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In the first quarter of this course, we developed a fundamental understanding of
the underlying physics of materials. Notably, we developed quantum theory and
solutions to the Schrd̈inger equation. The notion of wavefunction and physically
measurable properties of materials was developed, as well as the uncertainty prin-
ciple. Specific examples including particles in potential wells, quantum tunneling,
and models for molecular orbitals became the foundation for understanding the en-
ergy levels of electrons near atoms.
Starting from this, the introduction to solid state physics presented an introduction
to bonding in solid-state systems. Ending with energy bands from free electron
models, the Density of states, and Fermi-Dirac statistics led to a deep understand-
ing of how electrons can occupy energy states in materials and how the structure
of atoms can dictate the band structure of materials, which in turns enables the
understanding of metallic transport and semiconductors.
This course builds extensively on this understanding to understand electronic trans-
port in semiconductors and semiconductor devices. This will culminate in the un-
derstanding of how transistors, LEDs, and solar cells can be designed an operate.
We will additionally develop an understanding of the properties of dielectrics, man-
ifesting their properties in frequency-dependent permittivity and optical properties
of materials. Finally, a discussion of thermal properties of materials will be pre-
sented.
This course assumes a working understanding of the content introduced in the first
semester of solid state physics and will use aspects of most of that course in this
one. Reviewing old course content is strongly advised.

Most of this course reader follow through the text by Kasap. Unless otherwise
noted, all images are based on this textbook. The relevant sections of the text are
re-arranged slightly in this presentation in order to

1 Semiconductor Physics introduction

1.1 Review of 351-1

In class we reviewed some critical aspects of electronic properties of materials de-
veloped in 351-1. Notably, we found in 351-1 that the electronic band structure
helps to determine the electronic properties of a material. This analysis shows that
electronic conduction occurs within an electronic band of a material, and the energy
within a band where you expect 50% occupation of an electron is defined as the
fermi level. Therefore, we can classify material transport in a few different ways:

1) A metallic conductor is a material such that the fermi level is within the band of
a material - that is, the band is not filled. 2) a semiconductor is a material where
the fermi energy is between two bands, with the lower one (the valence band) is
nominally fully filled and the upper band (the conduction band) is nominally void
of electrons. Here, the gap between these bands is relatively small, of order 1-
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1 SEMICONDUCTOR PHYSICS 1.2 Effective mass, etc.

2 eV. 3) An insulator has the same structure as an insulator, but the band gap
is much larger, over 3 eV. The carrier concentration is significantly lower in an
insulator (several orders of magnitude), and engineering the carrier concentration
with dopants is typically rather challenging.

1.2 Effective mass, density of states, and carrier concentra-
tions

We additionally found that the electron dispersion relationship can be modeled very
similarly to the semiclassical free electron model, but substituting in an effective
mass term that takes into account the crystalling potential. This was justified based
on the behavior near the gamma point of the electronic band structure. With this,
we find that the dispersion relation can be written as:

E =
ℏ2k2

m∗
e

(1.1)

where E is energy, ℏ is the reduced Planck constant, k is the crystal momentum
and m∗

e is the effective mass (note the *).

We can find from this that the crystal potential modifies the effective mass of an
electron particle through the curvature of the band by considering various deriva-
tives of this function:

dE

dk
=

ℏ2E
m∗

e

→ d2E

dk2
=

ℏ2

m∗
e

→ m∗
e = ℏ2

(
d2E

dk2

)−1

(1.2)

Such that the band structure of a material impacts how the electrons can move
and conduct, which leads to this description that the electron has a different mass
than that of a free electron.

We additionally identified that this dispersion relationship leads to an approximate
density of states that follows the following relationship:

g(E) ∝ E1/2 (1.3)

Finally, we noted that electrons are fermions and therefore follow the fermi-dirac
distribution:

f =
1

exp
(

E−EF

kBT

)
+ 1

(1.4)

Where f is the occupation value, E is the electron energy, EF is the fermi energy, kB
is Boltzmann’s constant, and T is absolute temperature. This equation shows that
thermal excitations can increase the energy of an electron above the fermi energy.
Note that the fermi level of a material is essentially the chemical potential for
electrons, which will become useful as we describe metal-semiconductor junctions.
This is shown schematically for a few temperatures in figure 1.1

Putting all of the parts together we identified that can determine the energy distri-
bution of electrons in a material can be determined through the product g(E)f(E),
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1 SEMICONDUCTOR PHYSICS 1.2 Effective mass, etc.

Figure 1.1: Example of Fermi-Dirac distribution at 0K and at a finite temperature.
The distribution shows that thermal energy can create a population of electrons with
higher energies. Image from 351-1 course reader.

and integrating this function can give the electron concentration:

n =

∫ ∞

0

f(E)g(E)dE (1.5)

For a metal, this will modify the energy distribution in a straightforward manner.
This is shown in figure 1.2:

Figure 1.2: electron concentration and energy visualization. The product of Fermi-
Dirac distribution and the density of states gives the energy diagram indicated above.
Image from 351-1 course reader

For a semiconductor we can visualize the energy distribution within the conduction
band and compute the total carrier concentration within the conduction band, as
well as the total carrier concentration of holes in the valence band:

ncond =

∫ ∞

EC

f(E)g(E)dE (1.6)

pval =

∫ EV

0

f(E)g(E)dE (1.7)
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1 SEMICONDUCTOR PHYSICS 1.2 Effective mass, etc.

where ncond is the number density of electrons in the conduction band, pval is the
number density of holes in the valence band, EV is the valence band energy and
EC is the conduction band energy (relative to 0).

We additionally know that the law of mass action sets a relationship between the
concentration of electrons (n) and holes (p) through:

np = n2i (1.8)

Regardless of whether the semiconductor is an intrinsic or extrinsic semiconductor.
For example, if we dope the system with substantially more n-type carriers that are
activated at room temperature - that is, doping with Nd >> ni, then we can de-
termine that the electron concentration is n = Nd. Through the law of mass action
we can therefore additionally conclude that p = n2i /n = n2i /Nd. The energy distri-
bution of electrons and holes in a semiconductor is shown schematically in figure 1.3:

Figure 1.3: Visualization of the band structure of a semiconductor with associated
energy levels of electrons and holes, defined through the product of the density of
states and fermi-dirac distribution.

Because the Fermi energy Ef is related to the probability that a state is occupied by
an electron, we additionally know that doping a semiconductor will raise or lower
the fermi level within the band gap, depending on the carrier type. We can relate
these through a few different factors. First, using the effective density of states at
the valence band edge NV and conduction band edge NC , we can relate the carrier
concentration to the fermi level through:

p = NV exp

(
−EF − EV

kBT

)
(1.9)

and

n = NC exp

(
−EC − EF

kBT

)
(1.10)

where

NC = 2

(
2πm∗

ekBT

h2

)3/2

(1.11)

and

NV = 2

(
2πm∗

hkBT

h2

)3/2

(1.12)
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1 SEMICONDUCTOR PHYSICS 1.3 Electronic conductivity

Here, we see that the band structure of the semiconductor determines the effective
density of states through the definition of the effective mass for electrons or holes.
Then, using this as a pre-factor, we multiply this by a Boltzmann factor for the
energy difference between the fermi energy and the energy level of the valence or
conduction band. This is analogous or an extension of the notion that the carrier
concentrations are related to the density of states and the Fermi-Dirac distribution.
The carrier concentration, band gaps, and fermi levels for semiconductors are are
intrinsic, p-type, and n-type, are shown in figure 1.4:

Figure 1.4: Fermi level and visualization of carriers when intrinsic, p-type, and n-
type. The fermi level increases when more electron donors are doped into the crystal,
whereas more holes leads to a reduction in the fermi leve.

Note that, with the law of mass action, that we can therefore directly determine
the intrinsic carrier concentration by combining these equations together to form:

np = n2i = NCNV exp

(
− Eg

kBT

)
(1.13)

Where the energy levels for the fermi level disappear and the energy difference
between the conduction band edge and the valence band edge is equivalent to the
band gap energy Eg. This additionally shows that, for a particular temperature,
that the carrier concentration should be higher for materials with a smaller band
gap. This makes sense, as the energy gap is smaller such that the boltzmann factor
becomes (much) larger due to its exponential dependence with inverse temperature.

1.3 Electronic conductivity consideration

In contrast to a metal, the carrier concentration of a semiconductor is modified
strongly as the temperature is increased. In 351-1 we determined that there are a
few things to consider. First, dopants themselves need to be thermally activated,
as they form shallow donor or acceptor states within the band structure. Thermal
energy is required to ionize a dopant (for example, for As -> As+ + e-). This
means that there can be a temperature dependence to the carrier concentration
of electrons and holes. As temperature increases, the intrinsic concentration
of generated electrons and holes additionally goes up through the fermi-dirac
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1 SEMICONDUCTOR PHYSICS 1.3 Electronic conductivity

distribution. This means that there are 3 regimes to consider:

1) Ionization regime: Low temperature. As temperature increases, more donors or
acceptors will be thermally activated until the saturation energy, when nearly all
carriers have been activated.
2) Medium temperature (near room temperature, typically): All donors or
acceptors have been ionized and activated, so concentration of carriers is nearly
constant.
3) High temperature: The temperature is high enough such that the intrinsic
generation of electrons and holes is now larger than the doping concentration,
and increases with temperature. The material now acts as if it was an intrinsic
semiconductor.

These ranges are shown schematically in figure 1.5:

Figure 1.5: Different temperature regimes where carrier concentration changes.
Figure from 351-1

The temperature dependence, because it has a Boltzmann factor involved, is more
easily described by looking at an Arrhenius-type plot, with the x axis as inverse
temperature and the y-axis as the natural log of carrier concentration. This is
shown in figure 1.9

As can be seen, the carrier concentration is dramatically different depending on
the temperature, which implies that the conductivity of this material will also vary
substantially. However, we need to discuss the relevant mechanisms that can limit
the overall conductivity. Here, we note that electrons and holes both give rise to
the conductivity of a material, such that their mobilities µe and µh must also be
understood. The conductivity σ is expressed as:

σ = enµe + epµh (1.14)
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1 SEMICONDUCTOR PHYSICS 1.3 Electronic conductivity

Figure 1.6: Arrhenius plot showing the relevant regions for the carrier concentration.
Figure from 351-1.

where
µe =

eτe
m∗

e

(1.15)

and
µh =

eτh
m∗

h

(1.16)

Here, we are treating the particles semi-classically such that we can consider the
scattering times τe and τh as being related to the time it would take for a spherical
particle to scatter off of a lattice site, defect, grain boundary, etc. This can be
expressed as:

τ =
1

SvthNS
(1.17)

where S is the cross-sectional area of the particle, vth is the thermal velocity, and
NS is the number density of scattering objects (lattice sites, defects, etc.).

There are two key ranges to be discussed. First, we find that at high temperature,
the dominant scattering mechanism is scattering off of lattice sites. This makes
sense, as thermal energy will nominally increase the effective size of the atom due
to thermal vibrations. The average thermal energy we can treat as a semi-classical
particle where 1/2m∗

ev
2
th = 3/2kBT . The size of the vibrating atoms at lattice

sites is given as S = πa2, with the effective radius of the atom a increases
with temperature as a2 ∝ T . This, combined with the fact that the thermal
velocity vth ∝ T 1/2 leads to a lattice scattering-limited mobility µL that scales as
µL ∝ T−3/2.

Conversely, at low temperatures the dominant scattering mechanism is different.
Here, the electrons and lattice sites are relatively sluggish due to the lower tem-
perature. Here, we need to consider the Coulombic interaction between a charged
particle (say, the free electron), and a charged dopant site. If the electron gets too
close to the dopant site, it will scatter because of the coulombic attraction or re-
pulsion (depending on the charge balance). The criterion for this to occur is when

Northwestern—Materials Science and Engineering 9



1 SEMICONDUCTOR PHYSICS 1.3 Electronic conductivity

the kinetic energy of the electron matches the potential energy of the coulombic
interaction, such that KE = |PE|. The potential energy is given by:

|PE| = e2

4πϵ0ϵrr
(1.18)

(here, ϵ0 is the permittivity of free space and ϵr is the relative permittivity of the
medium, and r is the distance between the electron and the charged ion core. We
can then set the kinetic energy KE = 3/2kBT equal to this to find the critical
radius rc such that:

rc =
e2

6πϵ0ϵrkBT
(1.19)

This sets the scattering cross section S such that:

S =
πe4

(6πϵ0ϵrT )2
∝ T−2 (1.20)

Because the thermal velocity vth ∝ T 1/2, this means that the impurity scattering
limited mobility µI still depends on temperature, but with the opposite scaling:
µI ∝ T 3/2.

These phenomena dominate in different temperature regimes, but in intermediate
temperatures they will add in parallel. This means that we can use Matthiessen’s
rule such that:

1

µe
=

1

µI
+

1

µL
(1.21)

Such that the net mobility of the electron µe depends both on scattering off of
impurity sites and lattice scattering sites. Putting all of this together, we find that
the temperature dependence of the conductivity of a doped semiconductor takes a
complicated form, as indicated in figure 1.7:

Figure 1.7: Arrhenius plot showing the relevant regions for the conductivity of a
doped semiconductor. The non-monotonic mobility dependencies are also displayed.
Figure from 351-1.

What is clear is that the physics of semiconductors is rich. One thing to note is that
there is a fundamental difference between the temperature dependence of a metal
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1 SEMICONDUCTOR PHYSICS 1.4 Absorption and Photoconductivity

and that of a semiconductor. The resistivity ρ of a material is the inverse of the
conductivity. For a metal, the resistivity goes up, as the lattice scattering mecha-
nism we discussed is the predominant scattering mechanism that will decrease the
mobility of the electrons in the metal. For a semiconductor, the strong temperature
dependence of the carrier concentration means the opposite - in general, we expect
the resistivity of a semiconductor to go down when we increase the temperature.

1.4 Absorption and Photoconductivity

We have considered the equilibrium concentration of electrons and holes in semi-
conductors. However, there are several ways in which the carrier concentration can
be modified. We will consider here the role of optical absorption on the creation
of carriers and arrive at an expression that may be useful in the development of
a photodetector, as a change to the carrier concentration therefore modifies the
conductivity.

1.5 Optical Absorption

The steady-state concentration of carriers is set by the law of mass action. This is
because at equilibrium, only thermal energy can excite electrons into the conduction
band. They will reside there for a certain amount of time before recombining with
a hole in the valence band. The steady-state of this sort of system gives us the
law of mass action. However, we can use light to provide additional energy for
the electrons. Here, we treat light as photons that can be absorbed by an electron
to provide additional energy. This requires that the photon has enough energy to
promote an electron into an unoccupied state. For a semiconductor, this requires
that the energy of the photon be greater than the band gap energy - that is:

hν ≥ Eg (1.22)

where h is Planck’s constant and ν is the frequency of the photon - you may
also sometimes see this as f . the frequency is defined as ν = c

λ , where λ is the
wavelength of light and c is the speed of light.

When a photon is absorbed, it will promote a single electron into the conduction
band. If the energy of the photon is larger than the band gap energy, then the addi-
tional energy will quickly be thermalized to the conduction band edge by emitting
some heat. This is represented in figure 1.8:

At the same time, the intensity of light within the semiconductor must go down, as
the total number of photons has been reduced. We can model this using the Beer-
Lambert law. Here, we can define the incident intensity in the semiconductor I0
based on the energy of the photon and the number of photons. Note that Intensity
has units of Power/area. The initial intensity can be therefore given as:

I0 = hνΓph = ℏωΓph (1.23)

where Γph is the flux of photons inside of the semiconductor and has units of pho-
tons/area/s. After absorbing a photon, the flux of photons immediately after it (a
distance of δx will be reduced by the absorption coefficient α. This is essentially a
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1 SEMICONDUCTOR PHYSICS 1.5 Optical Absorption

Figure 1.8: Overview schematic of optical absorption in a semiconductor. When
a photon energy is greater than the band gap energy, an electron hole pair can be
generated through the absorption or loss of a photon. The optical power in the
semiconductor goes down while the carrier concentration goes up. Adapted from
Kasap.

measure of the ability for the semiconductor to absorb photons within a given unit
of length and has units of 1/m. Then, we can write a differential equation such
that:

δI = −αI(x)δx (1.24)

where the change in intensity δI is related to the absorption coefficient, the current
intensity, and the distance traveled into the semiconductor δx. This equation can
be solved to yield the Beer-Lambert law, in which the intensity varies within the
semiconductor as:

I(x) = I0 exp(−αx) (1.25)

such that the intensity falls off exponentially within the semiconductor. This is
represented in figure ??: Defining the absorption coefficient is captured in the

Figure 1.9: Relevant description of the Beer-Lambert equation for absorption, in
which absorbed photons within a small differential length δx decreases the photon
flux exiting the region. Adapted from Kasap.

semiconductor depends quite a bit on the band structure of the material. As we
have articulated already, the absorption of a photon can only happen if the energy
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1 SEMICONDUCTOR PHYSICS 1.5 Optical Absorption

of the photon is greater than the band gap. In addition, we require that the there
is a state in the conduction band that the electron can be excited into. In all
physical processes, we must conserve both energy and momentum. Here, we may
note that the momentum of a photo ℏkphoton = h/λ is rather small compared to the
Brillouin Zone of a crystalline material. Therefore, most diagrams show a vertical
line. Regardless, we may additionally note that there is a greater density of states
the farther away from the band edges. This suggests that the absorption coefficient
will change as a function of photon energy, as there are more states that the electron
can be excited into. This is shown in figure 1.10:

Figure 1.10: Optical excitation of an electron from the valence band to the con-
duction band requires an open state in the conduction band. The density of states
changes within the valence and conduction bands, such that the absorption coeffi-
cient is a strong function of energy. Representative measured absorption coefficients
for Silicon and GaAs as a function of photon energy are presented. One may notice
that the absorption coefficient is essentially 0 below the band gap.

One may notice in figure 1.10 that the slope of the absorption coefficient is very
strong in these semiconductors. You may also notice that Silicon has a lower slope
thatn GaAs. This is because Silicon is an indirect bandgap semiconductor, which
means that the energy maximum of the valence band is not at the same momen-
tum value as the minimum of the valence band edge. As we have articulated, the
absorption of a photon can be written down on a band diagram as a nearly vertical
line. This is represented in figure 1.11:

This means that an electron excited by a photon at the band gap energy of
an indirect band gap semiconductor will not have a state that they can occupy
unless a phonon can mediate the momentum difference. This is obviously more
challenging than direct absorption, so the absorption coefficient does not scale as
strongly. once the energy is high enough that there is a state for direct excitation,
the absorption coefficient increases dramatically. Conversely, GaAs is a direct
bandgap semiconductor, meaning that it can directly excite an electron into the
conduction band, which explains why it has a much steeper slope in the absorption
coefficient.

Finally, we should note that there must be mechanisms for electrons and holes to
relax back to their equilibrium concentration. When an electron and hole are near
each other within the crystal, they can recombine with each other, reducing the
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1 SEMICONDUCTOR PHYSICS 1.5 Optical Absorption

Figure 1.11: Direct bandgap semiconductors can much more easily excite carriers
near the band gap energy because of the alignment of the valence band minimum
and conduction band maximum. Conversely, an indirect bandgap semiconductor will
require additional help thorugh a phonon to facilitate both energy and momentum
conservation.

concentration of electrons and holes. This means that, once the light is turned on,
there will be some time before a new steady-state carrier concentration is achieved.
Once the light is turned off, there will be some time before recombination leads to
the thermal equilibrium value of the carrier concentration. This is represented in
figure 1.12:

Figure 1.12: Temporal dynamics of optical excitation. In the dark, an n-type
semiconductor has an equilibrium concentration of electrons and holes. When light
shines on the semiconductor and is absorbed, there are excess carriers generated and
a new steady state is formed. Once the light is turned off, recombination occurs to
lower the carrier concentration back to its equilbrium value.

The excess concentration of electrons and holes can be represented through the
following equations:

pn = pno +∆pn (1.26)
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and
nn = nno +∆nn ≈ nn (1.27)

where
∆pn = ∆nn (1.28)

Here, we use the convention where the subscript refers to the type of semiconductor
the charge carrier is within - that is, pn is the concentration of holes within an n-type
semiconductor, nn is the concentration of electrons within an n-type semiconductor,
and pno is the initial concentration of holes within an n-type semiconductor, etc.
We see that optical excitation leads to an equal excess concentration of electrons
∆nn and holes ∆pn. Additionally, we have assumed that the light absorption is
not so strong such that the concentration of electrons is nominally unchanged (the
majority charge carrier), while the concentration of holes is increased substantially.

1.6 Photoconductivity

Let’s use this phenomena to our advantage. We have already identified that the
conductivity of a semiconductor is strongly dependent on the carrier concentration.
We can use the ability to create more carriers through optical absorption to make
detectors for light. We will identify a thought problem to understand this, where
we connect the semiconductor to a hypothetical circuit to measure the current or
conductivity. We are omitting any impact that the metal contact has on the overall
circuit. We additionally assume that all light is transmitted into the semiconductor,
all light is absorbed, the material properties like τh, µe, µh, etc. do not change with
carrier concentration, and that contacts do not block the flow of carriers. This is
represented in figure 1.13, with the net result included:

Figure 1.13: Schematic of photoconductivity experiment, in which an n-type semi-
conductor with depth D, width W, and length L is connected to a circuit. Light shines
on the material and is absorbed. The response of the photodetector is included, which
as a rise time and a fall time.

We can define the photoconductivity σph as the change in the conductivity ∆σ of
the semiconductor when the light is on (σlight) vs off (σdark) as:

∆σ = σph = σlight − σdark (1.29)

We can expand this to include all of the relevant terms as:

∆σ = ennµe + epnµh − (ennoµe + epnoµh) (1.30)

Northwestern—Materials Science and Engineering 15



1 SEMICONDUCTOR PHYSICS 1.6 Photoconductivity

Where the first term is the conductivity when the light is on (taking into account
the contributions from both the electrons and holes), while the second term is the
conductivity in the dark (and therefore uses the initial concentrations within the
semiconductor).

We can determine what the conductivity is once we understand the generation and
recombination of carriers. Here, we can define the generation rate Gph of electron
hole pairs as the number of electron hole pairs that are generated due to the flux
of photons across the area of the semiconductor, divided by the volume to get a
concentration per unit time. We additionally include a quantum efficiency factor
η - for a perfectly operating device with every single absorbed photon creating an
electron-hole pair, η = 1. We can express this as:

Gph =
ηAΓph

AD
=
η
(

I
hν

)
D

=
ηIλ

hcD
(1.31)

where we have used the geometry of the detector as defined in figure 1.13. In
addition, we must write down what the recombination rate R of electrons and holes
are. This is defined as:

R =
∆pn
τh

(1.32)

where we have included a lifetime τh to describe the rate at which these electron
hole pairs will recombine. At steady state, the rate of generation must match that
of recombination. Thus, we have:

d∆pn
dt

= Gph− ∆pn
τh

= 0 (1.33)

such that we can solve for the steady state excess concentration of holes as:

∆pn = Gphτh =
τhηIλ

hcD
(1.34)

And therefore the photoconductivity is:

∆σ =
eηIλτh(µe + µh)

hcD
(1.35)

We can additionally solve these equations to determine the temporal profile. First,
let us look at a scenario in which the light is turned on at time t = 0 and we want
to determine the change in carrier concentration as a function of time ∆pn(t). To
do this, we write down the differential equation again:

d∆pn(t)

dt
= Gph − ∆pn(t)

τh
(1.36)

We can separate variables and integrate to a given time t such that:

ln

(
Gph − ∆pn(t)

τh

)
= − t

τh
+ C (1.37)
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We know that at time t = 0 there is no excess carrier concentration such that
∆pn(t = 0) = 0. We can therefore solve for the integration constant to find that
C = ln(Gph) and therefore the excess hole concentration has the temporal profile:

∆pn(t) = τhGph

(
1− exp

(
− t

τh

))
(1.38)

Therefore, there is a characteristic time to achieve the steady state concentration
difference that depends on the lifetime τh

We can do the same thing at the time t′ = t− toff that the light source is turned off
to look timescale for the carrier concentration to return to its equilibrium value in
the dark. This means that the same differential equation applies, but Gph is defined
to be 0. Then, we have:

d∆pn(t
′)

dt′
= −∆pn(t

′)

τh
(1.39)

This can go through the same process to show that:

ln(∆pn(t
′)) = − t′

τh
+ C (1.40)

At time t′ = 0, we have set that the steady state carrier concentration excess is
∆pn(t

′ = 0) = τhGph such that C = τhGph. Therefore, the fall time of the detector
can be determined from:

∆pn(t
′) = τhGph exp

(
− t′

τh

)
(1.41)

which has the same characteristic timescale as the photoresponse, as expected.

Finally, we note that there are a few non-idealities that we need to be aware of.
First, there are a variety of ways for electron hole pairs to recombine. In imperfect
semiconductors, a variety of defects from impurities, dislocations within the crystal,
grain boundaries, and other defects can lead to energy levels within the band gap
of the semiconductor. These can lead to unwanted recombination pathways that
lead to additional issues when creating a semiconductor device. Free electrons in
the conduction band can end up lowering their energy and occupy this energy state
(known as a recombination center), before combining with a hole to recombine
through the emission of a phonon (lattice vibration, heat). This is an unwanted
pathway that depends on crystal purity and processing. In addition, somewhat
shallow defect states within the band gap can lead to an effect called trapping,
in which a free electron in the conduction band will lower its energy through the
emission of a phonon and become localized on this trapping center. It may not move
for a significant amount of time before thermal energy can re-excite the electron into
the conduction band. This localized charge state will “trap” the carrier and remove
its ability to be conducted. This can be a killer of optoelectronic devices - you have
gone through all of the effort to find ways to effectively create free carrier electrons
in the conduction band only for unwanted defects or impurities to trap them at a
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defect location and prevent them from moving freely. This can be a limiting factor
in the design of LEDs, for example. The various phenomena discussed here are
shown in figure 1.14

Figure 1.14: Recombination and trapping within a semiconductor. Unwanted defect
states with energy levels within the band gap can lead to unwanted recombination
pathways through the emission of phonons. In addition, sites can trap electrons
for a period of time before they can be re-excited into the conduction band, which
eliminates their ability to conduct through the lattice.

1.7 Drift and Diffusion currents

So far in this course, we have discussed the ability for the carrier concentration
to be modified through doping, temperature, and the ability to create additional
carriers through optical absorption (of light above the semiconductor’s band gap).
However, we need to understand the factors that lead to charge being inserted and
extracted from materials to leverage these effects.

To compute the current that can come from a material, we need to articulate the
different methods for charge to flow in a material. For a semiconductor, both
electrons and holes are charge-carrying particles that can be used for conduction.
If we know the number of particles entering/exiting the material (or a plane within
the material), we can know what the current is across that boundary.

1.8 Diffusion current

Previous lectures have discussed the analogy between electron/hole movement in a
solid material and the movement of gas molecules in a volume (hence some models
referring to a “Free electron gas”). Essentially, we have developed up to this point
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the notion that the particles can be thought of as having an effective mass m∗
e or

m∗
h, which is modified from a free electron/hole mass through the band structure of

the material. These electrons and holes can freely move about the crystalline lattice
with a mobility µe or µh that is determined by the frequency these particles scatter
off of impurities or lattice sites. There is a strong analogy between the flow of
electrons in this scenario and aspects of diffusion. If there is a higher concentration
of charges in one part of the semiconductor, we would expect this free movement
to lead to a diffusion of charge through the crystal.

