal annealing and composite
layering, and describe how the desired properties are obtained for the two
different applications of glass.

39) The following data were obtained for the fracture stress of a series of
silica glass fibers used for optical communications:

The graph shows the distribution of failure probabilities as a function of the
applied tensile stress. None of the samples had fractured at a stress of 4.5
GPa, but they had all fractured at a stress of 6 GPa. From these data, and
from fracture toughnesses given for inorganic glass in class (and in the course
notes), estimate the intrinsic flaw sizes that are present at the surface of the
glass fibers. Comment on these sizes, and if you think the fracture mechanics
analysis makes sense to use in this case.

40) Silicones containing resin fillers are used as an encapsulant materials
in light emitting diodes (LEDs) in order to protect the electronics from harsh
environments and to aid in heat dissipation. Near the surface of the electronic
components, temperatures can go as high as200 ◦C for extended time periods.

Figure 22.1: High dynamic mechanical contrast is important

(1) Given that a high dynamic mechanical contrast is desirable in creating a
soft material with high fracture toughness, what would you suggest as
a design criteria in order to maintain high dynamic mechanical contrast
at high temperatures? (Hint: think about the role of the Tg of the matrix
and filler content.)
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(2) Thermal mismatch at the interface between the encapsulant and elec-
tronic can lead to residual stresses that promote crack propagation. In
assessing the performance of the encapsulant at the interface, should a
failure stress or a failure strain criteria be used? Why?

(3) From a thermal management and mechanics perspective, why do you
think a soft encapsulant (e.g. silicone) will be more preferable over a
hard encapsulant (e.g. glass)?

22.12 Weibull Statistics

41) A set of glass rods with a Weibull modulus of 30 are fractured in a
uniaxial tensile test. The stress at which 63% of the samples fracture is 100
MPa.

(1) What is the maximums stress if you want to make sure that less than one
in 100 rods fail? (Note that 1/e is 0.37).

(2) What is the maximums stress if you want to make sure that less than one
in 106 rods fail?

(3) What does the stress need to be to get less than 1 failure in106 if the
Weibull modulus is 10 instead of 30?

42) What determines the value of the Weibull modulus in a brittle mate-
rial?

43) A brittle material with a specified geometry fails with a 50% probability
at a tensile stress of 100 MPa. From the failure statistics, it is determined that
the Weibull modulus for this material is 40. What fraction of these materials
will fail at a tensile stress of 70 MPa?

22.13 Viscoelasticity

44) The following questions relate to the DGEBA-PACM/Jeffamine system
that was introduced in class.

(1) For the D230-based system, make a plot comparing the temperatures
where the slope in log(E′) vs. temperature is maximized, and also the
temperature where tan(δ) is maximized. Comment on the relationship
between these two temperatures.
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(2) How many moles of D230 need to be combined with one mole of DGEBA
to make a stoichiometric mixture? (no PACM added)

(3) How many grams of D230 need to be combined with one mole of DGEBA
to make a stoichiometric mixture? (again assume that no PACM is added.
Note that 230 in this case is the molecular weight of the Jeffamine in g/-
mole. You’ll need to calculate or look up the molecular weight of DGEBA
to do this DGEBA stands for diglycidyl ether of bisphenol A, but DGEBA
is pretty standard abbreviation for it).

(4) What happens to the amount of jeffamine you need to add to get a stoi-
chiometric ratio as the molecular weight of the jeffamine is increased as
you move from D230 to D400 to D2000 to D4000? (a qualitative answer
is okay - you don’t need to be quantitative for this. Continue to assume
that no PACM is added).

(5) What happens to the glass transition temperature for samples with-
out any PACM as the molecular weight of the Jeffamine increases from
230g/mole to 400 g/mole? Describe how you obtained Tg from the data
shown in the lecture. Also describe why the trend in Tg is as you de-
scribe.

(6) Mixtures with DGEBA and an equal amount of jeffamine and PACM be-
come cloudy as the molecular weight of the jeffamine increases. Why is
this?

45) Consider a cylindrical metal bar with a density of 7.6 g/cm3, a diame-
ter of 1 cm and a length of 10 cm. It is suspended from a polymer fiber with a
length, ℓ, of 30 cm and a diameter of 1 mm.

Polymer Wire

Inertial Mass

(1) Suppose the fiber is perfectly elastic, with a shear modulus 109 Pa. Cal-
culate the natural frequency of the system if the bar is rotating back and
forth, causing the fiber to twist.