To develop this, let us first quantify the particle flux for electrons and holes. If we
imagine a plane within the material with an area A, and can count the net number
of particles ∆N that pass through the plan per unit of time ∆t, then we can define
a particle flux as:

Γ =
∆N

A∆t
(1.42)

Here, the particle flux will have units of #/(m2t). Noting that each electron or hole
has a charge Q, we can then define the current density J as:

J = QΓ[=]A/m2 (1.43)

We will first try to understand the current density of electrons when there is a
difference in electron concentration, and finish this section by understanding the
difference between this diffusion current and drift current. Here, consider a con-
centration profile of electron density as indicated by figure 1.15 below:

Figure 1.15: a) Nominal electron concentration profile in one dimension. y-axis
is electron concentration at a given moment in time, while x axis is position within
semiconductor. Drawing planes in/out of page can therefore define the flux of elec-
trons at position x. b) The flux of electrons Γe is approximated by taking the average
concentration within regions to the left and right of the plane of interest at x0. The
net flux going in the +x direction is given by the difference of flux from either direc-
tion. Figure adapted from Kasap 4th edition

Here, we see that the concentration n(x) of electrons decreases as a function of
distance x. To understand the current density, we need to define the particle flux.
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Let us imagine a series of planes coming in an out of the page that hae an area
A. We can place these along the x axis with some spacing determined by some
length l, which is approximately the distance an electron will move before scattering.
The electrons at each position x can freely move, and will move randomly in all
directions. In general, they will move in a straight line for some amount of time τ
until they scatter off of a lattice site, a dopant, dislocation or other defect, etc.

In this first thought problem, we assume that they have equal probability of moving
either to the left or the right. If they are moving either to the left or to the right,
then we can compute the particle flux through a plane at position x0. Here, we
approximate the flux as the number of electrons from the plane at position x0 − l
that move to the right minus the number of electrons from the plane at x0 + l that
move to the left. The number then describes the total flux of electrons that are
moving in the positive x direction.

Since each electron has an equal probability of moving to the left or right, the net
number of electrons from each plane that move in the appropriate direction is half
of the total electron concentration at that plane. Mathematically, this means that
the flux is defined as:

Γe =
1
2n1Al

τ
−

1
2n2Al

τ
(1.44)

Where the first term is the flux of electrons moving right from the plane at x0 − l
and the second term is the nubmer of electrons moving to the left from the plane
at x0 + l. Simplifying, we find that:

Γe =
1
2n1Al =

1
2n2Al

τ
= − l

2τ
(n2 − n1) (1.45)

In this simple picture, we can approximate the difference in concentrations with a
differential such that:

n2 − n1 ≈
(
dn

dx
∆x

)
=
dn

dx
l (1.46)

Which immediately suggests that:

Γe = − l2

2τ

(
dn

dx

)
= −De

dn

dx
(1.47)

Here, we see a powerful statement: From a simple picture regarding the movement
of electrons, we can relate the distance an electron can move in a given time frame
to a parameter we call the Diffusion coefficient. The net flux of charge carriers is
therefore directly related to the concentration difference within the material, with
a coefficient that describes how straightforward or easy it is for the charge carrier
to move through the lattice. This also has a functional form essentially identical
to Fick’s first law for diffusion, and represents the connection between particle flux
and the relevant driving force. This is similar to the conductivity σ of a material,
which connects the current density J to the applied electric field E as:

J = σE = −σ
(
dV

dx

)
(1.48)

Because this equation is related to the ability for these charge carriers to freely
move or diffuse through a solid, we call the current density arising from this the
diffusion current density.
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We note two things in this section. First, this derivation applies to holes as well,
which is to say that we can relate the current density of holes (JD,h to a diffusion
coefficient (Dh) and the concentration gradient. Putting everything together, we
can define the current density from this effect as below:

JD,e = −eΓe = eDe
dn

dx
(1.49)

and

JD,h = eΓh = −eDh
dp

dx
(1.50)

Note that the difference in sign between the above equations is related to the sign of
the charge - the hole has a positive charge while the electron has a negative charge.

The second thing we should note about this is one small detail regarding the deriva-
tion. Here, we assumed that all electrons (or holed) would move in the x direction
for a given time τ to move a distance l within the crystal to “derive” the diffusion
coefficient. This is not the case in real materials, as electrons will have an ensemble
average scattering time of τ and can move in all directions. While it is true that
half of the electrons will move with the x component of their velocity in the posi-
tive or negative directions, the velocity of each electron may have components in y
or z. A more complete derivation of this can be done using statistical mechanics.
The end result is that the scaling relationship l2/τ still holds, but the factor of 1/2
disappears. That is to say, the “real” diffusion coefficient is:

De = l2/τ (1.51)

All of the important physics is still there, but the absolute value is different by a
factor of two.

1.9 Drift current

Consider the following situation in figure 1.16, in which a semiconductor has light
shining on it to generate additional carriers. In addition to this, the semiconductor
is connected to a circuit that enables a voltage (and therefore an electric field) to be
applied. In the absence of an electric field, we may expect a concentration gradient
to be created, as the intensity within the semiconductor will decrease as more light
is absorbed within the semiconductor. Once we apply an electric field, the electrons
and holes may move in response to this electric field. The current that is induced
by this field is termed the drift current density. The current density is related to
the electric field through the conductivity as:

Jdrift,e = σE (1.52)

Inserting the expression for conductivity of electrons, we have:

Jdrift,e = enµeEx (1.53)

Therefore, the total current density for electrons (Je) is given by the sum:

Je = enµeEx + eDe
dn

dx
(1.54)
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Figure 1.16: A more general case of charge in a uniformly doped semiconductor.
Here, light is shining onto the semiconductor to create electron hole pairs which
may have a concentration that depends on depth into the semiconductor. There are
additionally electrodes placed on the semiconductor such that a voltage can be applied
to collect a current. The voltage induces an electric field within the semiconductor
that creates a net drift current density. Here we are neglecting any interaction between
the metal and the electrode. Figure adapted from Kasap 4th edition.

And the equivalent expression for holes (Jh) would be:

Jh = epµhEx − eDh
dp

dx
(1.55)

Where the hole concentration gradient is given by the derivative on the right hand
side.

If we assume that De = l2

τ , we can determine an additional relationship for the
diffusion coefficient that depends on temperature. It may stand to reason that the
ability for an electron to diffuse within a material is related to temperature, as it is
the energy source for the electron to move. We can estimate the length l based on
the velocity of the electron vx through:

lx ≈ vxτ (1.56)

which is just a re-statement of the distance a particle can move in a particular
direction given its velocity. If this is the case, then the diffusion coefficient is given
as:

De =
v2xτ

2

τ
= v2xτ (1.57)

We can relate this velocity to the particle’s kinetic energy. The average kinetic
energy for the particle moving in this direction is 1/2kBT , such that:

1

2
m∗

ev
2
x =

1

2
kBT (1.58)

which implies that
v2x = kBT/m

∗
e (1.59)

Northwestern—Materials Science and Engineering 22



1 SEMICONDUCTOR PHYSICS 1.10 Inhomogenous doping

Inserting into the expression for the diffusion coefficient, we have:

De =
kBTτ

m∗
e

(1.60)

We may recognize that there are terms that can be grouped together into another
measurable quantity, the mobility µe = eτ/m∗

e. We can insert the mobility in the
expression to arrive at:

De =
kBT

e

eτ

m∗
e

=
kBT

e
µe (1.61)

Where we have added a factor of e/e and grouped terms to substitute in the mobility.
This is a poewrful expression known as the Einstein Relationship, which has an
equivalent description for holes:

De

µe
=
kBT

e
(1.62)

and
Dh

µh
=
kBT

e
(1.63)

This essentially says that the diffusivity and mobility of charge carriers are directly
related to the thermal energy and charge of the particle.

1.10 Inhomogeneous doping concentrations

So far we have considered the simplest case, in which the dopant density in a
semiconductor is uniform throughout. This is not the case in general. For example,
one of the simplest ways to dope a semiconductor (and one that is very relevant
to modern microelectronics fabrication) is the start with a nearly intrinsic wafer
of semiconductor (say, Silicon). Then, the wafer may be heated in a chamber
that contains a gas with the desired dopant. For example, AsH3 can be used to
dope the wafer with Arsenic to make the wafer n-type. This is a classic diffusion
problem such that the doping concentration at a specified depth can be determined
based on the temperature, time, and concentration of reactant gas at the surface.
However, any solution to the diffusion equation with these boundary conditions will
lead to a doping concentration that is not linear with depth. This is schematically
represented in figure 1.17, where we take a simple approximation that the As
concentration has an exponential dependence within the semiconductor:
If this is the case, then we may expect a few things to happen. First, we would
expect (at room temperature) that all charge carriers are activated, meaning that
all of the As dopants will have donated an electron to the semiconductor to provide
an electron in the conduction band, leaving behind a charged As+ core in the
lattice. This will lead to a density of conduction electrons n(x) that is generally
dependent on the position within the crystal.

As we discussed in the previous section, this concentration distribution has a
non-zero gradient dn

dx , which means that we should expect to see a diffusion current
JD,e of electrons. However, the movement of electrons will leave behind core As+
atoms in the lattice, which cannot easily move at room temperature. The distance
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Figure 1.17: An As doped silicon wafer may have an inhomogeneous doping concen-
tration. The concentration gradient may be approximated as a decaying exponential
away from the surface. The concentration gradient of donors leads to a gradient
of electron density, which will undergo a diffusion process. This is resisted by the
built-in field generated by the dipole between the stationary donors and the mobile
electrons, such that drift and diffusion balance each other.

between the charged As+ atoms and negatively charged e− electrons will therefore
induce an electric field E, which creates a Built in Voltage. This electric field
should induce a current density Jdrift,e that opposes the diffusion current JD,e.
These will balance each other at equilibrium, leading to a permanent built in field.

At equilibrium, we expect no net current in this structure (essentially, we are at
open circuit and no current is entering or leaving). We can write the equation down
for the current density as:

Je = enµeEx + eDe
dn

dx
(1.64)

Here, Ex is related to the built in voltage by Ex = −dV
dx . We can insert this into the

expression for the current density and set the different terms equal to each other to
arrive at:

Je = −enµe
dV

dx
+ eDe

dn

dx
(1.65)

such that

enµe
dV

dx
= eDe

dn

dx
(1.66)

We can simplify this equation by removing the electron charge from both sides and
dividing the mobility over. Using the Einstein relationship this then becomes:

n
dV

dx
=
kBT

e

dn

dx
(1.67)

Separating variables, eliminating the dx terms, and integrating between points 1
and 2 (i.e. the region with voltage 1 to voltage 2 that has corresponding electron
densities n1 and n2, we find the equation:∫ V2

V1

dV =
kBT

e

∫ n2

n1

dn

n
(1.68)

which has the solution:

V2 − V1 =
kBT

e
ln

(
n2
n1

)
(1.69)
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We can fully solve for this if we know exactly what the electron density is at each
position. A reasonable assumption is to say that the electron concentration has
not changed dramatically from the density of donors. As a first approximation we
therefore assume that:

n(x) ≈ Nd(x) (1.70)

Here, we will use a simplistic (but not techically correct) solution to the dopant
profile to be:

Nd(x) = N0 exp
(
−x
b

)
(1.71)

This is essentially approximating the diffusion of dopants into silicon to be a de-
caying exponential with a concentration N0 at the wafer surface and an empirical
parameter b that describes how quickly the exponential decays. If we insert this
into the expression for the concentration, we arrive at:

V2 − V1 =
kBT

e
ln

(
N0 exp

(
−x2

b

)
N0 exp

(
−x1

b

)) (1.72)

Which simplifies to:

V2 − V1 =
kBT

e
ln

(
−x2
b

+
x1
b

)
(1.73)

Noting that dV
dx ≈ V2−V1

x2−x1
, we can re-arrange this expression to arrive at the key con-

clusion, which is that the built in field for an inhomogeneously doped semiconductor
is:

Ex = −dV
dx

≈ V2 − V1
x2 − x1

=
kBT

be
(1.74)

Why did we go through all of this effort? This shows that the properties of the
semiconductor and its composition profile determines not only the number of free
carriers, but additionally leads to dynamics that create electric fields natively in the
material. As we’ve seen in 351-1, the application of an electric field also distorts or
shifts the band structure of a metal or semiconductor (and is also essentially the
reason for conduction of electrons). This has strong implications for the operation
of devices with more complicated doping concentrations, as well as devices with
metals, whose fermi energy may not be perfectly aligned with the fermi level of
the semiconductor. This effect can be leveraged to create the basic operation of
semiconductor switches when we discuss pn junctions.

1.11 The continuity equation

So far, we have discussed methods that can lead to the generation of electrons and
holes, their recombination, and the ability to conduct through diffusion and drift.
There are many possible ways, therefore, that the electron and hole concentration
can change, which can lead to rich dynamics. If you are to design an electronic
device that uses these semiconductors, it would therefore be advantageous to have
an equation that can predict the movement of electrons and holes as a function
of time and throughout the semiconductor. This section will provide such an
equation and a simple use case for solving it - As you can imagine, the dynamics
can be complex and therefore can be quite challenging to solve for analytically
for a general set of boundary conditions. Computational software is therefore
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quite helpful to solve these equations and could be implemented, for example, in
MATLAB or COMSOL.

We will first consider a generic n-type semiconductor as indicated in figure 1.18.
We will consider a differential volume within the semiconductor that may have a
disturbed concentration of electrons and holes because of drift currents, diffusion,
generation of charge carriers, and potential recombination of excess charge carriers.
We are assuming in this derivation that the semiconductor is nominally uniform in
the y and z directions, but there may be variation in the hole concentration density
in the x direction. We assume that the semiconductor has some nominal area A
and consider two planes very close to each other at positions x and x + δx. This
essentially describes a differential volume within the material. Light may generate
carriers within this volume, charge carriers may recombine, and there may be a flux
of carrier density due to a flux into or out of the volume.

Figure 1.18: A generic n-type semiconductor. We consider the differential volume
of this semiconductor between x positions x and x+δx. The semiconductor is uniform
in y and z but may vary in x. The hole concentration of the n-type semiconductor is
pn(x, t). The current density into the plane at x is Jh while the flux out of the plane
x+ δx is Jh + δJh. Figure adapted from Kasap.

If there is any generation of charge carriers or otherwise a disturbance of the carrier
density away from the equilibrium values for the hole and electron concentrations,
we would expect a flow of these species to compensate that will evolve in time. We
can quantify this. The shaded area has a volume of Aδx and a hole concentration
pn(x, t). The current density at x due to flow into the volume is given as Jh, while
the flow out of the volume at x+ δx is defined as Jh + δJh. If δJh is negative, then
the current leaving the volume is lower than the current arriving in it, meaning that
the hole concentration should increase. This means that we can define the rate of
increase in hole concentration due to Jh as:

1

Aδx

(
−AδJh

e

)
(1.75)

Northwestern—Materials Science and Engineering 26



1 SEMICONDUCTOR PHYSICS 1.12 Steady state

We additionally expect there to be generation and recombination in this volume.
We can write a general rate equation that can describe the spatial and temporal
evolution of this effect:

∂pn
∂t

= −1

e

(
∂Jh
∂x

)
− pn − pn0

τh
+Gph (1.76)

Where the temporal derivative is the time evolution of the hole carrier density
at a given position. The first term is the rate of increase in hole concentration
due to Jh. The second term is the recombination rate for the concentration
of holes (negative because recombination should reduce the carrier concentra-
tion. The last term is the generation rate or carrier concentration due to absorption.

We can write a similar equation for electrons, but note that the current density
term will have a sign change due to the difference in sign of the charge:

∂nn
∂t

=
1

e

(
∂Je
∂x

)
− nn − nn0

τh
+Gph (1.77)

As you can imagine, this can be a tough differential equation to solve in general -
and this is only the 1-D case. Depending on boundary conditions, the solution can
vary greatly. In general, this governing equation can be used by engineers to design
things like doping concentration, illumination conditions, electrode placement and
operation, etc. to solve for the dynamics of the relevant charge carriers. We will
spend the rest of this section thinking about a simplified version of this equation,
which is similar to the equation used for the earlier photoconductivity equation.

1.12 Continuity equation at steady state

We will investigate a simple scenario as depicted by figure 1.19. In this ex-

Figure 1.19: A semiconductor with uniform doping concentration has light illumi-
nating it from one side. Assuming that all of the light is absorbed in a small distance,
we can determine the steady state currents and carrier concentrations caused by this
carrier generation. Figure adapted from Kasap.

ample, light is shining onto an n-type semiconductor and is absorbed within a
small layer at the front of the semiconductor. We will assume that all light is
absorbed in a distance x0 into the semiconductor, and use the continuity equa-
tion to solve for the steady state characteristics of the semiconductor past this point.
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At steady state, the temporal derivative in the equation will become 0. By construc-
tion, we are looking at the region of the semiconductor after the light absorption
region, meaning the generation term will become zero. Under these conditions, the
continuity equation for holes becomes:

−pn − pno
τh

=
1

e

(
∂Jh
∂x

)
(1.78)

If we assume that the electric field within the semiconductor is small, then we can
simplify the current density to be Jh = epµhEx − eDh

dp
dx ≈ −eDh

dp
dx . Then, we

have:

−pn − pno
τh

=
1

e

(
∂Jh
∂x

)
=

1

e
eDh

d2pn
dx2

(1.79)

Recognizing that the top portion of the recombination term pn − pno = ∆pn and
that the spatial derivatives of the carrier concentration will have dpn/dt = d∆pn/dt,
this equation becomes:

Dh
d2∆pn
dx

=
∆pn
τh

(1.80)

Using the Einstein relationship we can then obtain:

d2∆pn
dx2

=
∆pn
L2
h

(1.81)

Where we have define the diffusion length of holes to be:

Lh =
√
Dhτh (1.82)

In this n-type semiconductor, we assume that pno << nno. we will assume that
we are in the “weak injection regime”, the increase in holes from generation is
significantly less than the initial electron concentration - that is: ∆pn << nno.
When carriers are generated at the surface of the semiconductor, we expect a change
in carrier concentration at the surface of ∆pn(x = 0). This should lead to a diffusion
of holes to the right. At the same time, there should be recombination of excess
holes with the conduction electrons within the semiconductor, which suggests that
the hole concentration should decrease deeper into the semiconductor. Very far
away, we should expect that the carrier concentration pn = pno - that is, the carrier
concentration far from the area where light is generating new carriers should be the
equilibrium value. The solution to this equation at steady state takes the form:

∆pn(x) = ∆pn(0) exp

(
− x

Lh

)
(1.83)

This means that there is a diffusion current ID,h within the semiconductor due to
the charge generation that will have the same spatial dependence. If the semicon-
ductor has an area A, then:

Ih ≈ ID, h = −AeDh
dpn(x)

dx
=
AeDh

Lh
∆pn(0) exp

(
− x

Lh

)
(1.84)
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At steady state, we expect that the holes generated will be conducted away by this
hole current such that the carrier concentration at the surface will remain constant.
This means that:

Ax0Gph =
1

e
ID,h(0) =

ADh

Lh
∆pn(0) (1.85)

Where the left term is the total carrier generation rate (volume * generation of
carrier density) is equated to the hole current at x = 0. Inserting this into the
above equations can enable us to solve for ∆pn(x = 0) as:

∆pn(x = 0) = x0Gph

(
τh
Dh

)1/2

(1.86)

We have solved for the carrier concentration and relevant currents for the holes, but
we must also do this for electrons. The generated electrons will also diffuse towards
the bulk of the material, but in general the diffusion coefficients and diffusion lengths
for electrons De and Le will be different than for that of holes. But, the same
functional form should still hold:

∆nn(x) = ∆nn(0) exp

(
− x

Le

)
(1.87)

Then, we can determine the current of electrons similarly to be:

ID,e = AeDe
dnn(x)

dx
= −AeDe

Le
∆n(0) exp

(
− x

Le

)
(1.88)

The field at the surface must be zero at steady state, such that the generated elec-
trons within the surface region of the semiconductor must additionally be removed
by the electron current. Then, we expect a similar equation for electrons as the
equivalent for holes:

∆nn(0) = x0Gph

(
τh
De

)1/2

(1.89)

which gives the ratio:

∆pn(0)

∆nn(0)
=

(
De

Dh

)1/2

(1.90)

If the semiconductor is at open circuit, then the total current within the device
should become 0. That is:

I = ID,h + ID,e + Idrift,e = 0 (1.91)

Here, we assume the drift current for holes is very small because of the weak injection
limit (the carrier concentration is much lower than the electron concentration).
Then, we can solve for the drift current of electrons to be:

Idrift,e = −ID,h − ID,e ≈ AennoµeE (1.92)

such that the electric field E is:

E =
Idrift,e
Aennoµe

(1.93)
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and
Idrift,h = Aeµhpn(x)E << Idrift,e (1.94)

As expected from the weak injection limit.

The relevant results from this section are summarized in the plot below (figure 1.20),
which shows the spatial distribution of the components we have solved for above.
This exercise should demonstrate both the rich dynamics and physics involved in
these devices, as well as the complexities even for this relatively simple set of bound-
ary conditions. If we were not yet at steady state, we could in principle determine
the way in which the carrier concentrations evolve in space from the moment light
shines onto the semiconductor until the the time it reaches steady state; that is
presently outside of the scope of this section of the textbook.
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Figure 1.20: The relevant solutions for the changing carrier concentrations ∆pn(x),
∆nn(s), as well as associated drift and diffusion currents caused by the absorption of
light at on end of a very long semiconductor. Figure adapted from Kasap.
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1 SEMICONDUCTOR PHYSICS 1.13 Metal-semiconductor contacts

1.13 Metal-semiconductor contacts

In this last section regarding semiconductor physics, we will consider what happens
when we put a metal in contact (forming a “junction”) with a metal. This is
critically important for any device one might want to make, as we need conductors
to extract or inject charge or electric fields into our devices. From our discussion
of the band theory of solids, we recognize that the energy levels of an electron
with respect to the vacuum level are dependent on the energy states within
the solid. The Fermi level helps us describe the energy level where we would
expect, on average, a 50% chance of a state being occupied by an electron. How-
ever, we can also consider the Fermi level as the chemical potential for the electrons.

We expect that electrons will attempt to reduce their energy by finding energy
levels with lower energy to occupy - a colloquiual phrase is that electrons want to
“fall down” to lower energy. Conversely, a hole wants to “bubble up” to higher
energy levels in the band. For a semiconductor and metal, we find that the thermal
generation term G0 provides a driving force to excite electrons to higher energy
levels (through thermal heat providing this energy), while the recombination rate
balances this to arrive at the equilibrium concentration. However, if we have a
junction between two dissimilar materials, the relative position of the Fermi level
will lead to electrons and holes to re-arrange themselves to minimize their overall
energy. This is manifested first in a metal-semiconductor junction, while the next
section will discuss this in the context of two regions of semiconductors that have
different majority carriers (i.e. a p-type semiconductor in contact with an n-type
semiconductor).

In general, the work function Φ of a material is defined to be the energy difference
between the vacuum level for a free electron and the Fermi energy of the material
at 0 Kelvin, i.e.

Φ = Evac − EF (1.95)

Recall that this fermi level for a semiconductor is dependent on the doping con-
centration, as you may expect an increase in electrons to increase the Fermi level.
Additionally recall that the work function of semiconductor is related to the fermi
energy and the electron affinity through:

Φn = χ+ (Ec − EFn) (1.96)

where the last term may be related to the electron concentration as:

n = Nd = NC exp

(
−EC − Efn

kBT

)
(1.97)

We can broadly categorize different metal-semiconductor junctions into two cate-
gories: Schottky and Ohmic. We will start this section with Schottky contacts and
finish with Ohmic contacts.

1.14 Schottky contacts

For an n-type semiconductor, the definition of a Schottky contact is that:

Φm > Φn (1.98)
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where Φn is the work function of an n-type semiconductor. In this case, we expect
that the Fermi level of the electrons in the semiconductor is higher than the Fermi
level of the metal, meaning that the metal has unoccupied energy states that have
lower energy than the semiconductor. Upon making contact, we would then expect
that the system will reduce its overall energy if electrons tunnel from the semi-
conductor to the metal, and then thermalize their electrons to the lowest available
state. This is represented in figure 1.21.

Figure 1.21: A Schottky junction between a metal and semiconductor can form
when the work function of the metal is greater than the semiconductor. Electrons in
the semiconductor will reduce their energy by finding energy states within the metal
at lower energy. Figure adapted from Kasap, fig. 5.39.

This will locally deplete the semiconductor of electrons, forming a depletion region
within the semiconductor. The remaining dopant atom cores leads to a built in
field that eventually prevents additional electrons from moving into the metal.

We discussed that the fermi level represents the chemical potential of the system.
This means that, at equilibrium, the fermi level of the metal and semiconductor
must be the same. If they were not, then work could be done while electrons move
from a region of higher potential to lower potential. This requires that EFm lines up
with EFn. However, the depletion region has a lower concentration of conduction
electrons electrons tunelling into the metal. We see in the above equation that the
carrier concentration n is related to the difference in energy between the conduction
band minimum and the Fermi level EC−EFn. Thus, we expect EC−EFn to increase
as n decreases, which manifests in the bands of the semiconductor bending up within
the depletion region. This creates an additional barrier to electron tunneling with
a barrier height of:

ΦB = Φm − χ = eV0 + (EC − EFn), (1.99)

which is called the Schottky barrier height ΦB . All of this is represented in figure
1.22:

Finally, note that the built in potential V0 develops an electric field E0 within the
depletion region. This region is also called a Space charge layer.
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Figure 1.22: At equilibrium, the Fermi levels of the metal and semiconductor are
aligned, and the concentration of electrons near the metal lower relative to the rest
of the semiconductor, leading to band bending that creates an additional potential
barrier for electrons to tunnel into the metal. Figure adapted from Kasap, fig. 5.39.

To understand how electrons can be conducted through this interface, we need
to consider hte mechanisms for charge carriers to move around and how they are
generated. Without any electric field being applied (i.e. at open circuit), we expect
the total current is 0. The two components to current flow across the junction,
which are related to electrons moving from the metal to the semiconductor and vice
versa. Any electrons in the metal that have enough thermal energy to overcome
the Schottky barrier height may flow to the right, which must be balanced by the
electrons that have enough thermal energy in the semiconductor to overcome the
built-in field. The energy distribution of electrons is related to the Boltzman factor,
such that:

JM−>S = C1 exp

(
− ΦB

kBT

)
(1.100)

Where JM−>S is the current density from the metal to the semiconductor and C1 is
a constant. For the current density from the semiconductor to the metal (JS−>M ,
we have

JS−>M = C2 exp

(
− eV0
kBT

)
(1.101)

This equation is the same, but for the barrier for electrons in semiconductor. At
equilibrium these must be equal. To visualize the difference between the two differ-
ent paths, see figure 1.23.
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Figure 1.23: The different locations of mobile electrons in the metal and semicon-
ductor lead to different energy barriers to overcome when determining the current
density from thermal excitation. For the metal (right), the barrier height set by the
metal and semiconductor fermi energies is the barrier to overcome for charge to move
into the semiconductor. For the semiconductor (right), the electrons are within the
conduction band, meaning that only the induced voltage from the Schottky junction
is the barrier to overcome to travel left. At equilibrium, these are equal. Figure
adapted from Kasap chapter 5.

When we apply an electric field, things change. We should note that there are now
nominally 3 componenets in series in this circuit - the metal, the depletion region,
and the semiconductor. The material with the highest resistivity is the depletion
region, as the density of charge carriers is the lowest. When an electric field is
applied, the majority of the voltage will be dropped across the highest resistance
region, which is the depletion region. Because of this, we may expect that the built
in voltage V0 will be modified by the applied voltage V regardless of the direction it
is applied in. This will cause different levels of band bending in different directions,
which will manifest in a very different Current-Voltage (I-V) curve. The band
bending is visualized in figure 1.24 and the ramifications on the electronic transport
is explained below.
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Figure 1.24: Band bending under applied external fields. Without an applied field
(left), the Schottky junction has bent bands at the metal-semiconductor interface
due to the charge flow from the semiconductor to the metal from the work function
difference. Under forward bias (middle), the semiconductor is biased on the negative
terminal of a circuit. The majority of the voltage is dropped across the depletion
region, which reduces the built in field by the applied voltage. This is manifested in a
lower degree of band bending, as the conduction band and valence band are increased
in energy due to the potential energy of the applied voltage. This makes the conduc-
tion from semiconductor to metal stronger. The conduction in the reverse direction
is not affected, as the barrier height has not changed. Under reverse bias (right), the
band bending is enhanced as the voltage applied adds to the built in voltage. This
leads to rectifying behavior, as the current density from the semiconductor to metal
becomes much harder to conduct, and the current is nominally independent of voltage
and determined by the current from metal to semiconductor (the barrier height does
not change with applied voltage).

We may expect that under forward bias, where the semiconductor is connected to
the negative terminal of a circuit, that the built-in voltage will therefore be reduced
by V such that the new built in voltage is V0 − V . The Schottky barrier does
not change. You can think of this as the band structure outside of the depletion
region uniformly increasing in energy (relative to everything else) by eV . Now that
the built in voltage is reduced, the barrier for electrons from the semiconductor to
move into the metal is reduced, but the reverse is not. That means we may expect
a non-zero current to flow. The total current density is given as:

J = Jfor
S−>M − JM−>S = C2 exp

(
−e(V0 − V )

kBT

)
− C2 exp

(
− eV0
kBT

)
(1.102)

where we have used the fact that, before, the electric field is applied, the current
density in either direction must be equal. We can simplify this to:

J = C2 exp

(
− eV0
kBT

)(
exp

(
eV

kBT

)
− 1

)
= J0

[
exp

(
eV

kBT

)
− 1

]
≈ J0

[
exp

(
eV

kBT

)]
(1.103)

Where we have grouped like terms and re-written the first term as a constant that
depends on the construction of the device. The approximate equation is valid when
the exponential term is much larger than 1. Clearly, this is a nonlinear function
with an exponential dependence on the applied field.
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Conversely, in reverse bias we find that the applied field leads to a voltage that
increases the built in voltage using the same arguments as before. This essentially
further increases the barrier height, meaning that we do not expect similar behavior
under a reverse bias. If we perform the same analysis, we find that the reverse
current from the semiconductor to the metal Jrev

S−>M is given by:

Jrev
S−>M = C2 exp

(
−e(V0 + Vrev)

kBT

)
<< JM−>S (1.104)

as the voltage increases. This means that the current is limited to the current flow
from the metal into the semiconductor, which is defined entirely by the battier
height ΦB (and therefore nominally independent of voltage once the reverse voltage
Vrev is large enough that the inequality holds.

Putting this together, this means that under forward bias, we expect a Schottky
junction to exhibit a current-voltage characteristic (I-V curve) that is exponential
with the applied voltage (very different than a standard V = IR dependence.
however, if we reverse the voltage, we find that the voltage quickly is limited
and becomes a small constant value with increasingly negative voltages ap-
plied. This is substantially different than the IV characteristic of a metal or
insulator, and driven entirely by semiconductor physics! The IV curve for a typi-
cal Schottky junction is shown below in figure 1.25. This is sometimes called a diode

Figure 1.25: Diode response from a Schottky junction. Under forward bias we have
an exponential dependence on the current due to the Boltzmann factor for thermal
carrier generation and the reduced band bending. Under reverse bias we quickly get
to a constant current set by the Schottky barrier height. The completely different
behavior under forward and reverse biasing leads to this diode behavior, where current
is essentially only allowed to go in one direction. Observe that the scale under reverse
bias is scaled differently than forward bias to see the actual current value.
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1.15 Application: Solar cell and photodetector

We can use the built in voltage to our advantage in the form of a solar cell or
fast photodetector. Here, consider what would happen if light is absorbed in the
depletion region. An electron and hole will be generated in a region in which the
bands are bending. The applied electric field can act on the additional charges,
which are then separated and travel in opposite directions due to their different
charges. The electron will travel to the right in the figure, whereas the hole will
travel to the left. This leads to an increase in electrons in the semiconductor.
Connecting both sides to a load can drive a current to deposit this extra electron
into the metal side.

You can also envision this from the earlier definition of how the system will reduce
its overall energy. The electron will follow the slope of the conduction band down
to a lower energy outside of the depletion region, whereas the hole will travel
up the valence band towards the metal. With the appropriate external load, the
energy of the photon can be harvested.

We can imagine that the speed with which the charge carriers will separate will
depend on the built in voltage or electric field. This means that if we were to
reverse bias a schottky junction we can increase this field and therefore speed up
the separation process. By measuring this current, we can use this to detect photons
- thereby creating a photodetector. These are just a few examples of the power that
semiconductor physics can bring to an overall device design. The engineering of
Fermi levels, doping concentrations, and metal contacts directly inform the ability
to create forces and fields that can control and guide electrons within semiconductor
devices that can be manifested in many different ways. This will be explored in more
detail when we discuss pn junctions and MOSFETs.

A drawing with the two cases is provided in figure 1.26, which shows the potential
configurations for the Schottky junction solar cell (left) and fast photodetector
(right).

1.16 Ohmic contacts

As a final note, we discuss the other case, which is an Ohmic contact. As you can
imagine, the rules to create an Ohmic contact will be opposite that of a Schottky
contact. For an n-type semiconductor, this requires that:

Φm < Φn (1.105)

Now there are electrons that are at a higher energy than allowed states within
the semiconductor, meaning that the electrons will want to tunnel into the
semiconductor conduction band to balance the fermi levels. As this occurs, the
electrons at the metal-semiconductor interface lead to an unbalanced charge and
an accumulation of electrons, leading to an accumulation region that bends the
bands. This time, the bands bend down. The bending occurs for the same reason
- looking at the equation that relates the carrier density to EC − EFn we expect
that increasing n will decrease EC − EFn, leading to the conduction band to bend
down. Figure 1.27 shows the band bending as a result of contacting the metal with
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Figure 1.26: Some use cases for a Schottky junction. When illuminated with light,
electron-hole pairs generated in the depletion width of the semiconductor are swept
in opposite directions due to the built in electric field. With the appropriate external
load, this can act as a solar cell to collect energy from the absorbed light. Reverse
biasing the junction can create a strong electric field that can speed up the drift
velocity of the photogenerated carriers, which can lead to a fast photodetector. The
voltages can be quite large, as the depletion width tends to be relatively small within
the semiconductor.
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a semiconductor in this case.

The conductivity in this region is more straightforward to evaluate. The higher re-
sistance region in this circuit is now the semiconductor, as the accumulation region
has a higher concentration of electrons. Therefore, the current flowing through this
composite structure is simply defined as J = σE, where the conductivity σ is from
the bulk semiconductor. This gives a linear I-V curve that is reminiscent of Ohm’s
law (hence “Ohmic”. We should note here that the contacts are not inducing
a linear conduction relation, but rather that the electrodes are not limiting the
conduction of the sample they are contacting. This is in contrast to the Schottky
contact, in which the interaction of the metal with the semiconductor leads to a
difference in conduction.

1.17 Summary an p-type Semiconductors

The conclusion of this section is simply to highlight the complexity of semicon-
ductor materials as one begins to think about making useful devices. The ability
to locally dope and control the majority/minority carrier concentrations, generate
carriers, and apply fields to make them drift leads to a rich set of possibilities for
controlling electrons and holes in devices. Now that we understand the impact
that the Fermi level has when connecting two dissimilar materials we can move
forward into more complex devices, which in this class will manifest with the
metal-oxide-semiconductor field-effect transistor.

As a final note, we should highlight the rules again for a Schottky or Ohmic con-
tact. We discussed the case of an n-type semiconductor, which has the following
relationships to create a Schottky contact:

Φm > Φn (1.106)

and an Ohmic contact:
Φm < Φn (1.107)

If we have a p-type semiconductor, the majority carriers are holes rather than
electrons. Therefore, we need to think about things with respect to the valence
band rather than the conduction band, and the inequalities are flipped. For a
p-type semiconductor, we find that a Schottky contactor junction will form when:

Φm < Φp (1.108)

and an Ohmic contact will form when:

Φm > Φp (1.109)

Where the subscripts for the work function Φp refer to the p-type semiconductor.
It is instructive to draw out the band diagrams for this case to convince yourself of
the same behavior.
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Figure 1.27: An Ohmic contact, where the work function of the metal is less than
the semiconductor. Before contact (left) we see that there are electrons in the metal
that are at a higher energy level than the Fermi level of the semiconductor, meaning
that there are states that the metal electrons can find in the semiconductor to lower
the overall energy. Upon contact (right), the electrons move into the semiconductor
to create an accumulation region. The bands bend downward accordingly to reduce
the distance between the fermi level and the conduction band. This leads to a region
with higher electron concentration and therefore lowere resistance, which facilitates
electron conduction.

1.18 Transport in semiconductor devices question

In class we began discussing The ramifications of transport in Schottky and
Ohmic contacts. To recap our discussion from class, if we have an Ohmic contact,
the charge flow through the junction is not limited by the metal-semiconductor
interface - it is instead limited by the higher resistance semiconductor. In this case
we expect to have a linear relationship between current I and voltage V . With a
Schottky contact, we expect a strongly nonlinear behavior.

For the homework problem, we need to consider a semiconductor with potentially
two different metals that could have either ohmic or schottky contacts. To
understand the behavior for positive or negative voltages, we need to understand
what will limit or determine the current. This is a circuit that is in series, so we can
look at the components resistance to determine the limiting factors. It should be
apparent that the metals have much higher conductivity than the semiconductor
due to the much higher concentration of carriers. Because of this, the problem
boils down to whether the semiconductor or the metal-semiconductor junction
limits the overall behavior.

The definition of an ohmic contact is that the metal-semiconductor junction does
not impede current flow. Then, the limiting component of this circuit is the
semiconductor itself, which has a resistance set by the resistivity. Then, it should
be clear that you expect a linear relationship between current and voltage if the
limiting component is the semiconductor. So, if you have two Ohmic contacts, then
you expect the current to have a linear relationship (i.e. V = IR) for all voltage
values in this case.
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The unique aspect of a Schottky junction is that the ability for charge to flow
is strongly dependent on the sign of the voltage that is applied. Under forward
bias, the applied voltage reduces the built in voltage at the metal-semiconductor
voltage. This dramatically increases the conductivity at this interface. This means
that when a Schottky barrier is under forward bias, we expect that the bulk
semiconductor will still be the limiting resistance in this case. Conversely, under
reverse bias, the built in field grows with the voltage. This means that it becomes
harder for current to flow from the semiconductor to the metal, so the current is
limited by the thermal generation of carriers that overcome the barrier energy ΦB .
This value is almost independent of voltage, so you expect the IV curve to very
rapidly go to a nearly constant value.

To summarize, this means that if you have a junction that has *any* Schottky
junction under reverse bias, you expect that the IV curve to be nearly constant. If
you have a Schottky junction under forward bias, the limiting factor in conduction
will not be the Schottky junction.

By way of example, we can plot the scenario where we have an Ohmic contact and
a Schottky contact. in this scenario in figure 1.28, positive voltages correspond to a
reverse bias for the Schottky diode. Then, we expect the voltage to be limited when
a positive voltage is applied, so you expect to see a nearly flat current with increasing
voltage. However, when we apply a negative voltage, the Schottky junction is
under forward bias. In this scenario, the largest resistance to current flowing is the
semiconductor. This scenario we would expect a linear relationship between voltage
and current.

To summarize: To determine the current-voltage relationship, consider first what
the most resistive part of your circuit will be. In these scenarios they appear to
be either a reverse biased Schottky junction or the bulk semiconductor. If there
is a reverse biased schottky junction, the current will quickly saturate to a con-
stant value. If the limiting factor is an Ohmic contact, then you expect a linear
relationship with a slope related to the resistance of the semiconductor.

2 pn Junctions and associated devices

2.1 Introduction

We have spent a significant amount of effort developing the fundamentals of charge
transport inside semiconductors. We learned that different dopants can increase
the electron or hole concentrations, and that optical excitation and absorption
can be used to increase the concentration of electrons and holes beyond thermal
equilibrium (at least transiently). Finally, we discussed how electric fields can move
electrons and holes, and how the contact of two dissimilar materials can induce
a built in electric field, cause drift and diffusion currents of charge carriers, and
potentially impede the flow of charge carriers through the creation of a barrier.

In this chapter we will explore some prototypical examples of semiconductor devices
that are formed with both p-type and n-type semiconducting materials. Here, we
will discover that these materials can form diodes and junctions that are similar to a
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Figure 1.28: IV Characteristic of a semiconductor with an ohmic and schottky
contact. Under positive voltage, the diode is reverse biased, leading to a current
limited by the Schottky junction. For negative voltages, the Schottky junction is
forward biased, so the slope is related to the resistance of the semiconductor. This is
a highly asymmetric response.

Schottky junction at the metal-semiconductor interface. We will develop this further
and explain its ramifications on the design of solar cells and LEDs. In principle these
can be extended to lasers and other complex devices. We will wait to discuss the
transistor until we have had a chance to discuss how dielectric materials function,
as we will use this as part of the description of a Metal-Oxide-Semiconductor Field
Effect Transistor (MOSFET).

2.2 Junction formation and built in fields

Similar to the formation of a Schottky junction, we consider the case of two semi-
conductors with different doping concentrations. Here, we have one p-type semicon-
ductor and one n-type semiconductor. These can be formed, for example, through
differential doping of parts of a silicon wafer. Before these materials make contact,
we note that the Fermi levels are different. Because this represents the chemical
potential of the electrons in the system, we expect there to be a flow of electrons
to reduce their overall energy. They will recombine with holes in the p-type semi-
conductor to reduce the concentration of electrons and holes in their respective
materials. The remaining charged dopant cores will induce a space charge that will
balance this effect. After equilibrium is established, the Fermi level will be constant
across the junction and we expect to see band bending, like we did for the Schottky
junction. This is represented in figure 2.1:

We can compute the built-in field from this sketch by first noting that the charge
density will induce an electric field through:

dE

dx
= −d

2V

dx2
=
ρnet
ϵ0ϵr

(2.1)

Such that if we know the charge density of the depletion region, we have essentially
solved the problem. First, we can assume that the charge density will be constant
in each layer and defined by the doping densities (this is a reasonably good
approximation, but note that n and p in these regions is not identically zero,
just much smaller than their initial concentration. Then, in the p region we
have a charge density of eNa for the acceptors and eNd for the donors. We will
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Figure 2.1: Depletion region of a pn junction, which includes a depletion width that
goes into both the p-type and n-type semiconductors. Adapted from Kasap

independently define the widths, with the region of the p type depletion region as
Wp and the n type region as Wn, and we will set the origin x = 0 at the junction.

We can compute the electric field as:

E(x) =
1

ϵ0ϵr

∫ x

−Wp

ρnet(x)dx (2.2)

where we begin at the farthest left portion of the charge density and can integrate
to any point x within the depletion region. This is shown in figure 2.2:

Note that the highest electric field is right at the junction (here, the field uses the
phrase ”metallurgical junction” to describe the exact p-n connection or junction
point).

Once we know what the electric field looks like, we can compute the voltage as:

V (x) = −
∫ x

Wp

E(x)dx (2.3)

to show that the voltage is a function of space. Finally, we can note that hte
potential energy that an electron or hole will feel given this voltage is defined by

PE = qV (x) (2.4)
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Figure 2.2: Depletion region of a pn junction, and the built in electric field from
the charge density. Adapted from Kasap

Such that they feel a different potential energy because of the charge. This is all
schematically illustrated in figure 2.3:

Since we know that electrons and holes must recombine in pairs, we can set bounds
on what the depletion widths will be based on the doping density. This can be
equated as:

NaWp = NdWn (2.5)

Where we can clearly see that this is essentially balancing the total acceptors and
donors that are exposed in the depletion region. We notice from figure 2.2 that
the electric field is approximately linear in each depletion region, and that we have
assumed that the carrier density is constant. Then, we can show that the maximum
electric field will be given at x = 0 and will be:

E0 = −eNdWn

ϵ0ϵr
(2.6)

Given that the voltage is the integral of the field and that the elctric field looks like
a triangle, we can simply write down that:

V0 = −1

2
E0W0 =

eNaNdW
2
0

2ϵ0ϵr(Na +Nd)
(2.7)

Where we have defined that W0 =Wa +Wd.

To actually define the built-in voltage and therefore compute the depletion width,
we need to do some math. We know that the concentration of carriers in a semi-
conductor is proportional to a Boltzmann factor that takes into account the energy
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Figure 2.3: Built in field and potential energy within the pn junction. Adapted
from Kasap

gap. That is, n(E) ∝ exp−E/kBT . Since there is an energy difference in the band
gap between the n side and p side of the junction, we can take the ratio of the two
concentrations and arrive at:

n2
n1

= exp

[
−E2 − E1

kBT

]
(2.8)

where E = qV , with q being the charge of the carrier. At the p side of the junction,
E = 0 and n = np0. At the n side, E = −eV0 and n = nno. Then, we can take the
ratio to be:

npo
nno

= exp

(
− eV0
kBT

)
(2.9)

And similarly,
pno
ppo

= exp

(
− eV0
kBT

)
(2.10)

We use the law of mass action to re-define pno =
n2
i

nno
=

n2
i

Nd
, and recognizing that

ppo = Na, we can use the above equations to define that:

V0 =
kBT

e
ln
NaNd

n2i
(2.11)

Where we have now define the built in voltage entirely in terms of material param-
eters that are decided on by the device design.
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We can therefore solve for the depletion width W0 to be:

V0 =
eNaNdW

2
0

2ϵ0ϵr(Na +Nd)
(2.12)

which can be solved to find that:

W0 =

(
2ϵ0ϵrV0

e

(Na +Nd))

NaNd

)1/2

(2.13)

This is a key result. When we apply a voltage, we essentially modify V0, the built in
electric field, and therefore the potential energy that the charge carriers feel. The
depletion with is also modified, which has implications on the transport of electrons
and holes.

2.3 Forward bias

When we apply a field that opposes the built-in field, it will (1) increase the minority
carrier concentration, (2) reduce the depletion width, and (3) increase the diffusion
current of minority carriers. We will sketch this out below. Figure 2.4 shows the
carrier concentration distribution and the built in electric field when a pn junction
is forward-biased.

Figure 2.4: Carrier concentrations under forward bias, as well as the built in field
and reduction in depletion region width. Compare this distrubtion against the one
in figure 2.1. Adapted from Kasap

Additionally note that the fermi level of the p and n type materials have also shifted
because of the applied electric field. Like in the Schottky junction case, the bulk
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of the semiconductor energy level will be modified because the voltage induces a
potential energy increase or decrease for the fermi level. This is effectively the
reason for which the built in voltage increases or decreases.

We can compute the change in the depletion width, which is simply related to the
net built in field. This is given as:

W ≈
(
2ϵ0ϵr
e

(
Na +Nd

NaNd

)
(V0 − V )

)1/2

(2.14)

Additionally, we can compare the relative widths for the depletion region within
the n-type or p-type material. To a decent approximation, the depletion width in
each region is essentially the weighted average of the doping concentrations of the
bulk semiconductor. The depletion width for holes is essentially given as:

Wh ≈W
Na

Na +Nd
(2.15)

Because the depletion width has decreased and the built in voltage is now lowered,
we expect there to be a greater amount of diffusion of carriers, as the force that was
establishing equilibrium is now reduced. This difference in concentration of at the
edge of the depletion region (here, defined as x = xn) can be expressed as:

pn(xn) =
n2i
Nd

exp

(
eV

kBT

)
(2.16)

which essentially is a reflection of the fact that the barrier has been reduced by a
value of V and we can compute the Boltzmann factor of additional charge carriers.
Note, however, that this is a very strong function, and even modest voltages can
dramatically increase the concentration of carriers.
We can also compute the change in electron concentration at the edge of the deple-
tion region in the p type material (here, x = −xp, if 0 is the position of the exact
contact position between n and p type semiconductors) as:

np(−xp) = nno exp

(
−e(V0 − V )

kBT

)
= nno exp

(
−e(V0)
kBT

)
exp

(
eV

kBT

)
= npo exp

(
eV

kBT

)
(2.17)

The increased density of minority carriers at the edge of the depletion region leads
to a large diffusion current of minority carriers. We note that the continuity equa-
tion will give that the excess concentration of holes in the n type material can be
expressed as:

∆pn(x) = B exp

(
− x

Lh

)
= pn(x)− pno (2.18)

Where B is some constant and Lh is the diffusion length for holes (recall that
Lh =

√
Dhτh. We can insert the expression above (3.16) into this expression to

determine the change in concentration with distance, by noting that n2i /Nd = pno.
We then arrive at:

∆pn(x, x > xn) = pno exp

(
xn − x

Lh

)[
exp

(
eV

kBT

)
− 1

]
(2.19)
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Using the definition we have for the diffusion flux Jp = −eDh
d∆pn(x)

dx , we can
evaluate this at the edge of the depletion width in the n type semiconductor to
compute the flux of charge carriers. When we do this, we obtain:

Jp(xn) =

(
eDhn

2
i

LhNd

)[
exp

(
eV

kBT

)
− 1

]
(2.20)

This has been a lot of math. We can do a similar analysis for the electrons, and
we will get a similar functional form. Here, we find that there is an exponential
decay in the flux as we move away from the depletion width, as the concentration
gradient is reduced.

The total current flux needs to take into account both the fluxes of the electrons and
holes. The complete solutoin takes into account the contribution of the electrons
and holes, and takes the form of:

Jtot =

[(
eDh

LhNd

)
+

(
eDe

LeNa

)]
n2i

[
exp

(
eV

kBT

)
− 1

]
(2.21)

where we can define the Reverse saturation current density JSO as:

JSO =

[(
eDh

LhNd

)
+

(
eDe

LeNa

)]
n2i (2.22)

A drawing of the different contributions from drift and diffusion are shown in figure
2.5:

Figure 2.5: Current density under forward bias in a pn junction. The total current
density is constant, so the relative components from electrons and holes, drift and
diffusion, can change as a function of position. Adapted from Kasap

2.4 Reverse bias and generation current

As you can imagine, applying an electric field that enhances the built in field (i.e.
driving hte junction under reverse bias) will decrease the ability for electrons and
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holes to traverse the junction. Because of this, we expect to be limited by the
reverse saturation current density defined above, as the exponential term in the
diode equation very quickly disappears and we are left with the only remaining
term. However, there is one more detail we have yet to cover. If there are electron-
hole pairs that are generated within the depletion region, we would find that the
built in electric field will cause the electrons and holes to move in opposite directions.
This will sweep out generated charge carriers from the depletion region, which will
introduce an additional small (but non-zero) component to the current density.
The generation rate of these carriers will thus depend on the width of the depletion
region (as carriers can be generated anywhere in it, and therefore more or less will
be created if the depletion region is increased/decreased). It will also depend on
the generation time and the intrinsic concentration of carriers. We will not derive
the term but merely reproduce it. The Total reverse current density is:

Jrev =

[(
eDh

LhNd

)
+

(
eDe

LeNa

)]
n2i +

eni

τg
W (V ) (2.23)

Where the first term is the reverse saturation current density and the last term is
the generation current that is induced due to electron-hole pair generation in the
depletion region. Here, we explicitly indicate that the depletion width W (V ) is a
function of the applied voltage, and have introduced a phenomenological timescale
τg that we call the generation time.

As you can imagine, this indicates that one can have charge carriers generated in
the depletion region of the pn junction. The effective voltage then creates a driving
force to separate the electrons and holes, which then is turned into an additional
current density. This can be a foundational approach in developing devices like
solar cells, in which we want to convert light into electricity. For posterity, I have
included the band structure and the depletion width for the reverse bias case in
figure 2.6:

Figure 2.6: Schematic of reverse biasing a pn junction. This widens the depletion
region. The electron and hole concentrations will be reduced near the depletion
regions due to the additional applied field. Adapted from Kasap
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2.5 Recombination current during forward bias

While we’re discussing all the non-idealities in pn junctions, let’s discuss the reason
for the “ideality factor” η in the diode equation. We have not discussed what will
happen to the current density when a particle undergoes recombination within the
space charge region. This will increase the current under forward bias.

Recall that the depletion width W depends on the applied bias, which will change
the size of the region where recombinatoin is relevant for this example. This rate
additionally will depend on the concentration of charge carriers, which varies in
space (and is a difficult calculation to determine). We will not derive the expression,
but present one with effective parameters. A more advanced course may delve into
this.

The recombination current density takes the form:

Jrecomb = Jro

[
exp

(
eV

2kBT

)
− 1

]
(2.24)

where

Jro =
eni

2

[
Wp

τe
+
Wn

τh

]
(2.25)

Here, the τ values are the effective lifetimes. We must add this source of current
density to the total term for the current density under forward bias. We then arrive
at the final equation, which is:

J = J0

[
exp

(
eV

ηkBT

)
− 1

]
(2.26)

where we have the ideality factor η to take into account this phenomenological
factor of recombination.

What does all of this mean? If we drive current under forward bias through a pn
junction and there is recombination, more current is required at a given voltage. If
we use a direct bandgap semiconductor, this recombinatoin can efficiently generate
light, which can be used to great light emitting diodes.

2.6 Band bending summary and general notes

Wow, this is a lot of content! There are many variables to keep track of, and the
overall physics can be a bit complex here. Some general advice: (1) Recall that the
law of mass action must apply at equilibrium, which will set the concentrations of
carriers. (2) Because we are dealing with two different types of semiconductor in the
same problem (p-type and n-type), keeping track of subscripts is quite important.
(3) We can use the boltzmann factor analysis to convert between carrier types and
concentrations at different points along the structure. (4) The band bending is
induced because of the built in field from the depletion region, which essentially
acts like a capacitor. (5) Applying an electric field can displace the fermi levels in
the p and n type materials compared to at thermal equilibrium, which can reduce
or enhance the band bending.
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This last point is discussed in figure 2.7, where we consider all of the various cases
from earlier parts of this section.
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Figure 2.7: Schematic of the band bending in a pn junction. a) is the case where
there is no applied field, with the bending defined entirely by the concentration of
dopants in the n and p type materials. b) shows the case of forward bias, in which
an applied field opposes the built in field and reduces the band bending by increasing
the energy level (and fermi level) of the band. c) shows reverse bias, where the
opposite behavior occurs. Finally, d) shows what happens when electron-hole pairs
are generated in the space charge layer (within the depletion layer) of a junction -
charge carriers are spontaneously swept out of the junction. Adapted from Kasap

2.7 Solar Cells

Finally, some content about applications of these diodes! A solar cell in the dark
that is composed of a pn junction acts just like how we have described so far.
When we turn the light on and shine it onto the semiconductor, we expect that
any charge carriers that are generated within the depletion region will see the
applied electric field and be swept out of the depletion region. The electrons will
go one way and the holes will go the other way. We can then extract meaningful
current from this. To maximize the efficiency of a solar cell, we want to minimize
the non-radiative recombination mechanisms in the diode. A schematic of a solar
cell in operation is given in figure 2.8:

Some important parameters of the IV characteristic of a solar cell are the open
circuit voltage (VOC) and the short-circuit current (JSC). It can be shown for a
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Figure 2.8: Design of a solar cell. Light is shining from the left into the solar
cell, which has electrodes on either side to collect current. The depletion region
spontaneously separates charges due to the built in voltage, which can be used to
harvest energy from the absorbed light.

solar cell that these take the form:

VOC =
ηkBT

e
ln

(
JSC

JSO

)
(2.27)

where the reverse bias saturation current JSO is defined to be

JSO = en2
i

(
De

LeNa
+

Dh

LhND

)
(2.28)

Clearly, we would like for the reverse saturation current to be minimized to maximize
the open circuit voltage. In addition, one may notice that a longer lifetime τ
increases the open circuit voltage VOC , which in turn provides higher power and
efficiency. This makes sense if we need the generated charge carriers to last long
enough to be collected by the electrodes.