(2) Suppose the fiber is viscoelastic, with G′ at the frequency calculated from
part a equal to 109 Pa, and with G′′ = 107 Pa. How many periods of the
oscillation will take place before the magnitude of the oscillation decays
by a factor of e (2.72)? Note: the rotational moment of inertia for the
suspended metal bar in this geometry is mℓ2/12, where m is the total
mass of the bar and ℓ is its length.
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46) As mentioned in class, the Maxwell model, with a viscous element and
an elastic element in series with one another, is the simplest possible model for
a material that transitions from solid-like behavior at short times, to liquid-like
behavior at long times. For a shear geometry we refer to the elastic element as
G0 and the viscous element as η.

(1) For what angular frequency are the storage and loss moduli equal to one
another for a material that conforms to the Maxwell model? Express you
answer in terms of the relaxation time, τ.

(2) Suppose the material is oscillated at a frequency that is ten times the
frequency you calculated from part a. Does the material act more like a
liquid or a solid at this frequency? Describe your reasoning.

(3) Calculate the values of G′ and G′′ at the frequency from part b, and cal-
culate the phase angle, ϕ describing the phase lag between stress and
strain in an oscillatory experiment. Note that the following expression
relates ϕ, G′ and G′′:

tan ϕ =
G′′

G′

Does this phase angle make sense, given your answer to part b? Com-
pare your value of ϕ to the values you expect for a perfectly elastic solid
and a perfect liquid.

47) The following stress and strain response are observed for a material
during the initial stages of a creep experiment.

1
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0.06

10 20 30 40

(1) Draw a spring/dashpot model that describes this behavior. Label mod-
uli and viscosities as quantitatively as possible.

(2) A stress relaxation test (strain shown below) is performed on the same
material. On the stress axis below, draw the stress response that you
expect for the model you have drawn from part a.
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48) A tensile experiment is performed on a viscoelastic material, with the
tensile strain (e) and tensile stress (σ) exhibiting the time dependence shown
in the following figure:

(1) Draw a spring and dashpot model that would give this response. Give
values (modulus or viscosity) for each element in your model (the values
of these quantities are not expected to be exact).

(2) Suppose the sample were vibrated in tension at a frequency of 1000 Hz
(cycles per second). Estimate the value of |E∗| (magnitude of the complex
shear modulus) that you would expect to obtain.

(3) For what range of frequencies do you expect the loss modulus (E′′) to
exceed the storage modulus (E′) for this material?

49) Can creep of a glass window by viscous flow give measurable changes
in sample dimensions over a very long period of time? To sort this out, do the
following:

(1) Estimate the stress at the bottom of a very tall pane of window glass, due
to the weight of the window itself. Look up the density of silica glass,
and a height of the window that makes sense (choose a big one).
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(2) Estimate the viscosity that would be needed to give a measurable change
in sample dimensions after 400 years.

(3) Using the data below, does it make sense to you that observable flow
could noticeably change the dimensions of the window? (You’ll need
to make some assumptions about how the viscosity will extrapolate to
room temperature.

22.14 Nonlinear Viscoelasticity and Creep

50) A step stress (0 for t<0, σ for t>0) is applied to a solid which can be
modeled by the following combination of linear springs and dashpots:

E

E1

2

1
e

2e
3

e

(1) This model is useful because it includes a non-recoverable creep compo-
nent, a recoverable time dependent creep component, and an instanta-
neous, recoverable strain.

a) Identify the element (or combination of elements) in the above
model which is associated with each of these three contributions
to the strain.

b) Write down the expression for the total strain, e(t), after the impo-
sition of the step increase in stress.

c) Suppose the stress is applied for a long time, so that the strain is in-
creasing linearly with time. At some time, t′, the stress is removed.
Derive an expression for the change in strain after the stress is re-
moved.
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(2) This model has been applied to creep data for oriented polyethylene at
room temperature. Model predictions were compared to data obtained
from samples of high molecular weight (High M) and low molecular
weight (Low M). Both samples were drawn to the same draw ratio. The
following values of E1, E2, η2 and η3 were obtained from experimental
data:

Sample σ (GPa) E1 (GPa) E2 (GPa) η3 (GPa-s) η2 (GPa-s)
Low M 0.025 17.4 33.5 1.8x105 4300
Low M 0.05 13.6 35.6 6.3x104 5000
Low M 0.1 17.7 26.4 3.1x104 2200
Low M 0.15 17.7 26.5 2.6x104 2300
Low M 0.2 16.4 26.8 1.2x104 2000
High M 0.1 18.3 31.9 3.1x106 8.7x104

High M 0.15 16.6 21.3 1.7x106 7.3x104

High M 0.2 15.8 32.7 7.7x105 3x104

High M 0.3 25.4 39.1 4.8x104 2800
High M 0.4 25.0 43 3x104 3000
High M 0.5 21.7 46 2.5x104 5000

From the values of η3 given in this table, determine the stress depen-
dence of the steady state creep rate. From this stress dependence, calcu-
late the activation volume for non-recoverable creep in the high and low
molecular weight samples, and compare these values to one another.

51) Creep in metals at low stresses occurs by a vacancy diffusion mech-
anism, which means that the activation volume for these creep mechanisms
corresponds to the atomic volume. Show using the data below for silver that
we can safely replacesinh (σv/2kBT) with σv/2kBT, so that the creep rates are
linear in stress at all relevant temperatures and stresses where the dominant
creep mechanisms involve vacancy diffusion. (You’ll need to look up data you
can use to calculate the atomic volume of silver).
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23 332 Laboratories

23.1 L1-C: Finite Element Modeling of a Uniformaly Loaded
Cantilever Beam

The embodiment of stresses and strains in a cantilever beam is well known
from solid mechanics. A simple but powerful theory used to explain this be-
havior is Euler-Bernoulli beam theory, or E-B theory, a model that, while ex-
tremely useful, is limited. For example, it does not account for large or plastic
deformation, transverse shear strain, or Poisson contraction. You have likely
encounted this theory in CIV_ENG 216, if you’ve taken the course.

In this exercise, you will use the finite element method (FEM) to model a rect-
angular cantilever beam under load. You will use COMSOL explore the stresses
and strains present in the beam, compare your model to E-B theory, and use en-
gineering principles to optimize the cantilever design under operational con-
straint.

Outcomes

• Develop basic FEM models (defining geometries, loads, boundary con-
ditions, and meshes) using COMSOL.

• Use computational solvers to calculate and subsequently visualize stress
and displacement fields.

• Compare computational and analytical results, noting the strengths and
weaknesses of each model.

• Use your results to adapt the cantilever design to achieve a performance
tolerance using reasonable constraints.

Directions

Use COMSOL model a cantilever beam loaded on its top surface by a load Pz,
as shown in Figure 23.1, below. Step-by-step directions are supplied in the
walk-through handout.
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Figure 23.1: A cantilever beam with a uniform load on the top surface. Dimen-
sions not to scale.

The beam is made of a solid, linear-elastic material with various mechanical
properties: elastic modulus, Poisson’s ratio, and yield strength. Its dimensions
are length L, height h and base b. The beam is loaded with a uniform pressure
of Pz on the surface. We will model the cantilever beam to be affixed to the
wall at one end (displacements of nodes at x = 0 are u = v = w = 0). We
define our origin (point 0) as the point at the beam’s centroid and the interface
with the wall.

Using COMSOL, we’ll first use linear hexahedral elements with “normal” reso-
lution) to solve for, visualize, and interpret the displacement and stress fields
within the beam. We’ll then compare these values to E-B theory. Finally, you
will use parametric design techniques to design a stiff, lightweight composite
beam.

Refer to the walk-through provided in class to construct your model and per-
form the computational analysis. Don’t hesitate to ask questions if you get
stuck.

Exploration of the Model

Work in groups to compose a coherent, narrative, journal-style report of your
results. Work throug the following Parts to guide your investigation of the
model.

Part 1: Describe (using both words and figures) the u, v, and w (these are ex-
pressions u , y , and w in COMSOL) displacement fields present in the
deformed beam. Explain the sources of the features of these fields
and their pertinent features.

Part 2: Describe (using both words and figures) the σyy (solid.sy) and von
Mises (σv, solid.mises) stress fields present in the deformed beam.
Explain the similarities and differences between these fields. Do you
expect this beam to yield?1

1It’s my understand that you’ll be seeing yield criterion in later lectures. To determine whether
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Part 3: Plot and discuss the FEM-computed and the Euler-Bernoulli dis-
placement as a function of distance from the fixed end (y-direction).
The beam deflection in the z-direction as a function of distance is

w(y) =
ωy2

24EI
(y2 + 6ℓ2 − 4ℓy) (23.1)

where ω = F/ℓ in this equation is the applied force divided by the
length of the beam ℓ. The beam and I = bh3

12 is the second mo-
ment of inertia. Run this model for both linear shape functions and
quadratic Lagrange shape functions. What do you observe in each
case compared to the analytical result?

Part 4: Plot and discuss the FEM-computed and the Euler-Bernoulli axial
stresses (σyy, or solid.sy in COMSOL) in the tensile region of the beam
in the y-direction. Use quadratic Lagrange elements. The analyti-
cal expression for the axial stress, σyy, at the topmost xy-face of the
beam is:

σyy(y) =
ω(ℓ− y)2

2Z
, (23.2)

where Z = bh2

6 is the section modulus.