The power for a solar cell is defined as:

P = VOCISCFF (2.29)

where FF is the fill fraction, and is defined as:

FF =
IMVM
ISCVOC

(2.30)

where IM and VM are the operating current and voltage that can maximize this
function. You can do this graphically. Figure 2.9 shows the relevant curves you will
find for solar cells as a function of the optical power that shines on them. the short
circuit current JSC is the current at 0 voltage (i.e. crosses the vertical axis), while
the open circuit voltage VOC is the voltage when there is no current (i.e. crosses the
horizontal axis). To optimize the power, we must find a value along the curve where
the IV is maximized. You may notice, therefore, that an ideal solar cell will have
a nearly constant IV characteristic until a turning point, in which it would quickly
reduce in current until it reaches the open circuit voltage. This notion of “Fill
fraction” is essentially measuring how close the IV characteristic is to a rectangle
in shape.
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Figure 2.9: IV characteristic of a solar cell with the light on and off. Different
powers lead to different short circuit currents. Here, the short circuit current is also
labeled as −Iph to represent that the current is caused by the absorption of light
generating charge carriers. Adapted from kasap.

2.8 LEDs

We will introduce the basics of an LED. Note, however, that some of the most
efficient LEDs are based on heterostructures that can create quantum wells to trap
charge carriers. This might be worth looking at - in fact, this won a nobel prize for
its work.

In a basic pn junction LED, we consider the forward bias of the junction in a direct
bandgap semiconductor. This forces carriers through the depletion region. When
the electrons and holes recombine, light can be emitted. This is essentially the
opposite process as a solar cell, in which we absorb light to collect its energy. Here,
we expend energy by creating photons. Figure 2.10 shows the band structure of
this case.

Figure 2.10: Band structure of an LED. Upon forward ias, the fermi energies are
no longer in equilibrium. Charges can move through the depletion region more easily,
which can enable more efficient extraction of light through the recombination of these
carriers within the depletion region.
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Some general notes to consider. Because the charge carriers are thermally gener-
ated, there is a distribution to their color, as electrons with different energies can
recombine with holes of different energies to create a variety of frequencies. Based
on the density of states, the most intense energy that is emitted is approximately
Eg + 0.5kBT . The distribution of colors can also be approximated to be approxi-
mately ∆hν = 1.9kBT , or the change in wavelength is approximately:

∆λ = λ20
mkBT

nc
(2.31)

There are many factors that can impact the efficiency of LEDs, and many of them
are fundamentally materials problems! Reombination and trapping centers within
direct bandgap semiconductors are a critical challenge, and the formation of the
blue LED was awarded a Nobel Prize!

We can compute quantum efficiency of these devices. The internal quantum effi-
ciency is essentially the rate of radiative recombination normalized by the total rate
of recombination, which can include nonradiative routes. Then,

ηIQE =
Φph

I/e
(2.32)

which is essentially photons emitted internally per second/total carriers lost per
second.

The extraction efficiency ηEE is the number of emitted photons externally from the
device divided by photons generated internally by recombination. Then, the total
output power is defined to be:

P0 = hf × ηEE × ηIQE(I/e) (2.33)

and the external quantum efficiency ηEQE is the total conversion of electrons that
flow into the LED to the number of generated photons that are emitted from the
device.

ηEQE =
P0/hf

I/e
(2.34)

From this, you can determine the wall plug efficiency if desired.

2.9 Zener Diode

We will spend a brief amount of time discussing the Zener diode, as it will make an
appearance in laboratory exercises. While we have covered the general IV charac-
teristics for an IV curve of a diode, we have not discussed the notion of breakdown.
If we apply a large enough reverse bias, we may find that the IV characteristic
suddenly has a strong current, and devices will typically start to fail. The deviation
from the reverse bias saturation current is the onset of breakdown. This can hap-
pen due to an effect called avalance breakdown, in which electrons have high energy
collisions with atoms and the device starts to become damaged. This is obviously
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undesirable. The Zener diode attempts to avoid this possibility by creating a situ-
ation where electrons can tunnel through the potential barrier rather than destroy
the device. While this is still breakdown from the saturation current, it is done in
such a way that the device is not damaged or destroyed. This is done by having
a high doping concentration on either side of the junction, which creates a very
narrow depletion region. When reverse biased, the depletion region is decreased
even more substantially, such that electrons are able to tunnel through the barrier.
A schematic bandstructure and an example of reverse bias breakdown IV curve is
given in figure 2.11. One outcoe of such a device is that you can make these devices
operate under very high reverse bias conditions without fear of breaking them.

Figure 2.11: left: IV characteristic for strong reverse bias, showing a sudden increase
in the current at the breakdown voltage. This is typically bad. right: A Zener diode is
composed of a pn junction with high doping concentrations, leading to a very narrow
depletion region. Upon high voltage operation, the device will break down but will
not destroy the device.

3 Dielectric materials

3.1 Introduction

So far, we have discussed materials that have free charge carriers that can move
around in response to an applied electric field, which has created several complex
phenomena that gives rise to modern electronics and optoelectronics. We will briefly
step away from this to discuss the properties of insulators, which do not have (in-
tentional) carriers. We will need to understand the manner in which they respond
to an applied electric field, which will end up polarizing the device. The material
mechanisms that give rise to polarization will define the dielectric constant. We will
find that the behavior will also depend on the frequency of the applied electric field.
This will eventually lead us to understand some aspects of the optical properties of
thin films.
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3.2 Capacitance

You may recall from introductory physics that the Capacitance of two parallel plates
with area A and separation distance d is given by:

C =
ϵ0A

d
(3.1)

where C is the capacitance (with units of Farads F), ϵ0 is the permittivity of free
space ϵ0 = 8.85× 10−12 m−3 kg−1 s4 A2 (these units are also equivalent to F/m).
A is the area (units of m2), and d is the distance between the plates (with units of
m). The capacitance will relate the charge that can be stored on these plates for a
given voltage that is applied. We will see that when a material is placed in between,
then this equation will be modified due to the dielectric response of the material.
This is the parameter ϵr or the relative permittivity. The goal of this section is to
understand where ϵr comes from.

We first start with a hypothetical experiment with a parallel set of metallic plates
that are connected to a circuit. All variables and the experiment is shown in figure
3.1.

Figure 3.1: Hypothetical experiment with parallel plates. As a voltage is applied,
charge is stored on the plates, which induces an electric field. Inserting a dielectric
material between the places leads to a current flow as more charge can be stored on
the plates. The new capacitance can therefore measure the dielectric constant of the
material. Adapted from Kasap

If we apply a voltage, the plates will develop charge of opposite sign on either plate.
The metal, with a high density of conduction electrons, can supply the charges
easily and they exist at the very edge/surface of the metal (this is in contrast to
a semiconductor, in which there is some charge density going into the material).
The different in charges at the surface induce an electric field between the region
of positive and negative charge.

This geometry is essentially a capacitor. We can relate the Capacitance C to the
applied voltage V by understanding how much charge Q can be stored on the plates.
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In the case where there is nothing between the plates, we can determine the initial
capacitance C0 based on the initial charge Q0 that is induced when the voltage is
applied. The equation that relates these parameters is given as:

C0 =
Q0

V
(3.2)

When we start to place a dielectric material inside of the gap, we find that the
total amount of charge that can be stored on the capacitor places will go up. Note
that we have specified that this material is a dielectric material, which is any
non-conductive material. If it were conductive, then the charges on either plate
would move in response to the voltage and the circuit would be shorted. In this
hypothetical experiment, we find that the net charge Q goes up for a given applied
voltage V . This can be measured through a current through the circuit as we
insert the dielectric material.

Since we previously defined that the permittivity of free space is defined by the total
amount of charge that can be stored on these plates in the absence of a material,
we must modify this expression to take into account the response of the material.
We define this value as the relative permittivity or the dielectric constant, ϵr that
takes this into account. The total permittivity is then given by the ratio of the new
charge stored compared to the plates without material Q/Q0 or the new capacitance
compared to the original capacitance C/C0. Physically, the increased polarization
of the dielectric from the applied field is responsible for this behavior. We must
understand this to understand the relative permittivity. The consequence of this is
the general equation:

ϵr =
Q

Q0
=

C

C0
(3.3)

such that the capacitance of this structure is therefore:

C =
ϵ0ϵrA

d
(3.4)

3.3 Dipole moments and atomic polarizability

We will begin by developing a microscopic picture of the ability for a dielectric
material to polarize. Whenever there are positive and negative charges separated
by a distance, we can characterize the electric dipole moment that is generated. this
is essentially the electrostatic response of a net charge density sparation. We can
define the dipole moment as:

p = Qa (3.5)

where p is the dipole moment, Q is the charge, and a is the separation between
them. Note that this is for a positive charge +Q separated from a negative charge
−Q. This behavior is in general a vector, as the charges can be separated by a given
distance in any spatial direction. We represent the physical picture of a dipole in
figure 3.2.

This behavior is useful to think about and can be used in a variety of contexts. If
we were to have an atom between the plates, we would expect that the electric
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Figure 3.2: Description of a dipole within a volume (yellow area). The net charge
in the volume is 0, but the separation of charges Q by a distance a induces a net
dipole moment within the solid. Adapted from Kasap

field would cause the electrons to move in one direction, while the atomic core
would move in the opposite direction due to having an opposite charge. The
electron cloud can much more easily because the relative mass of the electrons is
much lower than that of the atom. Thus, we would expect that an electric field
applied by the capacitor plates would displace the electrons with respect to the
atomic core. We can represent this effect simply by looking at the net charges and
distances, and therefore represent this material as a dipole. Because this atom has
an electric dipole moment, it is polarized. This leads to the ability for a material
to polarize inside of a capacitor, leading to the dielectric constant.

The approach we will use to understand the dielectric constant will start with an
understanding of how a single atom will respond to an electric field. Once we
understand this, we can understand how a collection of atoms can polarize, and
from this we can start thinking about the different contributing factors to this
collection of atoms.

To capture this physics, the field has decided to use several different terms and
variables to represent this that can often become a bit confusing to keep track. We
will attempt to make this as clear as possible. First, we want to understand how
easy it is for an atom to become polarized in response to an electric field, which we
can use to built up intuition about the response of a material. To do so, we will
define the polarizability α, which is the term that will directly relate the induced
dipole moment in a material or atom in response to an applied electric field E:

pinduced = αE (3.6)

Here we see that this relationship is linear, in that it depends linearly on the
applied field. There are several materials for which this is not true, and there are
a lot of interesting things that can be done with a nonlinear polarization, but we
will not discuss these now.

The model that we can use to determine how easily an atom can polarize is es-
sentially every introductory model for a material, the mass on a spring. When we
apply an electric field, the electrons will want to move in response to the field. As
they move away from the atomic core, the Coulombic interaction creates a restoring
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force that opposes the applied electric field. If we apply a static electric field, these
must balance. This can be represented as a force with a linear relationship with the
distance as:

Fr = −βx (3.7)

where the restoring force F is related to the displacement x by the bond strength
β. The net force from the applied field is defined by the total number of electrons
Z, their charge e, and the applied field E. This can be written down as:

ZeE = βx (3.8)

which means we can define the induced dipole moment as:

pe = (Ze)x =

(
Z2e2

β

)
E (3.9)

where we have noted that the dipole strength is related to the total number of
charges as well as the separation distance. We can measure the bond strength by
looking at what happens when the electric field is suddenly turned off. If we do this,
then the restoring force from the bond will cause the electron cloud to accelerate
towards the atomic core, as there is no other force applied to create the dipole. We
can then relate the restoring force as the force times acceleartion as:

−βx = Zme
d2x

dt2
(3.10)

This is the common mass on a spring differential equation, which has a solution of
simple harmonic motion defined as:

x(t) = x0 cos(ωt) (3.11)

where the resonant frequency ω0 is

ω0 =

(
β

Zme

)1/2

(3.12)

With this relationship, we can relate the electronic polarizability αe to values that
can be looked up in tables as:

αe =
Ze2

meω2
0

(3.13)

This resonant frequency is something that can be looked up for many atoms.

3.4 Collections of atoms and polarization vectors

Now that we have a basic relationship for the response of individual atoms, we can
consider the cases perhaps more interesting to materials scientists - solid materials.

In a solid material we will have a collection of atoms in particular bonding configu-
rations that will all respond to an applied electric field. Whereas the polarizability
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αe is a descriptor of an individual atom (and is therefore a local property descrip-
tor), we need to define the net Polarization of a bulk material, which will have an
associated set of macroscopic terms to consider. If we have n atoms that each have
a dipole moment pi (the subscript i would refer to the dipole of the ith atom), then
we can measure the macroscopic polarization P by simply summing up the dipoles
and taking the volume average. Note that the dipole is actually a vector property
pi. Then, we can write the net polarization as:

P =
1

V

∑
i

pi (3.14)

Note that the net polarization is also a vector quantity - the induced direction wants
to point in a particular direction.

We can simplify this to define an aggregate average dipole pav in the solid. Then,
this can simply be related to the number density N of dipoles per unit volume and
the average dipole moment as:

P = Npav (3.15)

We can visualize this behavior in the thought experiment presented above. If we
put a material between the parallel plates and apply an electric field, each atom
will polarize in response to this. This is shown in figure 3.3:

Figure 3.3: When a material is placed in between two plates, the atoms individ-
ually polarize in response to the applied field. Within the bulk of the material the
net positive and negative charges cancel, but the net charges at the surfaces of the
dielectric material remain. To balance this, new charge must be added to each plate,
which can be measured to determine the dielectric constant of the material. Adapted
from Kasap

When the atoms polarize, there is a net negative charge at the edge of the dielectric
material by the positive terminal, while there is a net positvie charge on the
edge of the dielectric material at the negative terminal. In order to balance the
local charges at the metal plates, more charges must accumulate in the metal
plates, which increases the net charge and therefore defines the dielectric constant.
Additionally, the positive and negative charges that are in the bulk of the material
cancel, leading to a polarized material with the net charges on the surfaces. The
Polarization vector P is related to the net charges on the surface and the distance
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d between them.

As a brief aside, we note that we care about the net dipole that is oriented along
the applied field. The net dipole may actually be written as pinduced, but the dipole
moment we care about for these purposes is pav.

As we are thinking about the macroscopic response of the medium, we can express
the total dipole moment as the net charge on either side of the dielectric material
as:

ptotal = QP d (3.16)

where we have dropped the vector nature as the dipole is aligned with the electric
field. We are using the definition QP as defined in figure 3.3. We can take the net
polarization P as the volumetric average of this dipole as:

P =
ptotal
V

=
QP d

Ad
=
QP

A
= σP (3.17)

where σP is the surface charge density on the plates. Therefore, we have a way of
directly measuring the macroscopic polarization of the material based on the net
charge that is accumulated on a plate with a cross-sectional area A.

We can relate this to macroscopic phenomenal that depends on the applied electric
field. As we increase the voltage, the electric field between the plates will increase,
and we therefore expect the polarization to increase. For the microscopic picture
we had defined the atomic polarizability, which described how easy an atom could
polarize. Here, we define a new macroscopic value χe through:

P = χeϵ0E (3.18)

where χe is the electric susceptibility. This is the constant that relates how easy
(or susceptible) the bulk material can polarize in response to an applied electric field.

Because the macroscopic polarization is related to the net induced dipoles that are
created in the material, we can find a relationship between the macroscopic descrip-
tors and microscopic phenomena. This can simply be expressed as the product of
the number density of dipoles and the induced dipole moment as:

P = χeϵ0E = Npinduced = NαeE (3.19)

which implies

χe =
Nαe

ϵ0
(3.20)

such that:

ϵr = 1 + χe = 1 +
Nαe

ϵ0
(3.21)

This is the key result of this thought problem - if we can appropriately describe the
ability for individual atoms to polarize in response to an electric field, we can define
the macroscopic properties that we can use to engineer our materials!
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3.4.1 proof of relative permittivity (optional)

This section may be helpful to think through the result above, but is not required.
Before any material is placed in between the parallel plates, we can express the
elcctric field in the capacitor as:

E =
V

d
=

Q0

ϵ0A
=
σ0
ϵ0

(3.22)

where we have defined σ0 as the free surface charge density - that is, the charge
density on the plate when a voltage is applied in vacuum.

Note that when the dielectric has been placed inside the capacitor, the electric
field has not changed, as the voltage and distance in the material has not changed.
However, more charge appears on the plates in response to the effective charge that
is induced on the surfaces of the dielectric material. The new charge Q = Q0 +QP

defines a new surface charge density σ as:

σ = ϵ0E + σP (3.23)

Relating the surface charge density induced on the plates to the macroscopic polar-
ization of the dielectric σP = P = χeϵ0E we obtain:

σ = ϵ0(1 + χe)E (3.24)

Using our prior definition of the relative permittivity as:

ϵr =
Q

Q0
=

σ

σ0
(3.25)

such that:

ϵr = 1 + χe = 1 +
Nαe

ϵ0
(3.26)

3.5 Clausius-Mossotti equation

Unfortunately, our life is note quite as simple as the picture painted in the previous
expression. If we could simply just sum up the dipoles of individual atoms, we
could very quickly identify the permittivity of virtually any material. However,
this assumes that the electric field E applied by the electrodes leads to the dipole
response. However, we need to consider that the electric field inside of a material
may look different locally than the macroscopic picture, which we may expect
given the distribution of charge locally within the material. The electric field is not
quite uniform at this level, and the crystal arrangement has a large impact on the
field that an individual atom will see.

What we care about is the local electric field Eloc. If we can accurately describe this
local electric field, then we know better how the atoms will polarize. This thought
problem is represented in figure 3.4
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Figure 3.4: The local electric field is complicated. To compute the electronic re-
sponse of an atom to the applied field, we need to understand the local electric field.
To compute the local electric field, we can consider the thought experiment where
an atom or molecule is removed. Measuring the electric field in the location where
the atom was from the atoms and fields around it can therefore determine the local
electric field. Adapted from Kasap

Figure 3.4 describes the thought problem that can be used to determine the local
electric field. Here, we need to consider both the voltage applied by the capacitor
plates but the additional field induced by nearby atoms. This can be an exceedingly
complicated problem to solve, but the key point is that we need to understand the
local electric field in order to determine the macroscopic response. This can be
solved in more advanced texts, and techniques like Density Functional Theory can
help predict this. One solution we will present without evidence is the solution for
liquids and materials with a cubic crystal structure, in which the local electric field
can be represented as:

Eloc = E +
1

3ϵ0
P (3.27)

In these systems, we can therefore represent the induced polarization as:

pinduced = αeEloc (3.28)

Combined with the expression for the macroscopic susceptibility P = χeϵ0E =
Npinduced, we can find a relationship for the permittivity of these materials based
on the polarizability of the atoms in the crystal. The induced dipole in this equation
therefore relates the local electric field to the macroscopic polarization. Using these
equations, we can relate the macroscopic permittivity to the atomic polarizability
as:

ϵr − 1

ϵr + 2
=
Nαe

3ϵ0
(3.29)

Which is known as the Clausius-Mossotti equation. This fundamentally links
macroscopic material properties ϵr to microscopic details in αe.
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3.6 Visualizing polarization in different kinds of materials

This has been fairly abstract. This section aims to look at how different classes of
materials will polarize in response to an applied electric field. First, let’s look at
figure 3.5, which shows the electron clouds displacing in response to the applied
electric field. Here, we see that the macroscopic polarization points in the direction
of the applied electric field, and the electrons are displaced with respect to the
atomic cores.

3.6.1 Covalent solid materials

In covalently bonded solids, the electron clouds for the valence electrons are delo-
calized with respect to an individual atom. This makes it much easier for these
electrons to move with respect to an applied electric field, which leads to a larger
induced dipole. We can rationalize this by looking at the binding energy of these
electrons to the atomic cores - the valence electrons take much less energy (for the
Semiconductor Si, of order 1-3 eV) to break the bond between the electron and
atomic core. The core electrons (say, the 1s orbitals) are much harder to remove
from the atom. Because of this, the valence electrons respond much more easily
than the rest of the electrons. In fact, this is part of the reason for the high relative
permittivity of these materials compared to many others. For example, the relative
permittivity of Silicon is 11.9, much higher than that of free space (i.e. vacuum).

Figure 3.5: The valence electrons inside of a covalently bonded material move
in response to the applied electric field. This polarizes the solid, leading to a net
polarization. Adapted from Kasap

3.6.2 ionic solid materials

Several materials that are composed of atoms with strongly differing electronega-
tivity are highly ionic crystals. This can include common salts like NaCl. Here,
we have a strong localization of electric fields, as each Na atom tends to take on
a positive charge characteristic while Cl ions are more strongly negative - that is,
we can think of these crystals as having one atom with a predominately negative
charge, while the other has a predominately positive charge. Without any applied
field, these materials have no net dipole despite this strong localization of charge,
due to the crystal symmetry. We can quantify this as a net dipole pnet being the
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sum of dipoles from the positive and negative components as:

pnet = p+ − p− = 0 (3.30)

Once a field is applied, the electric field will push the ions themselves in response
to the field. This will break the overall symmetry of the crystal and the individual
dipoles that are in the solid will no longer cancel. Then, the average dipole in the
crystal pav is going to be given by:

pav = αiEloc (3.31)

Where we are looking at the local electric field Eloc as in previous examples. Here,
the ionic polarizability αi defines how large the average dipole moment will be for
a given applied electric field. These can be quite a bit larger than the electronic
polarizability αe in, for example, noble gases. As such, this mechanism can give rise
to a reasonably large dielectric constant, with some ionic materials have dielectric
constants ϵr ≈ 10.

Figure 3.6: Crystals that have predominately ionic bonding will lead to a net zero
dipole moment in a centro-symmetric crystal. The application of an electric field will
physically move ions around, which induces a net dipole moment that depends on the
ionic polarizability of the individual materials.

3.6.3 Orientational polarization

The dielectric constants of liquids can be quite high in general. This is because
several molecules, like water, HCl, etc., have a built-in permanent net dipole mo-
ment defined by the geometry of the individual molecule. At thermal equilibrium,
a liquid like this will have no net dipole moment, as each molecule will be randomly
oriented and the net dipole will equal zero. With an applied electric field, this is
no longer the case - there is now a force from the electric field that is being applied
that will make the molecules re-orient themselves along the direction of the electric
field. This is achieved through the electric field applying a torque on molecules
that have dipoles that are not perfectly aligned with the applied field. However,
this must be balanced by the thermal energy leading to disorder in the liquid. On
average, there will be a net dipole, but the molecules will not all be entirely aligned
in the direction of the electric field. This is represented in figure 3.7

Computing this in a fully rigorous way is beyond the scope of this course. To bound
the potential results, we can consider the limiting cases. If we have a number density
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Figure 3.7: A liquid composed of molecules with permanent dipole moments has
an average polarization of 0 without an applied field due to thermal fluctuations. An
applied electric field will partially align the dipoles of molecules along the direction of
the applied field due to a torque applied to the dipole, but thermal energy will lead
to some disorder. The net dipole moment is no longer 0. Adapted from Kasap

N of dipoles that each have a dipole moment p0, then the net polarization P is given
as:

P = Np0 (3.32)

The net polarization induced will be lower than this due to thermal energy
leading to disorder in the orientation of the dipoles. The net effect is called the
orientational polarization.

The average thermal energy that each molecule has is approximately 5/2kBT . This
sets the order of magnitude for the applied field to have a meaningful impact on
the net polarization of the liquid - if the applied field is much lower than this, then
thermal energy will dominate and the collisions of different molecules will keep the
liquid mostly randomly oriented. Once the average energy per dipole that the field
imparts is comparable or larger than the thermal energy, then we expect a larger
proportion of molecules to be aligned with the field, leading to a net dipole moment.

To compute this in general, one would need to compute the average energy that the
electric field applies to a molecule that is not in alignment with the field through
the torque that would be applied to the dipole. Using the appropriate Boltzmann
statistics for this distribution of orientations and the average thermal energy in the
system, we would arrive at the following equation for the average dipole moment
when the p0E < kBT :

pav =
1

3

p20Eloc

kBT
(3.33)

which means that we can define the dipolar orientational polarizability αd per
molecule as:

αd =
1

3

p20
kBT

(3.34)

Note that this is a much more temperature-dependent function than any of the
other mechanisms we have talked about. This is somewhat intuitive - if the liquid
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is quite cold, then there is less thermal energy to create molecular collisions that
re-orient the dipoles. We may expect, then, that the dipoles will be better aligned
with the field in this case, leading to a higher average polarizability.

3.6.4 Interfacial polarization

As a final example we will consider one final case, known as interfacial polariza-
tion. This will occur whenever there are interfaces between two different materials
where charges can accumulate in the dielectric material. This can also happen at
defects, grain boundaries, and other crystal defects (or dopants) where charge can
accumulate. If there are mobile charges or ions in a material (for example, H+ or
Li+ commonly found in oxides or glasses), then the applied electric field can lead
to mobility of these ions, which may end up at an interface and accumulate. In
response to this, an electrode will counter-act the additional charge by increasing
the net charge on that electrode, which appears to have an increase in the dielectric
constant of the material. Another case may be when electrons or holes will accumu-
late at a crystal surface or interface between grains within a material. In general,
these phenomena are hard to capture analytically but play important roles when
you have significant heterogeneity in the materials. A schematic illustration of this
is included in figure 3.8

Figure 3.8: Interfaces between dissimilar materials, defects, or grain boundaries, can
lead to charge trapping or localization of charges at interfaces. The additional dipole
induced by this creates an additional contribution to the polarization vector that
leads to an additional contributor to the dielectric constant of a material. Adapted
from Kasap

3.7 Putting it all together

We have discussed several mechanisms for the net polarization of a material. In
general these are all independent effects, meaning that we can simply sum them to
get the net dielectric constant of a material through:

pav = αeEloc + αiEloc + αdEloc + ... (3.35)

However, note that the inclusion of any dipolar molecules is in general hard to
compute, so coming up with a general mapping between that effect and the net
permittivity is challenging. If we only include contributions from electronic and
ionic polarizabilities, then we can give an approximate value for the permittivity
through a modified Clausius-Mossotti relationship:

ϵr − 1

ϵr + 2
=

1

3ϵ0
(Neαe +Niαi) (3.36)
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3.8 Frequency dependence and losses

As a final section here we will discuss two important details: First, the dielectric
constant of a material depends on the frequency with which the applied electric
field oscillates - that is, there is a frequency dependence. We will discuss how this is
manifested. As a consequence of this frequency dependence we will also find that the
dielectric constant is in general a complex number. The addition of an imaginary
part of the dielectric constant is related to a phenomena known as dielectric loss,
which can be a limiting factor in the performance of capacitors.

We will consider the general case of two masses with opposite charge separated by
some distance, whichis not dissimilar from ions in a crystal. When we apply an
oscillating electric field, this will induce a time-dependent dipole moment that may
not respond in phase with the oscillating field. We will find that the amplitude of
oscillation will depend on the resonant frequency, and that loss will arise when the
dipole oscillates 90 degrees out of phase with the driving field.

We will define this system to have a reduced mass Mr = m1+m2

m1m2
and a bond strength

β that has a Hooke’s-law type restoring force Frestore = −βx.

We previously discussed in this chapter that the bonding in an atom of material can
lead to a resonant frequency, in the manner of a mass on a string. We simplified
that problem slight, as we neglected physical damping mechanisms, either through
coupling to other degrees of freedom (like phonon scattering), or from the fact that
an accelerating charge must radiate energy. If we assume that we have a time
harmonic electric field of the form:

F = QE(t) = QE0 exp (jωt) (3.37)

we can observe the amplitude and phase that the dipoles will respond with. Here,
Q is the charge of the atoms or electrons, E0 is the amplitude of the applied electric
field, j is the imaginary number (electrical engineers prefer using j rather than i
- the author of this set of course notes strongly prefers the opposite, but we will
be consistent with the guiding textbook), and ω is the frequency of oscillation. If
we further assume that thereis some form of damping through phonon scattering,
re-radiation, etc., which takes the form of:

−γ
(
dx

dt

)
(3.38)

where γ is the loss constant and x is the position variable. We previously saw that
an atom or dipole that has a bond strength β has a resonant frequency ω0. The net
differential equation for the position of an atom is given as:

Mr
d2x

dt2
= QE0 exp(jωt)− βx− γ

dx

dt
(3.39)

Where we have identified that the net force is equal to mass times acceleration (the
left side of the equation), which is related to the field inducing a force, the restoring
force based on the bonding, and further reduced by losses. We will see this equation
in more detail when we discuss the optical properties of materials, but suffice it to

Northwestern—Materials Science and Engineering 70



3 DIELECTRIC MATERIALS 3.8 Frequency dependence and losses

say that we can re-write this in the form of:

d2x

dt2
+ γI

dx

dt
+ ω2

Ix(t) =
Q

Mr
E0 exp (jωt) (3.40)

where we have defined γI = γ/Mr and ωI =
√
β/Mr. This model represents the

movement of ions in response to a driving electric field, which induces microscopic
dipoles in the material

the solution to this equation has a much more complex formulation when we in-
clude losses and introduces a frequency-dependent amplitude. The solution for the
position x(t) is defined as:

x(t) =
1

(ω2
I − ω2)− jγIω

QE0

Mr
exp(jωt) (3.41)

Here, we see that there is a complex number for the amplitude and a frequency
dependence in the response of the dipole to an applied electric field. This has
significant impact on the dielectric constant and loss.