Part 5: Referring to your results in Parts 3 and 4, identify any major devia-
tions between the FEM results and the results from Euler-Bernoulli
theory. Identify two possible sources reasons for any derivations
you may see. Hint: Both E-B theory and your FEM model may have
shortcomings. Consider them both.

Part 6: You are charged designing this beam for a use in an engineering
application and you want to reduce its weight as much as possible
without resulting in yield (while accounting for a safety factor) and
limiting overall displacement. You decide to replace a portion of the
beam with a more compliant material. Based on your earlier results,
design a new composite beam which compiles to these restrictions.
Describe your engineering approach and your final design, as well
as how much you reduced the weight of the component.

• Part 6 Hints:
(1) Use Quadratic Lagrange elements. Find this under Solid

Mechanics →Discretization →Quadratic Lagrange
(2) Remember the layers option you encountered during geo-

metrical construction — this is a great area to explore. You
are, of course, free to consider other geometries.

the beam will yield, find if the maximum von Mises stress (σv>σy). This will shift you into the
plastic regime of the stress-strain curve.
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(3) Look at the von Mises stress field. Where can you tolerate
a more compliant material?

(4) You may have to remesh or re-apply boundary conditions.
(5) Parametrization studies (Study → Parametric Sweep)

are the best way to approach this problem. Figuring out a
good optimization algorithm may save you time and may
provide you with the best answer. Google is your friend
here.

(6) You can analyze values from a parameter sweep in the
Results tab.

(7) It is very easy to copy and modify an COMSOL model!

MAT SCI 332 FEM Report Guidelines

Your formal report should contain:

(1) A brief introduction describing your work and providing context for
your study.

(2) A methods section including all information necessary for the reader (as-
sume they know how to operate COMSOL).

(3) A results/discussion section in which you describe relavent results, an-
alyze the strengths and shortcomings of your FEM results and how they
compare to E-B theory, and present your newly designed composite
beam.

(4) A brief conclusion summarizing results and generalize the importance
of your study.

I am looking for accuracy and deliberation in your modeling and thoughtful
consideration of the results. I am not particaularly concerned the length of
your report, but about 5 pages of text (not including figures) is typically suf-
ficient. As is true for any report you turn in, your work should be concise,
readable, well cited, possess clear, informative figures. For technical writing,
I strongly recommend the use LATEX for good typesetting, figure presentation,
and equation writing. Overleaf is a powerful online LATEXeditor that you can
use for co-authoring in small groups.
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23.2 L3-C: FEM of a Stress Concentrator

In this assignment, you’ll assess the stress fields in a simulated section of the
of an aluminum (Young’s modulus E = 70 GPa, Poisson’s ratio v = 0.2)
ASTM tensile specimen. Here we investigate the stress concentration effects
of a 5 mm diameter (d) hole.

You will construct the finite element problem in Fig 23.2, below. In COMSOL,
define your origin to be center of the stress concentrator (the hole). The
experimental sample can be adequately approximated by approximating the
specimen as a 2D plate of length length (l)× width (w)× thickness (t) of 60
mm × 20 mm × 3.2 mm. We will take advantage of specimen symmetry and
Saint-Venant’s Principle and further reduce our model to a single quadrant of
the rectangular section of the gauge (dimensions shown in Fig. 23.2). We will
assume a plane-stress condition and operate in 2D. We’ll investigate the stress
distribution near the hole during ramping a load of σApp = 0MPa to 135MPa
and back to 0 MPa.

w = 12.70 mm

t =3.2 mm

d = 4.0 mm

d = 4.0mm

Scaled = 2x
FEA Model

Experimental Tensile Specimen

P = 100.0 MPa
Quadrant 1

Mirror Symmetry:

l = 50.00 mm

w
 =

 1
2

.7
0

 m
m

y

x

Figure 23.2: (Top) The ASTM dogbone specimen with a d = 5 mm hole drilled
through the center of the gauge. (Bottom) The finite element model limits the
calculation to the center of the gauge and takes advantage of mirror symmetries.

Part I

Use COMSOL and the walk-through to formulate the model in Fig. 23.2 using a
2D representation. Note that plane stress conditions (the principle stress in
the z-direction is zero) applies when the plate thickness is small compared to
the other plate dimensions, as is the case here. We seek to find the stress
distribution, and in particular, the magnitudes and positions of the maximum
and minimum normal stresses, σxx(max) and σyy(min) respectively.
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(1) Initially, mesh the model using linear, free triangular elements and
predefined “normal size” elements (minimum element size should be
~0.01 mm by default). Solve the problem. At the maximum applied
load: t = 1.1 and σApp =135 MPa briefly describe — in figures and
words — the:

a) Overall displacement field (solid.disp)

b) σxx stress field (solid.sx)

c) σyy stress field (solid.sy)

If you smooth or scale your result for presentation purposes, be clear
about this in your report.
Be sure to consider:

a) Where does the maximum value of σxx(max) occur? Report the ratio
σxx(max)/σApp.

b) Where does the minimum (largest negative/compressive) value of
σyy(min) occur? Report the ratio σyy(min)/σApp.

c) Our specimen is a decent approximation of a stress concentrator in
an thin, infinite plate under uniaxial far-field tension. In an ideal
“infinite plate”, maximum σxx(max) = 3σApp and σyy(min) = −1σApp.
How does our FEM analysis compare?

(2) In addition to the meshing parameters employed in Part 1(a), explore
the parameters listed below:

a) Total number of elements

b) the estimated time and virtual memory required to complete the
job

c) σxx(max)

d) σyy(min).

(a.) Element type: linear
triangular Min/max
element size: 4/5

(d.) Element type: linear
triangular Min/max
element size: 0.4/0.5

(b.) Element type: linear
triangular Min/max
element size: 1/2

(e.) Element type: linear
triangular Min/max
element size: 0.1/0.2

(c.) Element type: linear
triangular Min/max
element size: 0.8/0.9

(f.) Element type: linear
triangular Min/max
element size: 0.04/0.052

In your report, provide two plots, one of σxx(max)/σApp vs. total number
of elements and one of σyy(min)/σAppvs. total number of elements.
Comment on the trends.
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(3) For a finite-width plate of some thickness, t, the empirical solution for
the maximum stress (Roark’s Formulas for Stress and Strain, 8th
Ed.),σxx(max) is

σxx(max) = Ktσnom

where
Kt = 3.000 − 3.140(

d
w
) + 3.667(

d
w
)2 − 1.527(

d
w
)3

is the stress concentration factor and

σnom =
σAppw
(w − d)

is the nominal stress due to the reduced cross-sectional area that arises
from the defect.

a) Using these equations, find the analytical value for the maximum
stress, σxx(max).

b) Now, create an efficient mesh (i.e., as few domain elements as
possible) using the knowledge gained from your preliminary
meshes and mesh refinement techniques to converge your solution
to within 1.5% of the analytical solution.

Challenge Details: Turn in your .mph file for this mesh.

• Use your coarse result to inform your meshing. There are numerous
tactics. Explore:

– Partitioning: creating sub-domains with different element
densities. To do this, navigate to the Geometry tab and create new
shapes and use Partition Object to create sub-domains.

– Change Mesh Sizes: you can define the size of the mesh in various
sub-domains by adding different sizes in each domain. Add Sizes
under Mesh 1 to try this.

– Meshing Algorithms: you can control mesh densities by
employing various meshing algorithms such as free-quad,
mapping, or boundary layers. To do this, navigate to the Mesh tab
and explore these possibilities.

– Mesh Distribution: you can define nodal density functions using
Distribution controls. Add these to a meshed domain and control
Number of Elements to define node distributions. Press F1 when
hovering above the Distribution button for full descriptions

• Meshes must be convergent. It is possible to get a result for an
unconverged mesh that is in the 1.5% of the target value without being
converges.
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• You must use linear shape functions: i.e. Solid Mechanics
→Discretization (you will need to activate this, like you did in the
previous lab) → Displacement Field → Linear.

• Algorithmic mesh refining is not allowed.

• The group with the most efficient mesh (fewest elements) will receive 2
e.c. points on their assignment.

• If you beat my mesh, you get 4 e.c. (I’m undefeated, but some students
have come close!).

Part II

The analysis in Part 1 yields stress concentrations higher than the yield
strength of our material (~243MPa). This makes a linear-elastic model
insufficient to correctly describe the stress and strain state.

(1) Enable plasticity. Rerun the model using linear triangular elements and
0.09/0.1 mm min/max size for your elements.

(2) Show plots of σxx, σyy,and effective plastic stain (solid.epe) — a
measure of permanent plastic deformation at relevant time steps.

(3) What do you conclude about the effect plasticity has on stress
concentrations after yielding occurs?

Step-by-Step Directions

The model for the formulation of stress concentrator is a bit complex. To
formulate the basic model (you will adapt it), follow the step-by-step
directions below.

Open COMSOL. Select the Model Wizard

Model Wizard

(1) In the Model Wizard, click on 2D.

(2) In the Select Physics Tree, select Structural Mechanics → Solid
Mechanics (solid)

(3) Click Add

(4) Click Study

(5) In the select Study tree, select Preset Studies → Stationary
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(6) 6. Click Done

Discretization
First, we need to set up the element type. Quadratic elements, while
powerful, are not instructive here. We’ll use linear elements.

(1) Make sure you can see discretization options. Go to the eyeball-looking
thin under Model Builder and ensure Discretization is enabled.