The net polarization is dependent on the number density of these dipoles and the
relative displacement, such that:

P (t) = NQx(t) =
NQ2

Mr

1

(ω2
I − ω2)− jγIω

E0 exp(jωt) = ϵ0χE(t) (3.42)

Therefore, we expect that the permittivity to depend on frequency. Since there is a
frequency-dependent amplitude, we therefore expect that the polarizability of the
dipole will also depend on frequency, as the amplitude is directly related to the
polarizability. We can determine the dielectric constant/permittivity by omitting
the oscillating field from the polarization and express it as follows:

ϵ(ω) = ϵ0ϵr = ϵ0(1 + χ) = ϵ0

[
1 +

NQ2

Mr

1

(ω2
I − ω2)− jγIω

]
(3.43)

We can more explicitly see the real and imaginary parts of this equation if we
multiply the the numerator and denomenator by the complex conjugate (ω2

I −ω2)+
iγω such that:

ϵr = 1 +
NQ2

Mrϵ0

ω2
I − ω2

(ω2
I − ω2)2 + γ2Iω

2
+
NQ2

Mrϵ0

iγIω

(ω2
I − ω2)2 + γ2Iω

2
(3.44)

Where we find that the first two terms are entirely real while the last term is entirely
imaginary.

Note that this is a very general phenomena and is applicable to many, if not all, of
the mechanisms we have talked about so far. For example, the ionic contribution
to the dielectric constant will have an associated resonant frequency that will be
different that the covalent bonding contribution, etc.
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The real part of this equation describes the amplitude of the dipole in response to
the driving field that is in phase with the oscillating field, and describes the same
permittivity we have discussed previously. The imaginary part of this expression
describes the out of phase response, which is proportional to the amount of ab-
sorption of energy (at optical frequencies, this would be the absorption of light, for
example). Note that the imaginary part is mostly localized around the resonant
frequency. Like any other driven oscillator, the amplitude of response is enhanced
near the resonance. All of this is manifested in figure 3.9:

Figure 3.9: Frequency dependence of the dielectric constant. Each contributor
to the dielectric constant has a different resonant frequency that depends on the
mechanism (ionic movement, electronic movement, etc.), and therefore the dielectric
constant is a strong function of frequency. Adapted from Kasap

As a final note, one may find from the plot that the dielectric constant tends
to be the highest at low frequencies. This is because each contributing factor is
occurring “in phase” with the driving field. As the frequency increases, several
of these mechanisms will “freeze” out, and their contribution will decrease. For
example, the movement of ions is in general much slower than the movement of
electrons, as their masses are much higher. We would therefore expect that the
resonant frequency for ionic movement to be lower than electronic movement. If
the oscillating field is at a frequency much higher than the resonant frequency,
then the atomic motion simply cannot keep up with the driving field, so the ability
for ionic movement to induce a dipole or to polarize is reduced. Therefore, the
contribution to the net dielectric constant is reduced.

Complementarily, we find that the absorption is localized primarily around the
resonant frequency of the oscillation.

3.9 Advanced dielectrics: Piezoelectric, pyroelectric, and
ferroelectric materials

For many materials (and all of the materials we have discussed so far), the
thermodynamic equilibrium structure has no net dipole in the crystal structure,
and all of the dielectric behavior has been due to an electric field modifying the
local polarization. This electric field induces a polarization in the material, which
we measure as the dielectric constant (or relative permittivity). However, this
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is not quite the entire picture. Materials that lack inversion symmetry (i.e. are
non-centrosymmetric) lack a symmetry that makes the prior description true. That
is to say, one can show that a material with inversion symmetry must not have a
permanent dipole without an applied field.

We can show this schematically by looking at a material with inversion symmetry,
like NaCl. NaCl crystallizes into the rocksalt crystal structure. While there are
positive and negative charges (as the crystal has strongly ionic bonding) that are
spatially arrayed, the net dipole in each unit cell is 0 because of inversion symmetry
- that is, the average charge in the unit cell is net 0 because the average position
of the positive charges overlaps the average position of the negative charge at the
center of the unit cell. If we apply a stress to this material, the crystal will deform.
If we do the same analysis, we find that even with the deformed structure, the
inversion symmetry still requires that the net dipole moment of the unit cell is zero.
This is all visualized in figure 3.10:

Figure 3.10: The rockstalt crystal NaCl under applied stress. Regardless of how
much stress is applied, the crystal structure still has inversion symmetry and therefore
the net dipole within the crystal is 0. Adapted from Kasap

Materials that lack inversion symmetry do not necessarily follow this rule. More
generally, the lack of inversion symmetry means that the local dipole can be
created through other means. Some important classes of materials rely on this
extensively. For exampe, a piezoelectric material can generate an electric field due
to the application of stress. Conversely, an electric field applied to these materials
can induce a strain. A few classic examples of these materials include Barium
Titanate and Quartz. There are several classes of devices that rely on this effect,
including quartz crystal monitors, strain sensors, etc.

The way in which these technologies work can be understood through the crystal
structure. In the case of quartz, we see that there is a hexagonal lattice of silicon
and oxygen atoms in figure 3.11. Without any applied stress, the relative charges all
line up at the center of the hexagon, so the net dipole moment and polarization is
still 0. However, if the crystal is deformed due to a force, the hexagon is distorted.
The result of this is that the relative position of the positive charges no longer
overlaps the net negative charge at the origin. The distance between these two
average charges acts as a dipol source, where a net polarization is induced due to
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the stress. Note, however, that this is a complex effect that can depend on the
orientation of the applied stress. In fact, the orientation of the induced polarization
does not have to be along the direction of the applied stress.

Figure 3.11: Quartz as a piezoelectric material. The crystal structure is hexagonal
but lacks inversion symmetry due to the differing charges on the lattice sites. Without
an applied stress or force, the net dipole of the structure is still 0. Once a force
is applied that deforms the crystal structure, a net dipole forms due to the lack of
centrosymmetry. The orientation of the polarization is not necessarily in the direction
of the applied force. Adapted from Kasap

This piezoelectric effect is defined through tensors, which can make the mathemat-
ics more complicated than we will discuss in this course. In general, we can define
the stress T (an unfortunate naming convention to use the same variable as tem-
perature) in the j direction as Tj . For a piezoelectric crystals, we can describe the
induced polarization P along the i direction Pi through the following relationship:

Pi = dijTj (3.45)

where dij is the piezoelectric coefficient. Note that the subscript on the piezoelectric
coefficient maps the stress in the j direction to a polarization in the i direction. In
general, this means that d is the Piezoelectric tensor, while P and T are vectors
related to the crystallographic directions. Depending on the symmetry of the crys-
tal, some elements in the piezoelectric tensor will be 0. One can use the analysis
indicated above to determine which elements will be zero - if you deform the crystal
along a direction corresponding to the induced strain, you can determine whether
the charges will lead to an induced dipole element. If they do not (like in the rock-
salt example), then the element will be zero. These results are tabulated in various
textbooks and can be used when designing a material. For example, a particular
device you are trying to create may require that you specify a crystal orientation in
order to make the device function the way that you would like it.

Figure 3.12 shows some potential use cases for the material using the piezoelec-
tric effect (above). This effect is reciprocal in the sense that you can interchange
whether you are measuring or applying an electric field to induce a change to the
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Figure 3.12: The piezoelectric effect can generate a voltage due to the buildup of
charges on the surface of a piezoelectric material from applied stress. This is due
to the induced dipole polarizing the material. Conversely, the converse piezoelectric
effect can use an applied electric field to strain the material. Adapted from Kasap

material. The Converse piezoelectric effect can be used to convert electrical energy
to mechanical energy by using a voltage to induce a strain in a material (and there-
fore strain it). We can map this through the same piezoelectric tensor as follows:
If we apply an electric field E in the i direction Ei, the piezoelectric coefficient dij
will induce a strain S in the j direction Sj such that:

Sj = dijEi (3.46)

This means that we can use electric fields to deform materials, which can be used
in actuators, etc. People working in this field may define a “coupling factor” k
that measures this. Here, k2 is the ratio of the total electrical energy converted to
mechanical energy divided by the total energy put into the system.

These materials can also use heat to change polarization, and vice versa. These
materials are said to be pyroelectric. Here, we can relate the change in polariza-
tion a material may experience as it changes temperature through the pyroelectric
coefficient p (again, unfortunate naming convention) through:

p =
dP

dT
(3.47)

This can be used in a variety of sensors - for example, in the far infrared or in another
place where the material will absorb ambient heat. These can be extraordinarily
sensitive, and can therefore be used when precision is important. For example, a
cryostat could use something like this. This is shown schematically in figure 3.13:

Finally, some materials naturally contain an oriented dipole at thermodynamic equi-
librium. These are called ferroelectric materials. Below a critical temperature, the
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Figure 3.13: The pyroelectric effect maps changing temperatures to changing po-
larizations through the pyroelectric coefficient. Adapted from Kasap

configuration of atoms is preferred that contain a permanent dipole. This can be
due to an atom existing within an interstitial site, but slightly out of the center of
the site. Materials like LiNbO3, BaTiO3, and others are ferroelectric. The tem-
perature above which these materials are no longer ferroelectric is called the Curie
Temperature TC . A description of this effect is shown in figure 3.14:

This polarization depends on the position of the atoms within the lattice and can
be locally switched through a process known as “poling”. A strong enough voltage
can give enough energy to the material to move the Titanium atom down to flip
the orientation of this polarization.

We should note that the permanent polarization means that we have to express
the permittivity of this material slightly differently, as the built in field means we
cannot use P = ϵ0(ϵr − 1)E to describe the behavior of this material (because P is
not 0 when E = 0. We instead have to note that there is a built in charge that any
electrode would see even with 0 voltage due to the dipole moment. Then, we can
define the dielectric constant as:

∆P = ϵ0(ϵr − 1)∆E (3.48)

where the change in the polarization due to a change in the electric field is
manifested through the dielectric constant.

We should additionallynote that all ferroelectric materials are piezoelectric, but not
all piezoelectric materials are ferroelectric (for example, Quartz is not ferroelectric).
This broken symmetry has important consequences in the utility of these materials
beyond the scope of this course.

3.10 The Metal-Oxide-Semiconductor Field Effect Transis-
tor (MOSFET)

The final section of this chapter will combine aspects of the previous chapter to
show how combining all classes of electronic materials (metal, semiconductor,
and insulator) into one composite device can manifest unintuitive operation that
nevertheless underpins all of modern electronics.
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Figure 3.14: The ferroelectric BaTiO3 unit cell. Here, a Titanium 4+ atom exists
in the center of the perovskite unit cell. Above the curie temperature (here, 130 C),
the crystal is cubic and the net dipole of the unit cell is 0 beause the material is
centrosymmetric. Below this temperature, the crystal becomes tetragonal and the
titanium atom is displaced slightly compared to the center of the unit cell. This
displacement leads to a permanent dipole orientation. Adapted from Kasap

The key point here can help clarify the movement of charge inside of different
materials, if possible. This then dictates how the electric field will penetrate into a
material, as the electric field is directly tied to the charge density inside of a region
of material. First, we can go back to the capacitor, in which two metal plates are
separated by some distance. When connected in a circuit and a voltage difference
is applied, the metal will create a density of charge at the surface of each plate. We
can plot this charge density as a function of distance across the device, and we see
that the positive and negative charge densities appear in equal proportion at the
edges of the plates. This is shown in figure 3.15:

We can see that the charge is localized to the surface. This is because the
concentration of charges that are required to accumulate to screen the field is
much lower than the concentration of free carriers in the material. For example, if
we apply a 2V potential difference between plates that are separated by 100 nm.
The plates are 1 cm x 1 cm. The capacitance of these plates is 8.85 nF, which
corresponds to a charge of Q = 1.77× 10−8C, which corresponds to approximately
1.11 × 1011 electrons on the plate. We can estimate the concentration of electrons
in the metal. For a good conductor, approximately one free electron from each
atom is available for conduction. The surface density is then approximately

≈ 1015, as nsurface ≈ n
2/3
bulk. This is clearly much greater than the required

concentration, so only some of the free electrons on the surface need to move
in response to the voltage difference. Because of this, there is no disruption or
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Figure 3.15: A metal-dielectric-metal capacitor. Here, the dielectric is air. When
a voltage difference is applied between the plates, charges accumulate on the surface
that are localized within approximately one unit cell of the material due to the high
charge density in the metal. Adapted from Kasap

change in charge density within the bulk of the metals, meaning that there is no
electric field within the metal - it is entirely within the gap between the metal plates.

Now let us consider a p-type semiconductor with a relatively low concentration of
acceptors ≈ 1015cm−3. If we make the bottom electrode this semiconductor instead
of the metal, we can do the same computation. We would find that the surface
density of free carriers at the surface is only ≈ 1 × 1010 electrons, which is much
lower than the number required for the applied voltage. Because of this, a volume of
material in the semiconductor must be used to create the necessary charge density.
This means that an electric field will penetrate into the semiconductor. This is
represented in figure 3.16.

Figure 3.16: A metal-dielectric-semiconductor capacitor. When a voltage difference
is applied between the plates, the metal can screen the field within the first unit cell.
The density of freely moving carriers in the semiconductor is too low, so the net
charge density takes place within a certain distance into the metal. Accordingly, the
electric field will penetrate into the depletion region. Adapted from Kasap

In this case, the free holes are pushed away from the surface of the semiconductor,
leaving behind the stationary negatively charged acceptor dopants. This creates a
depletion region within the semiconductor due to the induced electric field. The
total charge within the semiconductor in this region must equal the charge on the
metal plate, which means that we can determine the depletion width W as:
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eAWNa = Q (3.49)

where Q is the charge on the metal plate, A is the area of the plate, Na is the
acceptor dopant concentration. In this case, the depletion width that is formed is
approximately 1µm. As the applied voltage difference increases, we expect that
the depletion width will additionally increase, as the charge buildup on the plate
will increase. Note that the semiconductor is still p-type in this depletion region,
as the concentration of holes will still be greater than the concentration of electrons.

As the voltage increases, it will eventually become more favorable to acquire elec-
trons at the surface rather than just extending the depletion region deeper into the
semiconductor. These electrons may be attracted from the bulk where they were
the minority charge carrier. Thermal generation within the depletion region can
additionally create the charge carriers can create the required carriers. When this
occurs, the additional electron concentration leads to a narrow region where the
type of semiconductor has inverted - it is now an n-type semiconductor rather than
a p-type semiconductor. As the voltage increases further, the concentration of elec-
trons in the inversion layer increases, rather than increasing the depletion region in
the p-type semiconductor. This is shown schematically in figure 3.17:

Figure 3.17: A metal-dielectric-semiconductor capacitor leading to inversion. When
a voltage difference is applied between the plates, the metal can screen the field within
the first unit cell. The density of freely moving carriers in the semiconductor is too
low, so the net charge density takes place within a certain distance into the metal.
Accordingly, the electric field will penetrate into the depletion region. As the field
increases, a thin layer at the surface of the semiconductor will invert to become an
n-type semiconductor, with a high concentration of carriers in a thin layer. Adapted
from Kasap

This field effect can be very important when creating devices, as it allows a
composite device to switch semiconductor type with an externally applied electric
field. This will be used in this section to create a transistor.

We will consider the enhancement MOSFET. This structure is shown schematically
in figure 3.18. Here, we have a p-type semiconductor in the bulk of the material.
By locally n-type doping the semiconductor, some regions will become n-type. At
the interface between the n-type and p-type semiconductor, a depletion region will
form. We can then deposit metal electrodes to contact the n-type regions, from
which we may want charge to flow from one end to the other. In the middle, we
place an insulator on top of the p-type material, and put a gate electrode on top
of this.
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When the gate voltage is not turned on, we have a pnp transistor. No matter what
direction we apply an electric field, we find that one of the pn or np sections will be
reverse biased, which means that charge does not easily flow through this circuit.
We can utilize the field effect from the gate to modulate this. Then, for a set voltage
across the source and drain electrodes, we can modify the current that flows through
by using this field effect. When we apply a voltage on the gate, we form a depletion
region in the semiconductor. This does not help to enable conduction across the
region. However, we find that when the gate voltage is above a threshold voltage Vth
(here, 4V), inversion of the semiconductor under the gate will occur, creating a thin
channel of n-type material. This will connect the source and drain terminals of the
device, meaning that the material can easily conduct. We see then that the current
flow can be turned on in this device through the application of a gate voltage. In
this case, we expect that the current-voltage response will be linear, limited only
by the resistance in the channel. We can express this as:

ID =
VDS

Rn−ch
(3.50)

This linear conduction is not possible forever, because the voltage that is being
applied across the source and drain will additionally modify the overall voltage in
the inversion region. The voltage VDS applied between the source and drain will
lead to a current IDS . The voltage at the drain from this voltage difference is VDS ,
while the voltage is 0 at the source. The applied voltage in the channel is related
to both the source-drain voltage and the gate voltage. In this device, there is a
voltage difference between the gate and source VGS and the source and drain VDS .
We expect the voltage in the channel next to the source side is then given as VGS .
However, the voltage in the channel on the drain side is given as:

VGD = VGS − VDS (3.51)

In order for there to be a continuous channel from the source to the drain, we require
that this voltage be greater than the threshold voltage - that is,

VGD ≥ Vth (3.52)

As we can see, this means that the condition for inversion will now depend on the
source-drain voltage. If the source-drain voltage increases such that VGD < Vth,
then we do not have the condition for inversion at the end of the channel. This
phenomena is known as “pinch-off”, as the channel will no longer connect the source
and drain at this point. We then expect that the width of the inversion layer will
decrease and end before the drain. We can look at how this impacts the current
in figure 3.19. The n-type region will exist only in areas of the channel that have
the voltage requirements for inversion. The channel will be pinched off at a point
P within the channel that fulfills the requirement:

VGD = VGS − VDS(sat) = Vth (3.53)

The associated current-voltage relationship is no longer linear in this regime. When
the drift electrons move through the channel, they will reach this pinch-off point.
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Figure 3.18: An n-MOSFET. Source and drain electrodes are connected to heavily
doped n-type materials, which are separated by p-type material. A gate electrode on
top of a dielectric uses the field effect to switch the channel semiconductor from p-type
to n-type, which can switch the conduction mechanism from rectifying to ohmic. On
the right is a standard way that a circuit diagram may represent a transistor, with
S, G, and D representing the source, drain, and ground. The back of the substrate
is grounded (Bulk, Blk). Once the gate voltage is greater than the threshold voltage
Vth, semiconductor inversion can enable conduction through the channel. Adapted
from Kasap

The strong electric fields in this region will sweep them into the drain, so we still
expect some conduction. The current is limited by the ability for electrons in the
channel to reach the pinch-off point, which means that the current will still be
limited by the channel resistance. As the source-drain voltage increases, we expect
that the pinch-off point will move closer to the source. The length of the channel
is long enough that typically it does not move significantly, and the resistance in
the channel does not change significantly. Therefore, we can assume that the drain
current is approximately saturated near this pinch-off point and is given as:

ID ≈ IDS ≈
VDS(sat)

RAP ′n−ch
(3.54)
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Figure 3.19: Pinch-off and IV curves. Once the voltage at the drain electrode
drops below the threshold voltage, the condition for inversion is not fulfilled. We
then expect that the channel will revert back to p-type at this point, such that the
channel shape now looks different and the channel will “pinch off” from the drain.
We observe a turnover on the IV curve, as the relationship is no longer linear. As the
source-drain voltage increases, the pinch-off point moves further way from the drain,
and the current-voltage relationship is nearly constant. Adapted from Kasap

when VDS > VDS(sat).

We can represent the current IDS and the gate voltage VGS (notably, when
VDS > VDS(sat)) through an experimentally derived equation that shows a quadratic
relationship as:

IDS = K(VGS − Vth)
2(1 + λVDS) (3.55)

where λ is called the ”Early voltage” that takes into account the linear relationship
of the I-V characteristic at higher voltages. K is the enhancement constant for an
ideal MOSFET and is expressed as:

K =
Zµeϵ0ϵr
2Ltox

(3.56)

where Z is the channel width, L is the channel length, µe is the electron drift mobil-
ity in the channel, ϵr is the permittivity of the dielectric material in the gate region,
and tox is the thickness of the dielectric. The typical current-voltage relationships
for these devices is plotted in figure 3.20:
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Figure 3.20: IV curves. Experimentally derived trends in the current-voltage rela-
tionships are represented in this figure and match the equations above. The source-
drain saturation voltage VDS,sat follows a quadratic relationship with the current as
defined above. Here, the threshold voltage is 4 V, and the gate voltage VGS is varied.
The dependence of the source-drain urrent IDS as a function of the gate voltage VGS

for a specific source-drain voltage VDS > VDS,sat Adapted from Kasap

4 Optical properties of materials

4.1 Introduction

The dielectric properties of materials have allowed us to understand the properties
of insulators. This showed us that the key material property is the relative permit-
tivity ϵr, which is a measure of the ability of a material to polarize in response to an
applied electric field. We saw that there were different timescales associated with
different polarization mechanisms, which has led to a very complicated frequency
dependence of the dielectric properties. This section will introduce the optical
properties of materials, which essentially takes this behavior to high frequencies.
We will show that the optical properties are essentially the high frequency response
of the relative permittivity, and we will show the relationship between this
fundamental material property and measurables, including absorption. There will
also be a discussion of the role that conduction electrons will have.

NOTE: The definitions for a wave are varied among disciplines. notably, you will
find that Kasap will deviate from this derivation because they are electrical engineers
and will use −j instead of i as the imaginary number. This has no consequence on
the underlying physics, but there will be minus signs that will be different than the
ones in the Kasap book. Please be careful when looking at different references.

4.2 Maxwell’s equations and the wave equation without
charges

This class is not long enough to cover Maxwell’s equations in detail. We will simply
write down the equations and state that a wave equation can arise from it. Maxwell’s
equations are:

∇ ·D = ρ (4.1)
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which is Gauss’s law relating the displacement field D = ϵ0ϵrE to the charge density
ρ.

∇ ·B = 0 (4.2)

which is Gauss’s law for magnetic fields, relating the magnetic field B/µ0 = H to
the magnetic charge density (if you can find a magnetic monopole you can collect
a Nobel Prize),

∇×E = −∂B
∂t

(4.3)

which is Faraday’s law that relates a time-varying magnetic field to the generation
of an electric field. Finally, we have Ampere’s law that shows the opposite - a time
varying electric field induces a magnetic field:

∇×B = µ0

(
J+ ϵ0ϵr

∂E

∂t

)
(4.4)

For the majority of this section we will assume that the current density J = 0.
This is not true necessarily in a conductive material, and this can in fact act as a
source term that can be important in certain frequency ranges. We will leave this
to another course.

We can show that, by combining the two curl equations, a wave equation naturally
arises. We will not derive this but simply state the final results, which can be
represented for both an electric field and for a magnetic field:

∇2E = µ0µrϵ0ϵr
∂2E

∂t2
(4.5)

and

∇2B = µ0µrϵ0ϵr
∂2B

∂t2
(4.6)

As you can already see, the entirety of the material properties are contained
within the relative permittivity ϵr and relative permeability µr. We will discuss
magnetism later, but take for granted now that, at optical frequencies, µr ≈ 1 for
most materials (certainly all the ones we will be discussing). Additionally, we will
define µ = µ0µr and ϵ = ϵrϵ0 for convenience.

These equations have the same general form of a wave equation, which is defined
very generally in one dimension as:

∂2f

∂x2
=

1

v2
∂2f

∂t2
(4.7)

Where the function f(x, t) has a general solution of:

f(x, t) = g(x− vt) (4.8)

where the function will move with a velocity v that is given as the prefactors in
the temporal derivative. From this we can immediately deduce some useful aspects
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about the wave equation for light, which is that:

v =
1

µϵ
(4.9)

In vacuum, there is no medium to polarize so the permeability and permittivity are
simply given as that of free space such that:

v =
1

ϵ0µ0
= c (4.10)

where the speed of light is uniquely defined by these constants (wow!) In a medium,
we can also see that the velocity v will decrease, as the values for the permittivity
will go up. We can define the index of refraction n as the ratio between the speed
of light in a vacuum and win the material of interest and determine the material
properties that govern this as:

n =
c

v
=

√
µϵ

µ0ϵ0
=

√
ϵrµr ≈

√
ϵr(ω) (4.11)

where we have assumed that there is not a magnetic response at optical frequencies
and we have explicitly noted that the dielectric constant or permittivity is a
function of frequency.

A more advanced treatment of maxwell’s equations will provide the necessary
derivations, but we will present facts below that are related to the wave light will
propagate. First, we note that light is an electromagnetic wave, as seen above -
there is both an electric field and a magnetic field.

A solution to the wave equation is that light waves can propagate as plane waves
that have the following functional form:

E = E0 exp [(i(k · r− ωt)] n̂ (4.12)

This is a complex exponential equation that has a wavevector k, the position r, the
frequency of the light ω and the time variable. n̂ is a unit vector that points in the
direction of the electric field. There is additionally an amplitude E0. Note that the
bold text indicates that these are in fact vector quantities, such that the unit vector
n̂ is the unit vector pointing in the direction of the electric field. The magnetic field
can be described similarly and is defined as:

B = B0 exp [(i(k · r− ωt)] (k̂× n̂) =
1

v
k̂×E (4.13)

where we see that the magnetic field must be perpendicular to both the electric
field and the propagation direction defined by the wavevector. In fact, for all cubic
materials (and amorphous materials), one can show that the wavevector k, the
electric field E and the magnetic field B must all be mutually orthogonal (and they
follow the right hand rule).

The wavevector k contains all of the material properties and dictates how light will
propagate, be absorbed, be refracted, or scattered from a material in general. We
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can write down the argument of the propagating wave as kx − ωt (if we assume
that the wave is propagating in one direction). From this, we can show that this is
equal to k(x− vt), where

v(ω) =
ω

k
(4.14)

is the phase velocity, which describes how quickly this argument term oscillates
(essentially how quickly the wave acquires phase). This value is in general frequency
dependent. We know that the phase velocity is related to the optical properties of
the materials, and we can write down that:

k =
ω

v(ω)
= ω

√
ϵµ = k2 → k2 = ω2ϵµ (4.15)

Note that this applies without any conduction (i.e. not for metals or including
conduction electrons). If the material has an isotropic refractive index (like liquids,
amorphous material, or cubic materials), we can relate this to the refractive index
and the speed of light as:

k =
ω

v
=
ω
c
n

=
ωn

c
(4.16)

Note that the wavevector itself is defined as:

k =
2π

λ
(4.17)

If the material has a higher refractive index than that of free space (usually the case
at optical frequencies), this means that the effective wavelength inside of a material
is modified inside of the medium (that is, the light wave acquires phase faster inside
of the material in a given distance, such that the wavelength looks shortened). If
λ0 is the free-space wavelength and k0 is the wavevector in free space, this means
that:

k = k0n→ k =
2πn

λ0
=

2π
λ0

n

=
2π

λ
(4.18)

where
λ = λ0/n (4.19)

which shows that the effective wavelength inside of a material is reduced.