(2) Click on Solid Mechanics (solid ).

(3) Navigate to Discretization and change the Displacement field to
Linear.

GEOMETRY 1

(1) In the Model Builder window, under Component 1 (comp 1) click
Geometry I

(2) In the Settings window for Geometry, locate the Units section.

(3) From the Unit Length list, choose mm

a) Rectangle I (r1)

b) Right-click on the Geometry branch, select rectangle.

c) In the Settings window for the rectangle, locate the Size and
Shape section.

d) For Width, type 25.

e) For Height, type 6.35.

f) Build Selected

g) Is a corner of the rectangle at the origin?

Circle I (c1)

a) Right-click on the Geometry branch, select circle.

b) In the Settings window for the circle, locate the Size and Shape
section.

c) For the Radius, type 2.

d) Is the circle’s center at the origin (0,0)? It should be.

e) Build Selected

Difference I (dif1)

a) In the Geometry toolbar, select “Booleans and Partitions” and
choose Difference.
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b) Select the rectangle only.

c) Active the Objects to subtract “active” toggle button.

d) Select the circle only.

e) Build All Objects

We’re going to cycle a load on the tensile specimen. To do so, we need to
define an auxiliary sweep to prescribe applied loads at different timesteps. By
first, we need to initialize the time step parameter.
Parameters

(1) In the Home toolbar, click Parameters

(2) In the Setting window for Parameters, locate the Parameters section
and enter:

Name Expression Value Description
para 0 0 Load parameter

Alright, now we need to define the load function. We’ll use an interpolation
function to prescribe a linear ramp from 0 MP to 100 MPs from “time” 0 to
1.1, and then unload from “time” t = 1.1 to 2.2.
Interpolation I (loadfunc)

(1) On the Home toolbar, clock Functions and choose
Local→Interpolation

(2) In the Settings window for interpolation locate the Definition
section

(3) In the Function name text field, type loadfunc

(4) In the table below, enter the following settings:

t f(t)
0 0

1.1 100
2.2 0

(5) Locate the Units section and define Argument as 1 Function as MPa.

(6) Plot this function. This is a graph of “time” vs applied force/unit area.
What does this mean?

SOLID MECHANICS (SOLID)

(1) In the Model Builder window, under Component 1, navigate to Solid
Mechanics.
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(2) In the Settings window, locate the 2D Approximation section.

(3) From the list, choose Plane stress3

(4) Locate the thickness section. Define d to be 3.2[mm]. Note, include the
unit — for some reason COMSOL has hard-coded in m for this field.

Linear Elastic Material 1

(1) In the Model Builder window, expand the Solid Mechanics node,
then click Linear Elastic Material 1.

(2) On the Physics toolbar, click Attributes and choose Plasticity (and
check out all the other cool properties you can model!!).

MATERIALS Material 1
Lets create our own material. Note that, in principle, we could use reroved
values from experiment here, but you have to take into account various
considerations, which we won’t consider here. Instead, we’ll use the isotropic
hardening model.

(1) In the Model Builder window, under Component I, right-click
Materials and choose Blank Material

(2) In the Settings window for Material, locate the Materials Content
Section

(3) Enter the following setting in the table:

Property Name Value Unit Property Group
Young’s modulus E 70e9 Pa Basic

Poisson’s ratio ν 0.2 1 Basic
Density ρ 7850 kg/m3 Basic

Initial Yield Stress σy 243e6 Pa Elastoplastic
material model

Isotropic tangent
modulus

Et 2.2e9 Pa Elastoplastic
material model

(4) In the Model Builder window, under Component 1, under Solid
Mechanics, under Linear Elasticity 1, right-click Plasticity 1
and choose Disable. (You’ll re-enable this later.)

SOLID MECHANICS (SOLID)
3We assume the stress vector is zero perpendicular to the plane. This is appropriate for flat

plates in which the load is applied within the plane.
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(1) In the Physics toolbar, click Boundaries and choose Symmetry. (You
have to decide on these yourself.)

(2) Select the correct mirror symmetry boundaries. Test different boundary
models if you aren’t sure what this will do.

(3) In the Physics toolbar, click Boundaries and choose Boundary Load.

(4) Select the correct load boundary. (you have to decide on these yourself.)
Not — the load is mirrored but the magnitude is defined by your
defined load: that is, the total load on the system is 100MPa.

(5) In the Settings window for the Boundary Load, locate the Force
section.

(6) Specify the FA vector as

loadfunc(para) x
0 y

para will be defined later.

SOLID MECHANICS (SOLID)

(1) Under Component 1, right click Mesh 1 and choose Free Triangular.

(2) Click Build All.