With all of this, we have defined the relevant aspects of the wavevector of a
material. It is in general a vector quantity that can point in the direction of
propagation. In addition, we note that we have 3 coordinates in the vectors (as we
live in a world with three spatial directions). If we specify the propagation direction
(say, the x direction), we can set the electric field to be in the y or z direction (or
any linear combination of the two), and we can always find the orthogonal direction
for the magnetic field. The fact that there are still 2 degrees of freedom for the
electric field to be placed means that we can have a couple of different polarization
directions for the electric field. Here, Polarization will be defined as the direction
the electric field is oscillating in (for example, the ±y direction. The field of
polarization optics is quite important but generally out of the scope of this class.
Noting that there are two different polarizations and that they reflect or refract off
of materials with slightly different amplitudes and phases (in general) is essentially
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the scope of this course. One may note, however, that there is a rich set of mate-
rials and systems where polarization is required - for example, polarizing sunglasses.

We can represent these details in figure 4.1:

Figure 4.1: Coordinate system of a propagating wave. The wavevector k is along
the x direction, and one choice for the polarization of the electric field is defined here.
The magnetic field is thus perpendicular to both. Adapted from Kasap

4.3 propagation and absorption

Since all of the ways in which a material will impact the propagation of light are
contained within the permittivity, we must try to understand the role that this
complex number will have on these properties. First, we then need to re-define
the wavevector as k → k′ + ik”, where k′ is the real part and k” is the imaginary
part. Here, k′ = |k| describes the propagation of light, while the imaginary part k”

describes the attentuation of light through absorption. If we define the wavevector
in this way, we can immediately see that this is the case. For a wave propagating
in x̂ and for a y-polarized light wave, we then have:

E(x, t) = E0 exp
[
i(k′ + ik”)x− iωt

]
ŷ (4.20)

Grouping terms and noting that i2 = −1 we get:

E(x, t) = E0 exp(−k”x) exp [i(k′x− ωt)] (4.21)

For a non-zero k”, this means that there will be an exponential decay on the wave.
The intensity of a light wave is proportion to the modulus squared (that is, I ∝ |E|2)
such that:

I = I0 exp(−αx) ∝ exp(−2k”x) (4.22)

This way we can immediately determine a relatoinship between the absorption
coefficient α and the imaginary part of the refractive index!

Let’s dig into this. First, noting that the refractive index is now a complex value:

n→ n+ iκ =
√
ϵr =

√
ϵ′r + iϵ”r (4.23)

Here, we can also define the relationship between the loss κ and the wavevector as:

n =
k′

k0
, κ =

k”

k0
(4.24)
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and from this we can additionally relate the refractive indices and permittivity
differently:

n2 − κ2 + i2nκ = ϵ′r + iϵ”r (4.25)

Therefore, we can see that the propagation of light is impacted by the imaginary
part as well (as the real part of the permittivity is related to the imaginary part of
the index). From all of this we can determine that:

α = 2k” = 2k0κ =
2k0ϵ

”
r

2n
=

2π

λ

ϵ”r
n

=
(ω
c

) ϵ”r
n

(4.26)

4.4 Electromagnetic waves in the presence of free charges or
currents

If we have conduction electrons or currents in our material, we must modify the
wave equations to now be:

∇2E = µϵ
∂2E

∂t2
+ µσ

∂E

∂t
(4.27)

and

∇2B = µϵ
∂2B

∂t2
+ µσ

∂B

∂t
(4.28)

where we have a term that is related to the first derivative of the electric or magnetic
field and the conductivity σ. We still have plane wave solutions, but the wavevector
is now modified to include another term:

k2 = µϵω2 + iµσω (4.29)

Where an additional imaginary component related to the conductivity of the mate-
rial. First we will ignore the frequency-dependence of the conductivity (and there-
fore σ will become σ0 to get:

k2

ω2
= µϵ+

iµσ

ω
(4.30)

such that
c2

ω2/k2
=

µϵ

µ0ϵ0
+

iσ

ωϵ0

µ

µ0
(4.31)

From all of this, we can see that the permittivity is now modified as:

ϵ = ϵ′r + iϵ”r = µrϵr + i
σ0
ϵ0

1

ω
(4.32)

Which shows that free charges induce an additional component of loss. From this
we can determine the absorption of a material and its relationship to the DC con-
ductivity (i.e. free carriers) of a material:

α =
ω

c

ϵ”r
n

=
ω

c

σ

ϵ0

1

ω

1

n
=

σ

cϵ0n
(4.33)

This is still an approximation, as free carriers will in principle depend on frequency.
Electrons in a material will have a scattering time τs within the material, which
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leads to a frequency-dependent conductivity. Whereas the DC conductivity of a
material is related to fundamental constants through:

σ =
ne2τ

m∗
e

= σ0 (4.34)

The AC conductivity instead has a time dependence as:

σAC =
σ0

1− iωτs
= σ′ + iσ” (4.35)

This imaginary part shows that the response of the conductivity is out of phase with
the driving field at high frequencies, which then is related to loss and absorption.
We can define the components of the conductivity as:

σ′ =
σ0

1 + ω2τ2
(4.36)

and
σ” =

σ0ωτ

1 + ω2τ2
(4.37)

Such that:
ϵ′′r =

σ0
ϵ0ω(1 + ω2τ2)

(4.38)

For a semiconductor, we can then back out an estimated absorption coefficient from
this as:

α ≈
(

σ0
cnϵ0τ2

)
1

ω2
(4.39)

Note, this is the generic response of free carriers. The influence of the band struc-
ture of semiconductors is not obvious here, which we will discuss in greater detail
as needed. Indirect bandgap semiconductors, for example, will have a different
frequency response above their band gap than direct bandgap semiconductors.

Finally, we should note that the imaginary part of the mass on a spring model
is very close to zero away from resonance. If you are close to the bond resonant
frequency, this will additionally lead to absorption that needs to be represented in
the above analysis.

5 Magnetic properties of materials

5.1 Introduction

This section of the course will have a short introduction to magnetism and magnetic
materials. This is a rich area of physics that a section of this size in this course
does not do great justice to. The goal of this section is to justify the existence
of magnetism in materials; the characterize some of the larger classes of magnetic
materials; to identify some of the underlying physics of ferromagnetic materials; and
to understand magnetic domains as it may relate to useful technologies. This will
not give us enough time to discuss superconductors or other associated advanced
materials where magnetic effects are interesting.
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5.2 Definitions and origins of magnetic fields

First we will write down one of Maxwell’s equations that can describe the generation
of magnetic fields from currents. Ignoring any time dependence, we can write down
that:

∇×B = µ0J (5.1)

where J is an electric current density. The cross product guarantees that the mag-
netic field is perpendicular to the applied field. You may recall from introductory
physics that a wire loop with a current running through it will induce a magnetic
field perpendicular to the loop, with the field lines inside of the loop uniform and
straight lines. This can also manifest as a circular magnetic field that arises from a
current in a wire, as indicates in figure 5.1: Conversely, a charged particle will feel

Figure 5.1: Ampere’s law, where a current loop can induce a uniform magnetic
field. Conversely, current in a straight wire can form a magnetic field that circulates
the electric field.

the Lorentz force as:
F = qv×B (5.2)

where a charged particle can be deflected with a magnetic field. The equivalent
form for a magnetic field formed from a moving charge is that:

B =
µ0

4π

qv× r

r2
(5.3)

These fields follow the right hand rule, as indicated in figure 5.2:

We will define the various terms used throughout this chapter here, and show the
analogy to the dielectric properties of a material. We will define the Flux Density B

Figure 5.2: The Lorentz force: A moving charged particle experiences a force from
a magnetic field perpendicular to the field.
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as a function of the Magnetizing field H and relate it to the magnetic permeability
µ and the magnetic susceptibility χm:

B = µ0H+ µ0M = µ0H+ µ0χmH = µ0(1 + χm)H = µ0µrH (5.4)

Here, we can see that the form of the equation is similar to that of the displace-
ment field, where we had the D = ϵE. This formally arises from the magnetic
susceptibility which, like the electric susceptibility, describes the material response
to an external field. Here, the magnetic susceptibilty χm = M/H can be positive
or negative, in contrast to what we have talked about in the dielectric response of
materials (note, however, that this is not always strictly true). In analogy with the
dielectric properites of materials, we showed that the macroscopic polarization P
arose from a summation of the microscopic electric dipoles p in a material from
an applied electric field. Here, the magnetization M arises from the microscopic
magnetic dipoles µm in a material. One distinct difference is that there is no equiv-
alent to a magnetic charge (a magnetic monopole) like electric fields may have. The
magnetic dipole moment can be defined as:

µm = IAûn (5.5)

where we note that the dipole moment in general is a vector quantity.

5.2.1 Orbital angular moment and magnetic dipole moments

To motivate the existence of a magnetic field for matter, we can take this under-
standing an apply it quasi-classically to the atomic level. in the same way that
a current in a loop will generate a magnetic field, we can consider the classical
approach of an electron orbiting a nucleus that would then induce a dipole that de-
pends on the frequency the electron will orbit the nucleus. The microscopic current
can be represented as I = −e/τ , where τ is the period of the orbit. We can then
relate this to the orbiting frequency ω as I = −eω/(2π). From this, we can define
the orbital magnetic dipole moment µorb as:

µorb = −eωr
2

2
=

(
− e

2me

)
Lorb (5.6)

noting that the orbital angular momentum Lorb = mvr = mωr2. Note that the
component in the parentheses in the above equation is known as the gyromagnetic
ratio. This orbital dipole moment is visualized in figure 5.3, which additionally
shows the definition of a magnetic dipole:

Of course, we know that this model of an electron is incorrect, and a more full
quantum mechanical analysis is required to compute the actual Lorb. In general,
these values are non-zero but tends to be small.

5.3 electron spin magnetic moments

The spin of an electron is also a source of magnetic dipole moments and is based
on the intrinsic angular momentum of these particles that have a magnitude of 1/2.

Northwestern—Materials Science and Engineering 91



5 MAGNETIC PROPERTIES 5.3 electron spin magnetic moments

Figure 5.3: An illustration of the magnetic field induced from an orbiting electron
around an atom, and the associated representation of the magnetic moment that
comes from this.

This intrinsic angular momentum will can create a spin magnetic moment µspin as:

µspin = − e

me
S (5.7)

such that when there is a magnetic field applied in the z direction the dipole moment
can be represented as:

µz = − e

me
Sz =

−eℏ
2me

(5.8)

which is known as the Bohr Magneton and is equal to 9.27× 10−24 Am2 (units can
also be represented as J/T, with T being tesla). We should note that the spin in
the z direction Sz is related to the spinas Sz = msℏ, where ms is the spin and takes
the value of 1/2 for an electron.
This electron spin will repond in a similar way to the orbital angular momentum,
and the definitions of a magnetic dipole moment that is generated from an applied
magnetic field on the dipole is indicated in figure 5.4:

Figure 5.4: An illustration of the induced dipole moment in the z direction from
a magnetic field acting on an electron with a spin magnetic dipole. The associated
spin, etc. are indicated.

Finally, we should note that the units of these values are all quite complicated.
The units of magnetization M are in units of A/m, which can be thought of as
Am2/volume, which is essentially a measure of the dipole moment per unit volume.
The magnetic flux density B has units of J/(Am2) which is the unit of Tesla T and
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has units of energy/dipole moment. The relevant units and properites are included
in the following table 5.5:

Figure 5.5: Magnetic quantities and units
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5.4 Types of magnetism

In this section, we will highlight the relevant physics and classifications of different
responses to a magnetic field. We will start with paramagnetism, then explain dia-
magnetism, ferromagnetism, and antiferromagnetism. The physics of ferromagnets
will be dealt with in depth in a later section.

5.5 Paramagnetism

In dielectric materials, an applied electric field will induce a polarization. In liquids,
the applied electric will apply a torque on a dipole that is not aligned with the
electric field, which will cause the dipole to align with the field. This is represented
in figure 5.6:

Figure 5.6: An illustration of the torque applied to a magnetic dipole with a mag-
netic field, which causes a driving force to align it with the field.

A similar thing will occur in paramagnets. With a random set of orientation of
spins, a magnetic field will provide a driving force to cause them to align. This is
represented schematically in figure 5.7:

Figure 5.7: A paramagnet will have randomly oriented spins within the material
align in response to a magnetic field.

Just like the dipolar response of a dielectric material with orientational permittivity
contributions, thermal energy will combat the driving force from the magnetic field.
To truly solve for this response, statistical mechanics is required. The result will
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be introduced here, which shows that the total magnetization M induced by the
magnetic field is defined as:

M = Nµm tanh

(
µB

kBT

)
(5.9)

where N is the number density of dipoles, µm is the dipole strength, µ is the
permeability. As we can see, the argument of the function is the driving force (the
applied magnetic flux that favors spin alignment) divided by the thermal energy that
favors random orientations. When the temperature is high relative to the applied
magnetic field, the net magnetization is low. When the field is high compared to
the thermal energy, the magnetization is higher. There is no built-in magnetic field
when there is no applied field. This equation works in general, but for low magnetic
fields (often the case), we can linearize this to:

µz =
µm

3

(
µB

kBT

)
(5.10)

As we can see from this equation, the magnetization is linear with the applied field
(for low field) but generally positive when the magnetic field is positive. This implies
that the susceptibility χm is:

χm =
M

H
> 0 (5.11)

Metals can exhibit paramagnetism. We can visualize this through the electronic
bands of the materials. Conduction electrons will sit in the band structure with
either positive or negative spin (ms = ±1/2) and there is no preference for spin.
When a magnetic field is applied (here, for example, in the z direction), this is not
necessarily the case anymore. With the additional magnetic field, spins that are
oriented along the direction of the applied field is lower than spins that take an
opposite spin. In the applied field, all states that have a spin aligned with the field
will be lowered in energy by βB0, where B0 is the magnetic field and β is the Bohr
magneton. Conversely, energy states with a spin that is aligned against the field
will have their energy increased by the same amount. Because the system wants to
minimize its energy, the states with lower energy (i.e. those aligned with the field)
will be filled first. This will lead to a net spin that is aligned with the field, providing
a magnetic response. This tends to be weak but non-zero. We can determine the
approximate susceptibility from this effect, termed Pauli spin paramagnetism as:

χpara ≈ µ0β
2g(EF ) (5.12)

where the density of states at the fermi energy g(EF ) essentially determines the
susceptibility. This effect is visualized in figure 5.8:

5.6 Diamagnetism

In contrast to paramagnetic materials, a diamagnetic material has a negative sus-
ceptibility that is small. Silicon, for example, has χm = −5.2 × 10−6, which leads
to a net relative permability that is slightly lower than 1. This means that an
applied electric field µ0H will induce a magnetization M that opposes the applied
field, which means that the resulting B field in the material is less than the applied
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Figure 5.8: Pauli spin paramagnetism in metals. Conduction electrons will lower
their energy in an applied magnetic field by finding states with lower energy. Those
states are for states with a spin that is aligned with the applied magnetic field. This
leads to a net spin in the direction of the applied field, which gives rise to a positive
susceptibility

field. Essentially the induced magnetic field from the dipoles in the material is in
the opposite direction, and the spins in the material act to try and repel or expel
the magnetic field from insite of the material. The net magnetization without an
applied field is zero. This will induce a net force that will repel the diamagnet away
from the source of the applied magnetic field. This is represented in figure 5.9 We
should note that the diamagnetic response is very strong in superconductors, and
χm = −1 in this case. This is manifested in the Meissner effect, in which a super-
conductor will expel all magnetic fields within them below the critical temperature
and a superconductor will float above a magnet.

5.7 Ferromagnetism, Antiferromagnetism, and Ferrimag-
netism

So far, we have discussed materials that do not have a built in magnetic field, like
most dielectric materials we talked about. Ferromagnets, Antiferromagnets, and
Ferrimagnets are all classes of materials that have a net magnetization without an
applied field. The physics of this will be discussed later.

Ferromagnetic materials can have a large permanent magnetization, which implies
that χm is positive and very large. The relationship between the magnetization M
and applied field µ0H is complicated, nonlinear, and can have hysteresis. At high
magnetic fields, the magnetization can saturate. This is an implicitly quantum
mechanical. In later sections we will look at the magnetic domains that can occur
in these materials that gives rise to this hysteresis, as well as the reasons for which
they form. This sort of ordering inside of a crystal has interesting and useful
dynamics. One should note that ferromagnetism has a critical temperature TC
above which the material will act as a ferromagnet.
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Figure 5.9: A diamagnet will oppose the induced magnetic field and has a negative
susceptibility. This will lead to a force that attempts to move the material away from
the magnet.

A defining feature of a ferromagnetic material is that (within a domain) all
of the spins are aligned in a specific direction that defines the directoin of the
magnetization. Conversely, Antiferromagnetic materials (including materials like
Cr) have a small but positive susceptibility and do not have any magnetization
in the absence of an applied field. This is distinct from a paraelectric for the
following reasons. There is strong ordering of spins within the material, but are
aligned precisely to cancel out the net magnetization. This essentially means that
the spins alternate in orientation such that the net magnetization is zero. These
additionally have a critical temperature (called the Néel temperature TN ) above
which the material acts like a paramagnet.

Finally, a Ferrimagnetic material (called so because materials like Ferrite, Fe3O4)
is a behavior that is somewhat in between. There is still ordering within the
crystal, and the material acts as a ferromagnet below the curie temperature TC ,
but not all of the spins are aligned. Here, a sublattice within the material may
be arranged in one orientation while the other sublattice is arranged in a different
orientation, but the net spin orientation is not zero. Thus, we still have a net
magnetization direction. These materials are often insulators, meaning that they
have some interesting applications in electronic materials and devices.

All of this behavior is higlighted in figure 5.10, which gives examples of the ordering
required to give specific types of ferromagnetism:

All of this is somewhat complicated, so a table is provided below in order to highlight
the differences. Notably, the degree of ordering, a critical temperature, and the
sign of the susceptibility can all be used to classify the type of magnetism in these
materials.
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Figure 5.10: Ordering of spins in different materials. When the spins are all aligned
in one direction in the absence of an applied field, the material is a ferromagnet
(left). Conversely, when the spins are all anti-aligned to cancel out the net spin
direction, the material is an antiferromagnet (middle). When the spins have different
alignemtns but a net magnetization exists, the material is a ferrimagnet (right). All
materials display some level of ordering without an external field, and have a positive
susceptibility. They all also have a critical temperature above which they act as a
paramagnet.

5.8 Physics of ferromagnetic materials

In this section we will highlight some of the behavior of ferromagnetic materials
that can give rise to this specific level or ordering and the associated phase
transition to paramagnetism above the critical temperature.

The vast majority of materials do not have an ordering of their spins at room
temperature. This level of ordering in a material suggests that there is a driving
force to lower the energy of the system to make this the most stable configuration.
Iron, Cobalt, and Nickel are all ferromagnetic at room temperature, while some
rare earth materials like gadolinium and dysprosium are magnetic below room
temperature. Some of the strongest magnets are made with Neodymium.

Consider Iron, which has the electron structure [Ar]3d64s2. Because of Hund’s rules,
the electrons will be arranged such that each orbital has at least one electron in it
to lower its overall energy. The system will try to minimize its overall energy, which
means that it must select a configuration of spins and orbitals that both obey Pauli
exclusion and minimize the electrostatic interaction energy. Together, these become
the exchange interaction potential that can create materials in which there are high
numbers of unpaired electrons with the same spins. This is shown schematically in
figure 5.12:

We should note that, in general, the number of spins that will be aligned on average
depends on the strength of this exchange interaction. We can compute the exchange
energy that arises from this as:

Eex = −2JeS1 · S2 (5.13)

where Je is the exchange integral, which integrates the wavefunctions f the potential
energy interaction terms for the system. This is a complex calculation. Si is the
spin angular momentum of electron i. When the sign of Je is negative, it means
that the spins should be antiparallel (which is the case for most elements). For
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Figure 5.11: A table with all of the relevant behavior of different types of magnetic
materials.

magnetic materials with ordering, this corresponds to the antiferromagnetic state
(such as Cr). When this exchange integral is positive (like for Fe, Co, Ni, and
Gd), the exchange energy is negative if the two electrons are parallel (which would
reduce the overall energy of the system). This means that there is an energy term
that favors ordering to create a permanent magnetic dipole orientation in some
materials. This is shown in figure 5.13.

Since this behavior requires that there is an energy penalty to not align the spins,
this would suggest that a phase transition can occur when there is enough thermal
energy to overcome this barrier. At low temperature, the maximum magnetization
can be achieved when all of the spins are aligned. This value is called Msat. In
Iron, this is 2.2 Bohr magnetons, which is also a measure of the average number
of electrons that have spins aligned in the same directoin. This means that the
magnetic field inside of the material is µ0Msat = 2.2 T. However, this is not always
the case. As the temperature increases, we can expect that thermal vibrations and
thermal energy can make the system more energetic, and some spins will begin
to not align in the same directoin. Once the temperature gets to a high enough
temperature (the Curie temperature TC), all of the spins are randomly oriented.
This is related to the exchange interaction energy and can be used as a rough guide
for the Curie temperature. This would require that kBT ≈ Eex. For iron, Eex =
0.09 eV, which corresponds to a temperature of about 1000K. The magnetization
as a function of temperature is displayed in figure 5.14:

Above the Curie temperature, the susceptibility follows the Curie-Weiss law, which
models the susceptibility as:

χ =
C

T − TC
(5.14)
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Figure 5.12: Hund’s rule in Iron. Left: Electron spins and placement in the out-
ermost orbitals. There is a net of 4 electrons that are spin up, leading to a spin
magnetic moment of 4β in the atom. right: Schematic of the orbital energy levels,
where a combination of Pauli exclusion and electrostatic interactions of the different
orbital states can create situations in which the lowest energy state is to have the
spins aligned in the same orientation on different orbitals rather than paired together.

Figure 5.13: The exchange integral Je calculated for a variety of materials, plotted
with the x axis as the radius of the material (rd is the radius of the d orbitals). A
positive value indicates that it is favorable to order the spins. A negative interaction
implies the opposite.

where C is a curie constant that depends on the material, and TC is the Curie
temperature.

5.9 Magnetic domains, domain wall movement, and hystere-
sis

Having discussed the details of different kinds of magnetism, we will focus the
remaining time on ferromagnets to understand their behavior. This underpins a
variety of devices that are important in modern technology, including speaker sys-
tems, engines, magnetic data storage, and materials for electronics.
A ferromagnet can be heated above its Curie temperature to become a paramagnet.
Upon cooling, the material will become ferromagnetic, but the average magnetiza-
tion within the entire volume of material will be zero! This is because, while the
spins will align locally, there is no driving force to make all of the spins in the ma-
terial form into a single direction. There will be a series of magnetic domains, not
unlike a grain microstructure in a material. There will additionally be magnetic do-
main walls at their interfaces. An external magnetic field that aligns these domains
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Figure 5.14: Magnetization of a ferromagnet as a function of temperature. As the
temperature rises, the average number of spins aligned in a given direction decreases.
At the Curie temperature, all of the spins are randomly oriented.

into a single direction will lead to the hysteresis curves observed in experiments.
We can rationalize this by considering the energy contained in magnetic fields. If
the magnet were to have a single domain upon cooling, then magnetic field lines
will exit the material. These can contain potential energy, called the magnetostatic
energy. This potential energy can be reduced if the fields outside the material can
be reduced. If a domain wall were to form in the material, then there can be re-
gions of opposite magnetization within the material. This will reduce the external
magnetic fields, as the magnetic field lines that connect the north and south sides
of the magnet do not need to traverse as far. By including domains and domain
walls at different angles, the fields outside of the material can be nearly eliminated,
reducing the overall energy. While there may be energy costs associated with creat-
ing a domain wall (as the domain wall will not have any aligned spins), the overall
energy of the system is reduced by including this randomized order. A schematic
of this process is indicated in figure 5.15

One should note that the domain walls are not necessarily a single unit cell of the
material. The orientation of the spins will flip from the orientation of one domain
to the other over a characteristic distance that minimizes the overall energy of the
domain wall, but this could be several unit cells in size. This is visualized in figure
5.16:

This has a lot of overlap in the microstructure of many materials, and indeed
acts very similarly However, this is a description of the orientation of spins in
the material, not necessarily the underlying order. The Curie temperature for a
ferroelectric -> paraelectric transition does not need to be at the same temperature
as a structural phase transition, but is rather just a transition from an ordered
state of spins to a disordered state.

The magnetization of the domains in these materials will be along specific directions,
as it may be easier to align the spins in a specific direction of the lattice. This
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Figure 5.15: Domain wall formation in a ferromagnet. The magnetostatic energy
is reduced by forming domains. A material cooled below its curie temperature in the
absence of an applied field will have domains.

Figure 5.16: A domain wall will gradually rotate the orientation of the magnetic
moments as it moves from one domain to another. This is sometimes called a Bloch
wall.

can be seen by solving the exchange interaction integral, and can be correlated in
experiments. In iron, it is easiest to form domains along the (100) directions, and
are therefore called the easy directions.

Applying a magnetic field can cause these domains to change in shape and to flip
the orientation of ferromagnetic domains. This is because the spins that are aligned
with the field have lower overall energy than the spins that are not aligned with
the field. As the applied field increases in strength, we may then assume that the
domains that are aligned with the field will grow, as the overall energy of the system
will be reduced. The spins that are aligned against the orientation of applied field
will shrink. Thus, we can imagine that an applied magnetic field can give a net
magnetization due to the modification of the domain structure and distribution.
This is shown in figure 5.17:

Because the ferromagnetic domain formation arises from the energy reduction for
spins to order, it is reasonable to assume that there may be preferred orientations
to the spins with respect to the underlying lattice. This is born out in experiments.
For example, magnetizing a ferromagnetic sample along the [100] directions will
require less energy (a lower applied magnetic field) because it is along the easy
direction. If you were to apply the same applied magnetic field along the [111]
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Figure 5.17: A domain wall will move under an applied magnetic field in order to
reduce the overall energy of the system. The domains aligned with the field will grow,
while the domains aligned opposite of the field will shrink.

direction, you would find that the net magnetization along this direction is lower.
It will take more energy to magnetize the material to the same level. This behavior
is known as Magnetocrystalline anisotropy and is a reflection of the fact that
these spins exist in a crystalline material, and their interaction with the underlying
lattice can influence their overall behavior. This is not a small value either - in
BCC Iron, it required 4 times that amount of field to magnetize the material along
the [111] direction compared to the [100]. Some experimental values are shown in
figure 5.18:

Figure 5.18: Magnetization of Iron along different crystallographic directions, show-
ing a significant different in saturation fields along the easy and hard directions in
the crystal.

When a domain wall moves in the crystal, it can be affected by the underlying
crystal. For example, any strain in the material will change the interatomic spacing,
which then changes the overall electronic environment, as the bond lengths will have
changed. This is similar to the piezoelectric effect in some dielectric materials, as
a strain can induce an electric field. Conversely, an applied magnetic field can
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additionally induce a strain on a material (similar to the converse piezoelectric
effect). This behavior is known as magnetostriction. This can potentially be used
for sensors and other devices, but has ramifications for the behavior of ferromagnetic
domains. Since there is now strain energy in the magnetized material, this can
impact the behavior and movement of the ferromagnetic domains.

Other aspects of the material can also impact the movement of domains in a ma-
terial. The local strain environment around dislocations and point defects, for
example, can interact with the magnetic field and magnetization. This means that
domain walls can be “pinned” to defects, grain boundaries, and other impurities in
the crystal material itself.

The result of this is that the microstructure and polycrystalline nature of many
magnetic materials can have a large impact on the overall response of these domain
walls when an external magnetic field is applied. Even without an applied magnetic
field, the domains of the material can have multiple ferromagnetic domains within
them. Defect pinning can lead to individual grains that have different domain
orientations, whereas sufficiently small grains may have a single magnetic domain.
The summary of all of these topics is included in figure 5.19:

Figure 5.19: Magnetostriction can mean that magnetic fields induce strains in
materials, while strains in the material can impact the movement of domain walls.
Defects can lead to domain wall pinning, as the overall energy of the system can be
lowered at these locations. Domains within grains can also vary, and domain wall
pinning at grain boundaries is common.