STUDY I

Here, we’ll set up an auxiliary sweep of the para parameter.

(1) In the Model Builder window, expand the Study 1 node and click
Step 1: Stationary.

(2) In the Settings window for Stationary, click to expand the Study
extension section.

(3) Locate the Study Extensions section. Select the Auxiliary sweep
check box.

(4) Click Add (the blue + sign below the table). The parameter para will be
initialized.

(5) In the table, etner the following values (Dont mess up the syntax, or it
will turn red):

Parameter name Parameter value listed
para 0 range (0.44, 0.05, 0.59) range (0.06, 0.05, 1.09)

ramge (1.1, 0.2, 1.9) range (1.95, 0.05, 2.2)
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(6) This defines a list of numbers (“times”) for which calculatiosn will be
made. For example range (0.44, 0.05, 0.59) makes the list 0.44, 0.49, 0.54,
0.59.

(7) In the Model Builder window, click Study 1

(8) In the Setting window for Study, type Isotropic Hardening in the
Label text field.

(9) On the Home toolbar, click Compute.

(10) Boom! (Hopefully?)

(11) You may see an all-green component. Look at what your are plotting
(note the para(26) = 2.2 value). This is the last step in the load
function. Why would this be green at this point? (Look at the legend.)

(12) Look at some other para values. Or, create an animation!
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23.3 L3-E: Mechanical Testing of Materials - Lab and Final
Project

Overview

Description

Testing of materials to acquire mechanical properties is a critical skill for the
materials scientist or engineer. Assessing the mechanical properties of a ma-
terial is a necessary tool in determining whether a material is suitable for its
expected application. Since this lab will be the basis for your final project, it
will be treated as a structured research assignment, consisting of a white pa-
per proposal, material testing, data analysis, and presentation of your results
(both written and oral).

Objectives

• Research and identify the test protocols necessary to investigate your
material.

• Gain experience with mechanical testing of a material or set of materials.

• Determine mechanical properties from the analysis of tensile, compres-
sion, indentation, bending, and/or impact experiments.

• Assess if the results from experiments to answer the question proposed
in your white paper.

• Present your results through both written and verbal communication.

Materials

Each lab group (3 students per group) is requested to source their own mate-
rials. These can be everyday materials (coins, cellphone components, automo-
tive components, earplugs, food items etc.), or materials from your research
groups. However, if you do not have samples available through a research
group or are finding selection of another material challenging, there are some
options available from groups in the MSE department. These specimens are
limited, so let us know as soon as possible of your interest in using a sample
set by emailing Gwen to claim that sample.*

• Epoxy samples - Shull group

• Thin film coatings - Chung group
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• Bio-inspired samples - Joester group

• Bioreasorbable polymer specimens - Rogers group

• Metal Foams (McMaster)**

• Porous Conductive Carbon (McMaster)**

• Miscellaneous tensile or bending samples from CLAMMP (metals, poly-
mers, and wood being the most common).*** Please contact Carla Shute
for more details.

*If your entire group is unable to participate in the in-person component of
labs, please email Gwen and Dr. Shull as soon as possible to discuss potential
options for a virtual final project.

**These samples need to be purchased and require as much lead time as pos-
sible.

***If you would like to use these samples, please let Gwen and Carla know
with the material class you’re interested in.

Instrumentation

In order to help us prepare the in person component of the lab, you are ex-
pected to propose which tests and ASTM standard(s) would be most useful to
probe the mechanical properties of your material. The Sintech 20G instrument
in CLAMMP can perform tensile, bending and compression measurements.
Charpy impact tests will be performed in CLAMMP, but require a specific
sample geometry for the experiment. Indentation tests will be performed in
MatCI using the Struers Duramin 5. Depending on the type of material and
sample geometry, you will need to use between 1 and 3 different instruments
to fully investigate your material. If you have specific questions about a test or
an ASTM standard, please reach out to Carla Shute.

Timeline and Assignment Expectations

White Paper

The white paper is due Jan. 29th, 2021 at 11:59 pm as a Canvas submission. The
white paper should provide the following information:

• Who is in your lab group

• What sample you are planning to test
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• Significance of the material (i.e., what is its application)

• What research project do you propose (material property, variation be-
tween samples, effect of solvent, characterization of unknown samples)

• What instrumentation you will need to determine the mechanical prop-
erties

• ASTM standard(s) that you will need for your instrumentation

• Availability for testing over the data collection period (February 8-19)

Your white paper should be between 1/2 and 1 page in length.

23.3.1 Lab Data Collection

In person data collection will occur from Feb. 8-19. Due to Covid safety pro-
tocols, only 1-2 students will be able to participate in a lab session at a time.
Please be prepared to take detailed notes about your experimental setup, data
collection, and any preliminary findings from the tests. These will be impor-
tant to share with your other group members and for your final report.