With all of this together we can begin to understand the evolution of the ferromag-
netic domain structure in a material when an external magnetic field is applied. A
material with no average magnetization without an applied magnetic field will have
a variety of ferromagnetic domain orientations. Measuring the magnetization inside
the material as a function of applied magnetic field will sweep out the behavior of
this material as it goes from no net magnetization to full magnetized. Applying a
magnetic field will first lead to reversible domain wall movement. As the applied
field increases, the domain walls will move irreversibly, often in sudden changes that
are due to domain walls moving across pinning defects, grain boundaries, disloca-
tions, etc. Domains walls that are pinned to defects or other parts of the material
require additional magnetic field to unpin them and move them within the crystal.
As the field increases, the material will eventually reduce or eliminate domains that
are not aligned with the field. First, the domains will be oriented along the easy
directions of the crystal. When the material is fully saturated, the domains will
align with the field, whether or not it is along the easy direction in the crystal.
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If we were to remove the magnetic field, the magnetization would relax back into
one of the easy directions, and some domains may flip orientation. Therefore,
we would expect the magnetization at 0 applied magnetic field to be lower than
fully saturated. However, we find that the magnetization is still nonzero. The
remaining amount of magnetization is called the remnant magnetization. Flipping
the sign of the applied magnetic field will lead to a decrease in the net magnetization.
Eventually the average magnetization will become 0 in the sample for some negative
value of the applied magnetic field. The magnetic field required to get to this point
is called the coercive field or the coercivity. This curve shows hysteresis, as the
value of the magnetization depends on the previous magnetic field history and does
not return to zero when the field is removed. The entire path of magnetic domain
structure and applied fields is shown in figure 5.20:

Figure 5.20: M vs. H behavior of a previously unmagnetized polycrystalline iron
specimen. An example grain in the unmagnetized specimen is that at O. (a) Under
very small fields the domain boundary motion is reversible. (b) The boundary mo-
tions are irreversible and occur in sudden jerks. (c) Nearly all the grains are single
domains with saturation magnetizations in the easy directions. (d) Magnetizations
in individual grains have to be rotated to align with the field, H. (e) When the field is
removed the specimen returns along d to e. (f) To demagnetize the specimen we have
to apply a magnetizing field of Hc in the reverse direction. Adapted from Kasap.

This hysteresis loop experiment can show a lot of the physical behavior of ferro-
magnetic materials, and also can contain information about the amount of energy
required to magnetize materials. As domain walls move, there is energy required to
flip the sign of the spins in the material. In addition, any domain wall movement
can create lattice vibrations that will dissipate as heat. The energy loss from a
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magnetization cycle (such as a path from 0 -> +µ0H -> -H -> 0) can be computed
by integrating the area within the hysteresis loop if plotted as B a function of H
(rather thanM in the previous example). Combined with the coercivity, saturation
magnetization, and remnant magnetization, we can begin to categorize materials
and use this behavior for a variety of different device applications. For example,
we can classify a magnet as a “hard” magnet if there is a large coercitivty, which
requires a strong magnetic field to fully magnetize the material. This means that
it requires more energy to magnetize (and can be relatively hard to do so), but it
also takes a significant amount of energy to demagnetize. These can be used as
permanent magnets. These may be used in motors, loudspeakers, receivers, MRIs,
and other devices. Conversely, a “soft” magnet will have a relatively low coercivity
and will therefore exhibit a stronger slope in a B-H curve. This means that a high
magnetization can be achieved with relatively low mapplied magnetic fields. Some
materials may include ferrites. These can be used in a variety of power electronic
devices, transformers, and other machinery. Some materials, like Silicon iron ( 2
percent Si), or some Nickel alloys, have low coercivity and low power loss, which
make them useful in RF electronics such as in audio devices. Standard M-H and
B-H curves, as well as a description of soft and hard magnets, are found in figure
5.21:

Figure 5.21: M vs. H of a magnet. Adding in the magnetizing field, the y axis
can be computed as B = M + µ0H (middle). The area within the hysteresis loop
describes the energy loss per cycle. Finally, the relative area, coercive field, etc. can
help to classify magnetic materials as “soft” or “hard”, and may find different uses
in modern technologies. Adapted from Kasap.

6 Thermal properties of materials

6.1 Introduction

In this final section of the course, we will discuss some of the aspects of thermal
properties of materials. This, as with other sections, cannot discuss the entirety of
thermal transport in solid materials given the time frame of the course. However,
some of the key outcomes of this section are to identify that there are analogues to
the electronic band structure of materials. We will briefly discuss some of the ways
in which thermal energy is transported, but will spend the majority of the time
discussing phonons, or quantized lattice vibrations that can carry thermal energy.
As bosons (rather than fermions), they have different occupation statistics than
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electrons. The thermal heat capacity can be estimated from simple models that
take into account this quantization, and a brief description of thermal properties
will be discussed. Bond strength, crystal structure, and atomic weight all play a
role in the ability for materials to carry heat.

6.2 Types of thermal transport

There are broadly 3 different types of thermal transport. They are: Conduction (in
solids, most of this class), convection (in gases and liquids, ignored almost entirely in
this course), and radiation. We have nominally covered some aspects of radiation
in previous portions of this course, where photons can carry energy that can be
absorbed as heat. Radiation of photons in the infrared electromagnetic spectrum
is often called thermal radiation. In fact, radiation of light and heat from a warm
body is one of the critical advances that quantum mechanics helped to answer.
This, along with the photoelectric effect, were some of the first demonstrations
that quantization is important, and the emergence of particle/wave duality is well
represented in these phenomena. Here, we will briefly highlight some of the salient
properties of blackbody radiation as it relates to the quantum theory of light (also
a boson).

6.2.1 Blackbody radiation

We can say with generality that all objects will absorb and emit electromagnetic
radiation. The amount (both in terms of emitted power and the spectral distribu-
tion) depend on temperature. in equilibrium, the total amount of energy emitted
by the body matches the amount of energy absorbed by its environment. That is,
if an object is at the same temperature as its surroundings, then the net power flux
into the object will be 0. A perfect blackbody will radiate light with a spectral
irradiance Iλ as follows:

Iλ =
2πhc2

λ5
(
exp

(
hc

λkBT

)
− 1
) (6.1)

in which we note that the frequency of a photon (in free space) is defined as
ω = 2πc/λ such that the exponential takes on the familiar form ℏω/kBT . We
may note that the exponential term in parentheses also looks familiar. Recalling
that the fermi-dirac distribution is given by 1

exp
(

E
kBT +1

) , the difference is in

the sign in the denominator. We will find that the Bose-Einstein distribution
takes on the form in the spectral irradiance, which will become important when
discussing the thermal properties of phonons. While beyond the scope of this
course, the occupation statistics of bosons are substantially different than electrons
(for example, no Pauli exclusion), which is manifested in these particles obeying a
different distribution function.

All of this is to say that the derivation of blackbody radiation required the existence
of a quantized object called a photon that followed these statistics, and was the
only way in which experimental data could be explained. The classical theory
based on a modern (at the time) understanding of electromagnetism led to the
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so-called “ultraviolet catastrophe”, in which the emission of energy of a body at a
finite temperature scaled as λ−4, which implied that any object at any temperature
would emit more and more light in the ultraviolet. This not only did notmatch
experimental measurements, but does not conserve energy (and would additionally
imply that everyone and everything would be emitting ultraviolet light, x-rays,
and even shorter wavelengths with greater and greater intensity, which is a bit silly).

We can also remark on a few other details of this distribution. First, we can deter-
mine the total power that is emitted by a blackbody at a certain temperature. The
total power is given as an integral of the spectral irradiance. That is,

P =

∫ ∞

0

Iλdλ = σST
4 (6.2)

where σS is the stefan boltzmann constant and is defined as:

σS =
2π5k4B
15c2h3

(6.3)

This immediately implies that the power radiated from a warm object increases
monotonically (and as a reasonably strong function of) temperature. In addition,
one can show that the radiated intensity at each wavelength will additionally in-
crease with temperature - that is, there is never a scenario in which warming up
an object will lead to a wavelength being emitted with less intensity. In fact, one
can show that the maximum wavelength emitted by a warm body will change as a
function of temperature. This is known as Wien’s displacement law and is given as:

λmaxT ≈ 2.98× 10−3m ·K (6.4)

This matches our general understanding - for example, a fire or a hot metal
will first appear a dull red. As it warms up, it appears yellow, then eventually
“white-hot”. From this, one can deduce an estimated temperature of the object by
measuring the peak emitted intensity.

There are two more points to make regarding the radiation of thermal energy.
First, a material that can perfectly emit thermal radiation may be referred to
as a blackbody. This is manifested in a parameter called the “emissivity”. A
perfect blackbody will have an emissivity of ϵ = 1. Objects that do no emit as well
will have an emissivity less than 1 and are sometimes referred to as a graybody.
Essentially, the ratio of the emission of energy normalized by that from a perfect
blackbody will define the emissivity. While beyond the scope of this course, this
emissivity can be a function of wavelength and can be rationally engineered,
which may have impacts in technologies like thermophotovoltaics or other thermal
transport phenomena.

Finally, the total power that is emitted into an environment from a warm body
can be computed by knowing this emissivity and knowing the temperature differ-
ence between the warm body and its environment. This is known as the Stefan
Boltzmann equation and is defined as:

P = SϵσS(T
4 − T 4

0 ) (6.5)
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where S is the surface area of the object, ϵ is the emissivity of the object, T is the
temperature of the object, and T0 is the temperature of the environment. As can
be seen from this equation, the net power emitted by an object will become 0 if it
is at the same temperature as its surrounding environment.

6.3 Introduction to phonons

As you may have discovered in this course, many aspects of the world can be
represented by the “mass on a spring” model and can be thought of as both a
particle and a wave. This is no different for thermal conduction, which is the
focus of this part of the course. When we discuss the thermal conduction, we
can think about the energy that causes atomic motion as quantized sets of lattice
modes, in which the collective oscillation of atoms with a specific frequency and
momentum can create the basis set to understand how energy is transferred into
thermal energy within the crystal. To do this, we need to develop a physical model
for the crystal. Here, we will use the hamronic oscillator (again) to represent the
bonds between different atoms within the crystal. Note that this is approximate,
as every interatomic potential will have higher order terms than this. However, if
we simply model an atom as connected to two unmoving points through springs
that have some spring constant/bond strength β, then we can easily solve for the
set of allowed modes in this system.

For a mass on a spring system, the potential energy from stretching or compressing
the spring is given as:

V =
1

2
βx2 (6.6)

where β is the spring constant and x is the displacement from the equilibrium
position. We can insert this into the Schrodinger equation as:

d2ψ

dx2
2M

ℏ2
(E − 1

2
βx2)ψ = 0 (6.7)

to find the the solutions. We will not go through the entire derivation (as it is
quite tedious and not directly related to the course). However, we can find that the
eigenenergies for this model take the following form:

En = (n+
1

2
)ℏω (6.8)

where ω is the oscillation frequency and n is an integer that is greater than or equal
to 0. Essentially, this means that any solution to the energy that can be given to
an atom to oscillate is quantized in integer units of the oscillation frequency. By
giving the system a specific amount of energy, it can promote the atom into an
energy state where it will oscillate with a given frequency that obeys this equation.
(As a side note, note that n = 0 is an allowed solution, which is the so-called
“zero-point energy”.) Figure 6.1 shows the atom and spring system, the potential,
and the energy eigenvalues: We can use this description to explain phonons a bit
more qualitatively. If we have a lattice of atoms that are bonded together, then we
may expect the solutions to the movement of these atoms to take on a similarly
quantized formulation. This can be thought of as a collective motion of the atoms
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Figure 6.1: The quantum harmonic oscillator. Treating the bond as spring with
a constant restoring force, the potential that can act on the atom as a function of
distance from its equilibrium position is a quadratic function. The solutions to this
equation give evenly spaced energy eigenvalues. Not shown here: The solutions look
similar to a finite potential well, but the wavefunctions are described using Hermite
polynomials. A more advanced treatment will go through this derivation. You may
also find this in a chemistry version of quantum mechanics, as it can be helpful when
thinking about spectroscopy. Adapted from Kasap.

that we will call phonons. Conversely, it additionally means that if we want the
system to oscillate at a specific frequency, we could find a way of giving the crystal
a specific amount of energy. This can be thought of as creating a phonon with a
specific energy.

For this model, we will assume that we have a 1-dimensional line of atoms that are
spaced by a given distance a. Each atom has the same mass M and the bonds are
all of the same strength β. The position of atom r in this chain is given as xr = ra
when there are no vibrations. The value of r goes from 0 to N−1. When the atoms
are perturbed by some distance, we will refer to this as the displacement u. For the
atom in position r, we would refer to the displacement ur. Likewise, for the atoms
that are nearest neighbors we would have to define ur−1 for the displacement of
the atom in position r − 1 and ur+1 for the atoms that are in position r + 1. We
note this because it will become important as we solve the equations of motion.
This is represented in figure 6.2.

Before we walk through the derivation of this model, we can make a few comments
about what we expect the equations to give us. First, we note that the behavior is a
little different than the single atom model we discussed. Perhaps most importantly,
each atom is bonded to another object that is able to move. This will mean that
we need to think about the collective motion of the system rather than just the
movement of one atom; the relative position of the nearest neighbors will also impact
the restoring force. Second, we must note that the displacement can take place in
any combination of directions. If the displacement is along the chain of atoms, this
is referred to as a longitudinal wave. If the atoms are oscillating perpendicular to
the bond, these are called transverse waves. There can be two different transverse
waves - if the chain is along the x direction, then a displacement ur in the x direction
would be longitudinal. If the displacement were along the y or z directions, then
the wave would be transverse. This is shown schematically in figure 6.3:
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Figure 6.2: Coupled masses on springs in a crystal. here, we have a 1-dimensional
chain of identical atoms spaced a unit cell a apart, with identical springs of spring
constant β connecting them. From this, we can derive the position of any atom in
position r through the lattice constant. We will write down the displacement of the
atom from its equilibrium position as ur, where r is the lattice site. Adapted from
Kasap.

Figure 6.3: Longitudinal and transverse phonons. If the displacement from equi-
librium is in the direction of propagation for the wave, then the phonon is called
a longitudinal phonon. If the atoms are displaced perpendicular to this, they are
transverse. Because we live in a 3 dimensional world, this means that there can be
two transverse phonon modes and one longitudinal mode for a given wave. Adapted
from Kasap.

One can show that the allowed eigen solutions to this problem will take the form
of a traveling wave, not unlike the allowed solutions for free electrons in a solid.
More explicitly, we can write that the displacement of the atom at position r can
be written as:

ur(x, t) = A exp (i (Kxr − ωt)) (6.9)

where K is the wave vector, xr is the position in the x direction, ω is the oscillation
frequency, and A is the amplitude. This is the form of a traveling wave, but Kxr
is discrete, as the atoms exist within a specific direction within the crystal. These
are nominally referred to as “lattice waves” that have a period Λ = 2π/K before
ur repeats itself. The displacement of the atom will oscillate in time and take a
time period of 2π/ω before ur repeats itself. NOTE: This is the convention used
by Kasap. There is no functional difference between K used for the wavevector
here and k to define the wavevector for an electron. The difference is here just to
make it clear when you are talking about phonons or electrons (as you will see later,
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electron-phonon interactions can help us to understand the mean free path of an
electron).
To justify this, let’s write down the net force of an atom that is displaced at some
instantaneous point in time. The net force acting on the atom in position r will be
given by Hooke’s law for the bond with the r−1 atom and the r+1 atom. Since each
of these atoms can be displaced by some amount relative to their equilibrium value,
the net difference in the displacements will determine the net force. If the atoms at
position r − 1 and r are displaced by the same amount but in the same direction,
then the bond is effectively not stretched at that moment in time. Therefore, we
can write down that the net force is:

Fr = β(ur−1 − ur) + β(ur+1 − ur) =M
d2ur
dt2

(6.10)

where Fr is the net force for the atom at position 4, β is the bond strength, andM is
the mass. We have written down that the force will impart a net acceleration. One
can show (which may be a good idea to prove to yourself) that the traveling wave
solution we wrote down can be a solution to this equation. If we insert this proposed
solution into this equation, then we can solve for the evolution of the displacement
ur with time. Note that this time harmonic solution has a straightforward solutions
- each time derivative will return the same function, but multiplied by −iω. Two
time derivatives therefore yields the same function with a factor of (−iω)2 = −ω2

such that the solution to the equation of motion is:

Fr =M
d2ur
dt2

= −Mω2ur = β(ur−1 − ur) + β(ur+1 − ur) (6.11)

Further, if this traveling wave solution is a solution for the atom at position r, then
we can solve for the position of all of the other atoms in the chain, as the center
position of the atoms is separated by a distance a. Because we are assuming that
the solution to the oscillation is a traveling wave, we can write down the relationship
between one atom and another in the lattice as having a phase difference, in the
same way that we could for Bloch’s theorem. If we know the displacement at
position r at a time instant t, then we know that the position of any other atom at
the same time as:

ur−1 = ur exp(iK(−a)) (6.12)

We can insert our proposed solution into the equation for the force balance, and by
factoring out ur, we are left with only the exp(iKa) terms for the atoms that are
in position r + 1, 1 for atoms at position r, and exp(−iKa) for atoms at position
r − 1. Then we have:

Fr =M
d2ur
dt2

= −Mω2ur = β(ur−1 − ur) + β(ur+1 − ur) (6.13)

transforms into:

−Mω2ur = βur (exp(iK(−a))− 1 + exp(iKa) + 1) → ω2 =
2β

M
(1− cos(Ka))

(6.14)
where we have used a trig identity to convert the exponentials to the cosine term.
We can additionally turn this into a slightly more compact form by transforming it
again as:

ω2 =
4β

M
sin2

(
Ka

2

)
→ ω =

√
4β

M

∣∣∣∣sin(Ka2
)∣∣∣∣ (6.15)
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Where we have used another trig identity to get to this form, which is a bit easier
to interpret in the form of the band structure. Here, we can immediately see that
the minimum of the bandstructure frequency solutions will occur when k = 0 and
the maximum will occur when K = π/a. The solutions to the band structure for
this crystal is in figure 6.4:

Figure 6.4: Phonon band structure. Like electrons, the band structure describes
the allowed modes of the system and represents the phonon energy-momentum rela-
tionship. From this we can extract a group velocity, which is the derivative of this
function, and determine how quickly phonons can propagate in the crystal. Note that
phonons have a maximum frequency defined by the bond strength and atomic mass.
Adapted from Kasap.

Let’s discuss a few details about this band structure. First, we note that the same
band structure rules apply here as they did for the electron - we can define a Brillouin
Zone that has all of the meaningful information for the problem. In addition, the
number of modes that exist along the wavevector axis is evenly spaced, so we can
also determine an analogous density of states g(w) for the crystal. The eigenmodes
look like a series of waves with half wavelength increments as k increases and the
number of nodes increases. Note that in general K can take on any quantized value
from 0 to π/a, which we can write down as K = qπ

Na , where q ≤ N (the number of
atoms). If we insert this value of K into the solution for the wave, which then the
form exp(iqπ/Na) (at some instant in time t we can drop that term for illustration),
we find that the period of this function decreases as the alue of q increases. Here
this is even more apparent if we plot the solutions to the phonon band structure, as
in figure 6.5: Essentially we can only draw waves using the positions of the atoms
as points on the plot. At very low frequencies, the wavelength of the Bloch mode
is very long, taking the entire crystal to make one half wavelength of the mode.
As we increase in momentum, the number of nodes increases until we get to the
Brillouin Zone edge, where every atom is oscillating in the opposite direction from
its neighbors. From, this, and from the expression for the dispersion, we can find
that the maximum frequency is defined to be

ωmax = 2

(
β

M

)1/2

(6.16)

which are related directly to the bonding and the material. In addition, we can
define the energy of a phonon as:

Ephonon = ℏω (6.17)

and the phonon’s momentum is defined as:

pphonon = ℏK (6.18)
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Figure 6.5: Phonon modes. As q increases, the effective wavelength of the phonon
goes down and the number of nodes increases. Once q reaches the total number of
atoms in the crystal lattice, we find that every other atom is oscillating completely
opposite of its neighbors. We cannot go to higher spatial frequencies than this, as we
no longer have enough atoms in the crystal to represent a wave with higher spatial
momentum. That is, any value outside of the first Brillouin zone is essentially re-
writing the modes that are already in the first brillouin zone. Adapted from Kasap.

Finally, note that a crystal in 3 dimensions can easily generalize this description.
The wave vector K can now be a vector in 3 dimensions, and the Brillouin Zone
edge will end at π/a, where a is the lattice constant in the specified direction. The
same behavior can be extracted as in the electronic band structure.

The group velocity is an important factor for many physical processes. It is simply
defined as:

vg =
dω

dk
=

(
β

M

)1/2

a cos

(
1

2
Ka

)
(6.19)

(Note that the definition is general, but the equation on the right side is specific to
this dispersion). We can see that the group velocity also depends on the strength of
the bonding and the mass of the atoms in the lattice. The group velocity represents
how quickly the wave can propagate within the crystal (and is distinct from the
phase velocity vp = ω/k, which describes how quickly the wave can acquire phase
in the crystal). At low frequencies, we can write down that the group velocity is
essentially:

vg = a
√
β/M (6.20)

Noting that the Young’s modulus Y = β/a and that the density of the material is
approximately ρ =M/a3, we find that we can re-write the group velocity as:

vg =

(
β

M

)1/2

a =

√
βa2

M
=

√
Y a3

m
=

√
Y

ρ
(6.21)
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This is quite powerful - we can essentially relate the phonon band structure (at
low frequencies) to physical properties of the material - the elastic modulus and
the density! In this brand, we also therefore can relate the speed of sound to the
phonon dispersion.

6.4 Heat capacity

The heat capacity of a material can change with temperature, which does
not follow from classical theories. We will find that a simplified model of the
phonon band structure is actually a reasonable approximation to determine the
temperature-dependent heat capacity, which matches well for many crystalline ma-
terials. In addition, it follows the classical theory well at high enough temperatures.

The classical method to compute the heat capacity is to use the equipartition the-
orem, which states that an object at thermodynamic equilibrium will evenly split
its energy amongst all of its degrees of freedom. This means that each degree of
freedom will add 1/2kBT to the overall energy. For example, an electron can have
kinetic energy, but this energy can be in any direction. This translational kinetic
energy in the x, y, ad z directions means that the average energy of an electron
is 3/2kBT . For a solid, we must additionally consider the potential energy that is
stored in the form of bonds. For a 3-dimensional material, this would then mean
that the total average energy at a given temperature is 3kBT . The heat capacity
per atom is defined as:

C =
d(KE + PE)

dT
=
dU

dT
(6.22)

which gives us the classical result of C = 3kB . This is known as the Dulong-
Petit heat capacity. This works qiute well for many materials - Silver, Copper,
Germanium, Mercury, and Tungsten all have very similar heat capcities that are
essentially this value. However, materials like Silicon, Beryllium, Diamond, and
many polymers have values that are much lower than this, and violate this classical
rule. As we will find out, this is related to the phonon band structure and the
fact that these materials are composed of light elements (and hence the low M in
the denominator of the constant term) or have strong bonds (the β term in the
numerator).

The solution to this (or at least at the level of this course) is to use the Debye
model, which assumes that the phonon bandstructure is linear within the Brillouin
Zone. This is clearly incorrect, but also very clearly makes the problem easier
to solve (the final result is already gross without there being extra terms to try
and integrate). This essentially says that all phonons can propagate with the
same group velocity throughout the crystal. The Debye model will also have a
maximum frequency in the Brillouin Zone ωD, which will become important later.
Finally, consider the fact that we have frequently interchanged frequency and
energy in this course. Since we know that these particles can have a frequency ω
and have a defined energy ℏω, we can also consider the effective temperature of
this particle by mapping the energy to thermal energy, which would essentially
define a TD = ℏωD/kB by equating kBT = ℏω.
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In the quantum picture, we are considering all of the thermal energy that a
crystalline solid (like diamond) has will go to phonons. These are quantized
particles (and therefore there is a countable and finite number of them in a solid
at a given temperature). In order to determine the heat capacity, we need to
understand what this distribution of phonons looks like at different temperatures.
The heat capacity essentially defines how much energy it takes to increase the
crystal temperature by 1 degree. Here, we can understand this by computing the
internal energy of the system and look at the temperature dependence of this by
counting up the phonons in the crystal.

As alluded to earlier, phonon occupation statistics obey the Bose-Einstein relation-
ship, which is:

P (E) =
1

exp
(

ℏω
kBT − 1

) (6.23)

The energy of a phonon is defined as ℏω. Noting that the difference between fre-
quency and energy in these calculations is a factor of ℏ, we can write down a general
description for the internal energy of the system as:

Um =

∫ ωmax

0

ℏωg(ω)P (ω)dω (6.24)

This is essentially fancy accounting - the understand the total energy of the system,
we need to add up all of the different places that energy can go. Each phonon
frequency has a different energy, and there can be a certain distribution of modes
in the system defined by the density of states - at some frequencies there may be
more modes than others. Finally, we need to know what the probability will be to
have a phonon at that given frequency. To sum everything together, we integrate
over all frequencies to find the total energy. By multiplying the energy for a phonon
at a frequency ω, the density of states, and the probability distribution, we are
computing the average expected energy contained in each frequency. By integrating
through all possible frequencies, we are then summing all possible sources of energy.

We will not derive the density of states for the Debye model, but sketch out the
rationale and provide the end result. Here, we must conserve the total number of
modes that could exist for a crystal with a defined number of atoms. Just like
in the linear combination of atomic orbitals, we must have an equal number of
modes for the number of atoms. In the Debye model, the dispersion (the ω vs K
diagram or the band structure) is entirely linear, which makes this computation
straightforward. For a linear dispersion, we know that the density of states is:

g(ω) =
3V

2π2

ω2

v3
(6.25)

where V is the volume of the crystal, v is the average velocity of the phonon waves.
The maximum frequency in this model is different than the actual band structure
and is given by:

ωmax = v

(
6π2Na

V

)1/3

(6.26)
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where Na is the number of atoms. We can define the Debye temperature from this,
where

TD =
ℏω
kB

(6.27)

The average speed of the phonons will be defined as the phase and group velocity
in this case (and generally the case in a material with linear dispersion), which will
follow the low frequency slope of the actual band structure from above.

figure 6.6 shows the density of states as a function of frequency for experimentally
derived values of Copper (through neutron scattering) and the 3D debye model.
As you can see, the overall behavior is quite different, but we can still use this in
this model. More accurate predictions can be made by numerically integrating the
actual density of states for a material if a more accurate result is required.

Figure 6.6: The Debye model density of states as a function of frequency compared
to experimentally derived values from neutron scattering. Clearly they are different,
but the low frequency behavior matches as expected. Here, the curve is scaled so that
the total density of states is conserved. Note that the Debye temperature of Copper is
inferred from this model to be TD = 344K, right around room temperature. Adapted
from Kasap.

Putting all of this together and taking into account, we have that:

U =

∫ ωmax

0

ℏω

exp
(

ℏω
kBT

)
− 1

3V

2π

ω2

v3
(6.28)

From which we can determine a molar heat capacity by solving for U , then taking
the derivative of the energy with respect to temperature and taking into account
that it is a molar quantity rather than a total quantity. This is a complicated
function that is a bit of a mess to solve. The most straightforward method to do
this is to non-dimensionalize with respect to the Debye temperature TD to get (a
still gross equation):

Cm = 9kB

(
T

TD

)3 ∫ TD/T

0

x4ex

(ex − 1)2
dx (6.29)
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We see that the equation still contains an integral and is therefore not the most
helpful. however, there are some limiting cases that are worth discussing. First,
we can plot the result and see how things look. Figure 6.7 plots the molar heat
capacity normalized by the Dulong-Petit value of 3kB , as a function of temperature
normalized by the Debye temperature:

Figure 6.7: The heat capacity of a solid as a function of temperature according to
the Debye model. At low temperature there is a nonlinear dependence that follows
T 3. At high temperatures the heat capacity tends towards the classical value. Note
that Kasap uses R instead of kB . Adapted from Kasap.