Status Update

To help track progress on your final projects and provide guidance for your
data analysis, a Status Update is due on February 26th, 2021 at 11:59 pm as a
Canvas submission. The status update should include:

• Your sample material

• The experiments you ran on your material (instrumentation and relevant
protocol information)

• Preliminary data analysis (i.e., stress-strain curves for tensile testing,
hardness and modulus data for indentation tests)

– All figures and tables shown in this section should be labeled with
proper units and axes!

• Any questions you may have about your data

This portion of the final project is an informal write up to ensure that you are
on track for finishing your project by the end of the quarter and should be
between 1 and 5 pages in length, depending on how many figures you need to
include for your data analysis.
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23.3.2 Final Report

The final report is due on March 19th by 9 am as a Canvas submission. The
report should be a formal report 5-10 pages in length and include the following
sections:

• Background - what is your material, how is it used, and why is it impor-
tant? Include citations in this section.

• Experimental methods - What instrumentation did you use to test your
material? What were the experimental parameters and protocols used?
Provide enough detail so that a knowledgeable researcher could repro-
duce your work.

• Data analysis - Present the data from your experiments, providing the
mechanical properties of interest for your sample.

• Discussion - What were significant findings from your data? Did you
have to make any assumptions in your data analysis (i.e., account for
compliance of the instrument)? How complete is your dataset? Is there
another test that could be performed and provide more information
about the mechanical properties of the material?

• Conclusion - based on your results, is your material well suited for its
given application? Are there any improvements that can be made to
the material? If you were working with unknowns, were you able to
successfully identify your samples?

Final Presentation

The final presentations will take place on Friday, March 19th, 2021 from 9-11
am. Presentations should be between 10 and 12 minutes in length and cover
the following information:

• Your material and the projected application of the material

• How you investigated your material - instrumentation and ASTM stan-
dard(s)

• Overview of results - were they what you expected?

• Significance of the results - summarize your conclusion

Everyone in the group must present during the course of the presentation.
Please ensure your labels and text on figures and tables are legible and that
any information not directly from your results is cited.
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Assessment

Each portion of the final project will be assessed for completeness (addressing
all components for each section) and connection to the course material. To-
wards the end of the quarter, self assessments will be distributed to allow you
to each provide feedback about your and your partners’ contributions to the
project during the quarter.

Best-practices Reminders

• Please use SI units.

• Appropriately caption and label all figures and tables.

• Please cite any sources.

• Upload your reports to Canvas as a .pdf.
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Nomenclature

δ Compressive displacement.
δt Tensile displacement.
G Energy release rate
ν Poisson’s ratio
ρ Density (kg/m3)
ρc Crack tip radius of curvature
σ Stress
σf Fracture strength
A Contact area
A0 Undeformed cross section
bc Minor axis of elliptical crack
C Compliance
C0 Flat punch compliance for a rigid punch with a circular cross section in

contact with an elastic half space.
d Diatance from crack tip.
E Young’s modulus
Er Reduced modulus
G Shear modulus
h Thickness of the compliant layer
hp Plastic zone size
Kb Bulk modulus
P Compressive force.
P Force (with components P1, P2, P3)
p Hydrostatic pressure
Pt Tensile force
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Pt Tensile force.
W Work done on system

212



Index
Activation volume, 134

Berkovich tip, 63
Bulk modulus, 31
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Engineering stress, 7
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Finger deformation tensor, 27
Fracture modes, 66

Griffith model, 67

High impact polystyrene (HIPS), 124
Hydrostatic pressure, 22
hydrostatic pressure, 31
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Irwin model, 67
Izod impact test, 127

JKR equation, 63

Loss modulus, 130

Modulus
reduced, 50

Mohr circle construction, 15
Mohr’s circle

Strain, 29

Poisson’s ratio, 33

Reduced modulus, 50
Relaxation modulus, 128
Resolved shear stress, 90

Schmid factor, 91
Shear modulus, 28
Simple shear, 28
Solid solution strengthening, 107
Sound velocity, 34
Space Elevator, 138
Stable Detachment, 54
Storage modulus, 130
Strain, 24
Strains

Sample Displacements for Small
Strains, 24

stress, 7
Stress intensity factor, 68
Stress invariants, 22
stretch ratios, 26

Tempered glass, 81
tensor, 8
transformation toughening, 88
Tresca yield criterion, 92
True strain, 26

Unstable Detachment, 54

Von Mises stress, 93

Weibull distribution, 85
Weibull modulus, 85

Young’s modulus, 33
YSZ, 80
yttria stabilized zirconia, 80
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