There are a few conceptual things to unpack here. First and foremost we should
note that this model, even simplifying the dispersion to be linear, captures a large
portion of crystalline materials. At low temperatures it gets the T 3 dependence
found in experiments. At high temperatures, it gets to the Dulong-Petit value. In
addition, the phonon dispersion for light element materials like Diamond also make
sense - because the slope of their dispersion is quite a bit higher, their effective
Debye temperature is higher. Since the function is monotonically increasing, this
means that light element materials will have a value lower than the classical limit
if their Debye temperature is substantially above room temperature. Indeed, the
estimated Debye temperature for Diamond is well over 1000K, which would put
the heat capacity for the material very low compared to the classical limit (on the
lower end of the x axis).

Let’s interpret what this may mean. At very low temperature, only a subset of
the phonon energies can be accessed. As the temperature increases, more phonons
are being created and the average energy of the phonons can also increase, as
higher energy phonons can be created. The phonon concentration increases as
t3 and the average energy is linear in T, which yields the T 3 dependence for
the heat capacity. (Note: This is true for several crystalline materials, but not
true for others. Amorphous materials are a well known exception that have a
different scaling relationship). The Debye temperature is related to the maximum
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frequency of phonons. When the temperature is near or above this value, we find
that the total number of phonons increases and the phonon energies are in this
energy range, but the scaling relationships are different. Here, the total inter-
nal energy of the system scales linearly, which leads to a near constant heat capacity.

This deviation of the heat capacity from the classical value is a direct consequence
of the existence of phonons and the quantization of energy associated with them.

6.5 Heat transport and thermal conductivity

As a final note, we will consider some basics of the thermal conductivity of a solid
and how one might be able to engineer the thermal conductivity of a material.
Similar to an electron, we can take a quasi-classical approach to try and understand
what is going on. Here, we can treat the phonon as a particle that propagates
with a certain speed for a characteristic time before it scatters off of a defect,
grain boundary, etc. in the crystal to re-direct it. In this way, we can quantify
the speed with which an object will travel. Knowing its energy, we can then
understand the rate of change of heat energy inside of a material with there is a
temperature difference, which will lead to the diffusion of heat in a crystal. Here,
we will consider an insulating material like Diamond, Sapphire, or Magnesium
Oxide, which only have phonons that can conduct heat. In general, electrons can
also conduct heat, but the way in which insulators transmit heat is through the
phonon contribution. In metals, the thermal conductivity can be dominated by the
electronic thermal conduction rather than the vibrational.

6.5.1 Thermal conductivity from phonons

Quantitatively, we can define the thermal conductivity as a differential equation that
relates the heat fluxQ′ traveling through a cross-sectional area A to the temperature
gradient dT/dx in a material through the thermal conductivity κ, which provides a
differential equation not unlike diffusion:

Q′

A
= κ

dT

dx
(6.30)

Here, the temperature gradient provides a diriving force for thermal energy to diffuse
from the hot side of a material to the cold side of the material. The rate at which this
can happen is related to the thermal conductivity, in the same way that diffusion
of electrons is related to the conductivity of a material. We can treat the thermal
conducitvity similar to an electron and give a quasi-classical picture, where:

κ =
1

3
CV vphlph (6.31)

where κ is the thermal conductivity of phonons, CV is the constant volume heat
capacity, vph is the velocity of the phonons, and lph is the mean free path before
scattering. This is quite analogous to an electron - there will be some characteristic
speed we can associate with the particle as well as a characteristic time before it
is re-directed due to scattering off of an object. The mean free path lph is related
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to the velocity of the particle (the phonon in this case) and the characteristic time
between scattering events τ as:

lph = vτ (6.32)

To a rough approximation we can assume that the speed of the phonons is given
by the speed of sound in the material (which is reasonable in the linear part of
the dispersion diagram, but perhaps inaccurate for higher frequency waves). The
characteristic time can be based on the average distance to a defect, dislocation,
grain boundary, etc. in a polycrystalline material. In addition, phonons can interact
with each other and scatter off of each other thorugh phonon-phonon interactions.
This is a complicated thing to compute. Bosons are typically non-interacting - unlike
an electron and other fermions, bosons don’t really “feel” the presence of other
bosons, which is part of the reason that their occupation statistics are different (and
follow the Bose-Einstein relationship rather than the Fermi-Dirac one). However,
materials that have an anharmonic potential well that describes their bonding can
have phonon-phonon scattering due to the inherent nonlinearity associated with
this. This is beyond the scope of the course, but the key thing to think about is
the fact that a standard Hooke’s law spring will have a quadratic potential well
associated with it, which is symmetric. Any material that has an anharmonic
potential is not perfectly symmetric - say, a Lennard-Jones potential. This potential
well must be described with a functions that contains higher order terms than the
quadratic, which can enable the coupling between different phonons. We will not
derive this, but this can point to the fact that thermal expansion coefficients can
be measured to help understand the rate at which phonons will interact (as the
thermal expansion coefficient α is a a measure of the bonding anharmonicity). All
of this is to say that phonons can scatter off of other phonons, which means that we
will expect a temperature dependence in the thermal conductivity. This is shown
schematically in figure 6.8:

Figure 6.8: Phonon-phonon interactions. Here, the anharmonic potential well allows
phonons to scatter off of others. In addition, the collision of two higher energy phonons
can create phonons of different energies if momentum matching is conserved. This
can lead to unintuitive results like the one shown in the figure, in which two phonons
traveling to the right interact and form a third wave that propagates in the opposite
direction. This is nominally called Umklapp scattering and is due to the fact that
any mode with momentum outside the Brillouin Zone can be folded back into the
Brillouin Zone. Adapted from Kasap.

If the velocity doesn’t change (a rough approximation) but the density of phonons
increases linearly with increasing temperature (reasonable above the Debye temper-
ature), then we would expect an inverse relationship with temperature. For pure

Northwestern—Materials Science and Engineering 120



6 THERMAL PROPERTIES 6.5 Heat transport and thermal conductivity

crystals with few defects, we indeed observe this in experiment, with:

κcrystal ≈ 0.38
M̄

(NV 2γ2)1/3
v3

T
(6.33)

where M̄ is the average mass of the atoms in the crystal, N is the number of
atoms, V is the crystal volume, vs is the speed of sound (and therefore the speed
of phonons), T is temperature, and γ is the grüneisen parameter, which is related
to the bulk modulus B of the crystal, the thermal expansion coefficient α, and the
heat capacity C as:

γ =
Bα

C
(6.34)

Note that this is generally an approximation and valid for several materials, but
not all. This works well for pure crystals like MgO and Sapphire.

Glass/amorphous materials have a very different thermal conductivity scaling rela-
tionship. As you may expect, the phonon picture works well in highly crystalline
solids, and the density of defects is relatively low to allow a characteristic scattering
time that can depend on the phonon concentration. In an amorphous material,
there are vacancies and general disorder in the material such that scattering off of
a defect is quite common. In general, this would mean that the mean free path of a
phonon in an amorphous material is quite short, which will additionally be roughly
temperature independent, as scattering off of defects will be dominating over scat-
tering off of other phonons. Therefore, we expect there to be a different scaling
relationship and we indeed find this to be the case. The thermal conductivity scales
roughly as:

κglass ≈ 1.2
kBvs
V 2/3

(6.35)

which is temperature independent. For crystals with very large unit cells or with
complicated structures, the conductivity can also have a weaker temperature
dependence. In general these materials will also have a lower thermal conductivity.
For example, the thermal conductivity of sapphire around room temperature is
approximately κ ≈ 1000W/(m ·K), whereas for glass it is closer to κ ≈ 1W/(m ·K).
Clearly, this coherent thermal vibration/wave approach is a reasonable way to
think about the transport of heat in these materials.

At lower temperatures, the scaling relationships will be different. Because the
phonon concentration is low, the limiting factor is the mean free path before collid-
ing with defects in the crystal. At this temperature range the heat capacity scales
as T 3, so we expect the thermal conductivity to do so as well, since the velocity and
the mean free path don’t change significantly with temperature.

6.5.2 Thermal conductivity from electrons

Electrons can additionally carry heat, and will scatter in a similar way to phonons.
Because electrons are particles that can carry heat and charge, it is reasonable to
believe that the thermal conductivity of an electron will be related to the electrical
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conductivity. This is approximately true, with the following relationship holding
for a metal:

κelectron
σelectron

= LT (6.36)

where we have explicitly defined these quantities as the electronic contribution.
This is known as the Wiedemann-Franz law, and L is the Lorenz number equal to:

L =
π2

3

(
kB
e

)2

= 2.44× 10−8 V2K−2 (6.37)

Note that this is an empirical relationship, but nominally stands up to reason -
if electrons can flow more easily and carry both charge and heat, then you may
expect that more thermal conduction from electrons will result. Therefore, if we
can determine the electrical conductivity and how this scales with temperature
then we will have a reasonable understanding of how much heat will be conducted
by these particles as a function of temperature. Note that, in general, thermal
conducitivity will be a result of both phonons and electrons, and different materials
will have different dominating components - Diamond is a great thermal conductor,
driven entirely by phonons. In metals, the thermal conductivity of electrons is the
dominant mechanism for their thermal conductivity.

Consider the fermi velocity of an electron, which would represent the speed of the
conduction electrons in a metal. These will have a velocity given as:

vF =
√
2EF /me (6.38)

(more strictly the effective mass may be more appropriate here). We can follow the
same analysis and come up with a nearly classical representation for the scatter-
ing of the electron in the material in the same way we did earlier in the quarter.
However, we can be a bit more prescriptive in our analysis of the scattering time
with temperature and explain the transport behavior of many classes of materials.
Previously, we discussed that there’s an approximate analysis for the mobility of an
electron related to the size of an atomic core that an atom can scatter off of. We
said that this scaled with the temperature and that the average size of the atoms
appeared to increase as the temperature increased, as they vibrated with a greater
amplitude with more thermal energy. Since we have discussed thermal energy in the
crystal as a collection of phonons, we can actually think of this as a particle-particle
interaction and think about the scaling relationships between the momentum of the
phonons, the concentration of phonons, and therefore understand the scaling rela-
tionship with temperature. The electron-phonon interaction is described in figure
6.9:

When an electron interacts with a phonon, we must conserve momentum. We can
essentially think of this as an inelastic collision in which the final momentum of
the particle. The phonon momentum is quite small and so we can assume that
the electron has nearly the same magnitude after the collision. This re-direction
can modify the conductivity. As more of these collisions take place, the electron
movement will eventually be randomized. If it takes N collisions to randomize the
electron momentum (and therefore reduce the conductivity), we can posit that:

σelectron ∝ Nτ (6.39)
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Figure 6.9: Electron-phonon scattering can re-direct electrons through the absorp-
tion of a phonon. The momentum is very similar to the initial momentum, as the
electron wavelength is much shorter than the phonon wavelength. This re-direction
of momentum will reduce the current flow in the initial propagation direction, asthe
projection of the momentum vector onto that direction has been reduced. Adapted
from Kasap.

where N is the number of collisions and τ is the average timescale before scattering
events. From this, we can determine the temperature scaling relationships for the
conductivity of electrons in a metal. Electrons will scatter off of defects, dislocations,
and grain boundaries. They will also scatter off of phonons, which scale with the
temperature. Above the debye temperature, the energy and momentum of phonons
is large and few scattering events are required to randomize the momentum of an
electron. The number of phonons increases linearly with temperature. Because the
number of collisions required is small, then we expect that:

σelectron,highT ∝ τ ∝ 1

nph
∝ 1

T
(6.40)

Where the high temperature conductivity σelectron,highT is inversely proportional
to the concentration of phonons nph, which gives an inverse dependence with
temperature. This scaling relationship also gives the thermal conductivity scaling
for electrons at this temperature.

Below the Debye temperature, we have a different scaling relationship. As we saw in
the Debye model, the phonon concentration follows a different scaling relationship,
with nph ∝ T 3 AND the average energy of a phonon increases linearly with T . Since
the energy and momentum are directly related in the Debye model (i.e. the ω vs
k diagram is linear), this also means that the momentum of the phonon increases
linearly with temperature. Because the momentum is lower, more collisions will
be required to randomize an electron. Each collision will impact the momentum
in a random process, such that averaging the effect is important. Combining this
with the temperature dependence of the phonon concentration below the Debye
temperature yields:

N ∝ 1

T 2
→ σ ∝ Nτ ∝ N

nph
∝ 1

T 5
(6.41)

Which is indeed the temperature dependence of a metal like Copper below the Debye
temperature. Note that this is true for pure materials - if there are a significant

Northwestern—Materials Science and Engineering 123



7 BONUS CONTENT

number of dislocations, defects, or impurities, the scaling relationship may not be
quite the same.

7 Bonus content

7.1 Introduction

In this last chapter, we will include a few vignettes that go over some aspects of the
course material and synthesize them in an applications-driven format. This year, we
will discuss Thermoelectrics, magnetic recording technologies, and piezoelectric ma-
terials. These are by no means a comprehensive analysis but are intended to review
the course content and provide context for engineering challenges or optimization
of material behaviors.

7.2 Thermoelectrics

A thermoelectric is a device that can heat or cool with an applied voltage, or
where a temperature difference can be used to induce a voltage. From this, a
variety of useful devices can be created, included Peltier coolers and thermoelectric
generators. These are essentially devices that can interconvert thermal and
electrical energy. These can be useful to control the temperature of an object
without moving parts, as it requires running current through a device rather than
liquid or fans. Conversely, for stable power generation, a thermoelectric generator
can use temperature differences to generate electricity. NASA, for example, will
use thermoelectrics for space missions, as solar cells and other power generating
objects are not sufficient far away from Earth.

Consider the following thought problem: A heavily doped semiconductor that has
a temperature gradient within it will additionally lead to the net flow of electrons.
This can be for a few reasons - first, the thermal generation of electrons across the
band gap can create a gradient of carriers that will then want to diffuse to regions
of lower concentration of electrons. In addition, the thermal energy of the electrons
on the hotter side will give them a higher velocity than electrons on the colder
side. As electrons drift or diffuse across this temperature gradient, there will be a
steady state voltage that will be created across the semiconductor. We can define a
value that quantifies the voltage difference created as a function of the temperature
coefficient and call this the Seebeck coefficient as:

S = −∆V

∆T
(7.1)

More concretely, we can define the fraction of current density driven from temper-
ature gradients through a new term to the current density as:

J = −σ∇V − σS∇T (7.2)

where the last term is a measure of the temperature induced current flow. In hte
limit of no current flow (i.e. J = 0), we recover the Seebeck coefficient equation as:

∇V = −S∇T (7.3)
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This equation means that we can construct systems such that energy can be gen-
erated from this potential difference OR we can use a voltage difference to drive a
temperature gradient.

7.2.1 Peltier Cooling

Figure 7.1: Current flow across an ohmic contact can locally heat or cool. If the
current flow leads to an increase in the electron potential energy, the local heat flux
is negative as heat is removed from the system. Conversely, reversing the flow of
electricity will lead to local heating across the junction. Adapted from Kasap.

Consider the band structure of an n-type semiconductor forming an ohmic contact
with a metal. Figure 7.1 shows an ohmic contact and the flow of electrons
depending on the current. We saw previously that this led to a buildup of electrons
at the metal-semiconductor junction. Because of this, the limiting factor for charge
transport in this material system was the bulk resistivity of the semiconductor,
not the metal-semiconductor junction. The band bending means that there is are
energy levels in the semiconductor that are lower near the metal interface. When
current flows across this interface, this means that the potential energy of the
electrons must change, as the only states that are available for conduction are in
the conduction band of the semiconductor. As electrons move from the metal into
the semiconductor, the potential energy of the electrons increases. This energy
must be taken from somewhere; in fact, the electron will take thermal energy from
around it in order to increase their thermal energy. This means that the local area
must cool down to balance the energy.

We can quantify the amount of energy a single electron will lose or gain by traversing
the ohmic contact region, which we call the Peltier coefficient. Here, we can define
the peltier coefficient Π simply by looking at the energy difference between the fermi
level of the metal and the conduction band away from the junction. We find then
that:

Π =
1

e

[(
EC − EFn +

3

2
kBT

)]
(7.4)
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From which we can measure the heat flux Q′ as

Q′ = ±ΠI (7.5)

where the current direction can determine whether the junction is heating up or
cooling down.

7.2.2 Thermoelectric power generation

We can put these components together to form a power generation or thermoelectric
cooling component. This effect will work for either a p-type or n-type semiconduc-
tor, depending on the flow of current. The direction of current for cooling in a
p-type semiconductor will be the opposite of an n-type semiconductor. Consider
the case in figure 7.2. If both metal contacts on a semiconductor are the same
metal, then current flow across the entire device will lead to one junction cooling
and the other heating. If we combine p-type materials and n-type materials into
a structure, then connecting them in the appropriate manner can lead to current
flow such that cooling occurs on one side of the device, and heating occurs on the
other. In this way, a cool body can be connected to a warm body and heat can be
removed from the cooler body, leading to refrigeration.

Figure 7.2: Current flow and heating/cooling in semiconductors. Depending on the
direction of current flow, heat can be removed or added to a junction in the material.
Connecting these to cooled or warming bodies can lead to a thermoelectric cooler,
where electrical energy will move heat from the cooler to the warmer body. Adapted
from Kasap.

Conversely, connecting a source of thermal energy to a cooler body through a ther-
moelectric material can lead to useful work that can be extracted and stored, en-
abling thermoelectric power generators to convert thermal energy into electronic
energy.

7.2.3 Figure of merit and tradeoffs

This sort of device combines the thermal transport characteristics and the semicon-
ducting properties of materials, which means that there will inherently be tradeoffs.
The figure of merit for thermoelectrics is typically defined as zT , which relates the
thermal and electrical conductivity of a material through:

zT =
σS2

κ
T (7.6)
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where a material with low thermal conductivity (which may maximize a ∆T in a
material, high electrical conductivity (such that charge can easily flow) and high
Seebeck coefficient can increase the efficiency of these materials. In fact, one can
show that a thermoelectric power generator can act as a heat engine that has an
efficiency defined as:

η =
Energy to the load

heat absorbed at the hot junction
=
TH − TC
TH

√
1 + z̄T − 1√
1 + z̄T + TC

TH

(7.7)

where z̄T is the average value between the hot and cold temperature ranges. Here,
we can see that the first term TH−TC

TH
is the Carnot efficiency of a heat engine.

As z̄T increases, the efficiency of the system increases. In the limit of extremely
high z̄T , this system approaches the Carnot efficiency. For low z̄T , the efficiency
decreases.

As we have previously discussed, the thermal conductivity of a material can depend
both on the phonon contribution and the electron contribution. In addition, the
thermal and electrical conductivity themselves are also strong functions of temper-
ature, which means optimizing the figure of merit zT is challenging and will depend
on the fundamental material properties and their microstructure. Even at a specific
temperature, the doping concentration can modify the properties of the material
such that there is a strong variation in the thermoelectric response. One such exam-
ple is plotted in figure 7.3, where the doping concentration, conductivities, seebeck
coefficient, and overall zT is plotted as a function of doping.

Figure 7.3: zT of a small bandgap material as a function of doping concentration.
There is an optimal range for this material to act as a thermoelectric at this specific
temperature. Adapted from Prof. Snyder’s website.
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7.3 Magnetic recording

7.3.1 Soft vs Hard magnets

Here we will briefly highlight some of the factors for ferromagnetic materials in
modern technology. As we discussed, the hysteresis curves are a hallmark of a
ferromagnetic materials. The size of this hysteresis curve is a measure of a few
important quantitites. First, the coercive field is the field required to demagnetize a
magnetized piece of material and is therefore a measure of how good of a permanent
magnet you will have. In addition, the remnant magnetization Br is a measure of
how much net magnetism remains in the material when there is no magnetizing field
on it. These components essentially specify the intersection values on the B − H
curve. For a very good permanent magnet, we would want the remnant magnifica-
tion to be large and the coercive field to be large. This will lead to a strong magnet
that is hard to demagnetize, and can be used in motors, speakers, headphones,
tools, and permanent data storage in magnetic recording technologies. Essentially,
a hard magnet will have as large and wide of a hysteresis loop as possible. However,
the space contained within the hysteresis loop is also a measure of the energy lost
in the magnet during each cycle. The large and open hysteresis loop then means
that the cycle the magnetization requires a lot of energy. This makes intuitive
sense, as having a large remnant magnetization and coercive field indicates that
the potential energy barrier required to flip the sign of the spin direction is large.
This is undesirable for many applications where you may want to cycle the mag-
netic field quickly, as it means that a lot of energy is lost due to the hysteresis losses.

In contrast, a soft ferromagnet has essentially the opposite properties. The coercive
field is quite low and the remnant magnetization is also quite low. This means that
they would make poor permanent magnets because the magnet strength without
an applied field is quite low. In addition, it would take very little magnetic field
to demagnetize the material. This is good in cases where you want to quickly
apply magnetic fields for some purpose. For example, high speed electronics may
have inductors that are enhanced by using magnetic fields. Transformers and other
structures will create magnetic fields that oscillate at least at 60 Hz, so minimizing
the hysteresis loss is valuable for these devices. They would make poor devices where
you need a strong permanent magnet. These differences are highlighted again in
figure 7.4:
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Figure 7.4: M vs. H of a magnet. Adding in the magnetizing field, the y axis can be
computed as B = M + µ0H (middle). The area within the hysteresis loop describes
the energy loss per cycle. Finally, the relative area, coercive field, etc. can help to
classify magnetic materials as “soft” or “hard”, and may find different uses in modern
technologies. Adapted from Kasap.

7.3.2 Magnetic recording

Magnetic recording is another useful example of using multiple kinds of ferromag-
nets. Figure 7.5 shows a schematic of how a magnetic hard drive recording device
functions. At the top, a disc will spin about an axis and a recording head (that
looks like a record player). The disk has a thin film of magnetic nanoparticles on it.
The magnetic nanoparticles are hard magnets, but are small enough that there are
no ferromagnetic domains on them. The tip of the write and read head has a series
of soft magnetic devices that can allow for direct writing of the magnetization
direction. write head has a soft magnet with an electrical coil around it. When
current flows through the coil, the gap in the magnet will have a magnetic field
with a direct specified by the coil current direction. When the write signal is on,
the magnetic field in and around the gap is strong enough to flip the magnetization
direction of the hard drive. When the disk is spinning at a given velocity and the
input signal is timed appropriately, a “bit” of information can be stored in the
magnetic domain orientation. Several nanoparticles within a patch will have a
magnetization that is aligned in a specific direction, which can form the “1” or “0”
in the hard drive. These particles are smaller than the write head such that several
will form a single bit.

To read the data, a different soft magnet can be passed over. The magnetic field
from each bit will induce a voltage that can be read out on a current loop. When
this is amplified, the voltage signal can then be a readout of the magnetic field
orientation, which then can be interpreted as a data stream.

There are some challenges associated with this technology. Because the magnetic
nanoparticles are small, there are no domain walls to minimize the overall energy.
Each particle then has a volume of spins that can be flipped from an external
magnetic field OR from thermal energy. The magnetization direction is set by the
magnetic field and is essentially a local equilibrium orientation for the nanoparticles.
The nanoparticles will have their spins aligned along an easy direction of the crystal,
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Figure 7.5: Magnetic recording. Bits of magnetic tape or magnetic material on
a disk can be flipped in plane to represent “1” and “0”. An inductive write head
can have an input signal encoded through a current signal through a coil, which
induces a magnetic field in the gap that can locally flip magnetic nanoparticle domain
orientations. Adapted from Kasap.

as it is harder to magnetize them along the hard direction. The energy difference,
as quantified by the magnetetocrystalline anisotropy, essentially means that the
particles are in a local equilibrium position. As the spin orientation varies as a
function of angle, one would find a potential energy barrier in other directions due
to this anisotropy. If the potential barrier to overcome to flip the magnetic field
orientation is low, then thermal energy could be enough to overcome this barrier
quickly. If it is high, then it is unlikely that thermal fluctuations can cause this to
flip quickly. We can quantify this in an effect timescale that represents the average
time that these nanoparticles will be oriented the way that they were set during the
writing step. This time τ is related to the magnetocrystalline anisotropy energy Ku

and the particle volume V and the thermal energy kBT as:

τ ∝ exp

(
KuV

kBT

)
(7.8)

Northwestern—Materials Science and Engineering 130



7 BONUS CONTENT 7.3 Magnetic recording

Where the energy to flip the magnetization direction of the entire nanoparticle is
related to the anisotropy energy and the entire volume of spins, and is normalized
against the thermal energy. This therefore poses a problem only when the magnetic
anisotropy is very low or if the particle volume is small. For very high hard drive
densities, the volume of these particles can therefore become a problem.
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7.4 Dielectric Breakdown

This final section will discuss dielectric breakdown briefly. We discussed dielectric
materials as perfectly insulating materials where no conduction could occur. This is
not strictly true. In addition, we have seen throughout this class that applying an
electric field can increase the potential energy of the electrons in the material with
respect to others. The electric field in a dielectric is linear between the electrodes,
so one side of the dielectric will have electrons at a higher potential energy than
the other. A free electron in the conduction band can move in response to the
electric field to minimize its potential energy, which will be converted to kinetic
energy. If this kinetic energy is enough to ionize an electron (i.e. of order the band
gap energy) from an atom from a scattering event, this can create a cascade effect
that can lead to bond breakage, a massive increase in the conductivity locally, and
breakdown of the device permanently. If the average mean free path is of order 50
nm and the band gap is about 50 nm, then the total energy required for breakdown
is about Ebr ≈ 1MV cm−1. Now that there are two electrons that can conduct,
this effect will multiply and lead to catastrophic failure in the device.

This order of magnitude value also ignores defects, microstructure, and other details
and are rarely achieved. The native oxide of SiO2 formed in microelectronics may
approach this value, but most other oxides will not. This effect is called electron
avalanche.

7.4.1 Thermal breakdown

In addition to this, the finite conductivity of the material will lead to Joule heating
that will locally heat up the material. The dielectric loss at high frequencies will also
lead to local heating. If this heat cannot be dissipated easily (as is the case for many
insulators, which can feature very low thermal conductivities), this increased heating
can increase the conductivity of the material, which then heats the material more.
This can start to age the dielectric and locally induce breakdown after extended
time and use.

7.4.2 Electromechanical breakdown

Finally, we can consider the electromechanical breakdown. Simply put, a capacitor
will create charges that are separated by a distance due to the low/nonexistence
conductivity of the dielectric. These electrons feel a coulombic interaction through
this gap, which leads to a force. This force, after extended periods of time and
with sufficiently high fields, can lead to plastic deformation that can induce
defects, dislocations, etc. that can induce other failure mechanisms. A sufficiently
strong electric field can lead to shear stresses, crack formation, and failure in a
mecehanisms known as electrofracture.

In general, these effects all place an upper bound on the electric field that can be
applied to a material before it begins to fail. These will also age the material that
can place timescales for the operational lifetime of these materials. This is visualized
in figure 7.6, which shows both dielectric breakdown from a strong electric field, as
well as some relevant field and time scales for these breakdown mechanisms. The
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point here is simply to say that a dielectric cannot have an infinite voltage applied
before they fail.
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Figure 7.6: Dielectric breakdown examples. Left: Discharge from a high voltage ap-
plied to an insulator, with tracks of damage throughout material. Middle: electrome-
chanical breakdown occurs when the coulombic force between the two places starts
to induce damage to the dielectric in between. Right: Some fields and timescales for
damage. note that not all of these mechanisms are discussed in this course. Adapted
from Kasap.
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