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2 COURSE OUTCOMES

1 Course Description

This course covers elementary crystallography and basic diffraction theory with a
reciprocal space perspective. Applications include structure analysis and preferred
crystalline orientation. Characterization techniques include both point and 2D de-
tector acquisition and analysis. This course has both lecture and weekly laboratory
components.

Prerequisites: GEN ENG 205 (EA1), Physics 135-2 and 135-3, and Calculus 1-3.
We will use linear algebra, as covered in EA1.

2 Course Outcomes

At the conclusion of this course, MAT SCI 361, students will be able to:

1. Identify different types of 2D and 3D crystal structures and symmetry ele-
ments, such as plane groups, space groups, point symmetry, and glide planes,
that occur in metals, ceramics, and polymers.

2. Perform standard X-ray diffraction measurements on metals, ceramics, and
polymers and quantitatively determine lattice constants, grain size, texture,
and strain in bulk crystals and epitaxial films.

3. Describe the basic particle and wave physical processes underlying x-ray emis-
sion, elastic and inelastic scattering, absorption, and interference of coherent
waves.

4. Identify symmetry elements in (point, translation) in 2D and 3D patterns and
crystals.

5. Describe basic principles underlying x-ray tube and rotating anode sources,
synchrotron x-ray sources, x-ray fluorescence spectroscopy, and electron and
neutron diffraction.

6. Use reciprocal space graphical constructions and vector algebra to interpret
diffraction from 3D and 2D single crystals, as well as random and textured
polycrystalline samples.
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3 SYMMETRY OF CRYSTALS

3 Symmetry of Crystals

For the three states of matter—gas, liquid, and solid—solids in thermal equilibrium
form crystals. A crystal can be defined as a solid composed of an atomic arrange-
ment that is periodic in three dimensions (3D). Crystal systems exhibit various
types of symmetry which refer to different forms of repetitiveness. The specific
symmetry type is determined by a set of operations that, when applied to the crys-
tal, result in its self-coincidence. In other words, a crystal is symmetric concerning
a particular operation if it is impossible to distinguish its state before and after that
operation.

A macroscopic crystal can be described by detailing the position of each atom
using its x, y, and z coordinates. For a crystal measuring 1 mm3, this would
involve approximately 1021 atoms. Fortunately, the field of crystallography enables
us to simplify this description by identifying only a small set of atoms with their
coordinates, along with a limited number of symmetry operators.

3.1 Types of Symmetry

Symmetry elements can be of the following types:

⋄ Rotational axis

⋄ Mirror plane

⋄ Inversion center

⋄ Translation symmetry

(or a combination of these):

⋄ Rotoinversion axis

⋄ Glide plane

⋄ Screw axis

3.1.1 Mirror Planes and Chirality

Probably the most familiar form of symmetry from daily life is reflection symmetry.
We refer to some objects as being symmetric with respect to reflection (or having
mirror symmetry) if a mirror cutting through the object would result in no apparent
change to the object (we call this lack of change “self-coincidence”). The lines (or
planes in three dimensions) on which these hypothetical mirrors could be placed
are appropriately called mirror planes. Observe Fig. 3.1, noticing that the image
could be replicated by holding half of it up to an appropriately placed mirror. In a
sense, symmetry thus allows us to define structures or patterns in terms of unique,
fundamental units. Mirror planes will typically be denoted in figures by bold lines.
It is also worth noting that the two shapes in Fig. 3.1 have opposite handedness or
chirality. The points of the two objects proceed outward in either a clockwise or
counterclockwise manner; as a result, the object on the right can be identified as
distinct from the one on the left. Thus, we see that a reflection changes the chirality
of an object. We encounter this phenomenon in daily life; it is possible to tell a
person’s right hand from their left because of the arrangement of their fingers, but

Northwestern—Materials Science and Engineering 6



3 SYMMETRY OF CRYSTALS 3.1 Types of Symmetry

an image of a left hand reflected from a mirror will have the same arrangement as
that of a right hand (similar conclusions follow for the reflection of the right hand).
In a Cartesian coordinate system, if we place the mirror plane in Fig. 1.1 at x = 0,
then points (x′, y′) on the left side are symmetrically equivalent to points (x, y) on
the right side by the matrix equation:(

x′

y′

)
=

(
−1 0
0 1

)(
x
y

)
(3.1)

or x′ = −x and y′ = y.

Figure 3.1: A 2D object with mirror symmetry. Note that the two parts of the
object on either side of the mirror plane have opposite chirality.

3.1.2 Proper Rotation Axes

A rotational axis refers to a line that can be utilized as the center of a specific ro-
tation that leaves the system (such as a pattern or crystal) unchanged (invariant).
Rotational symmetry can exist in both three dimensions (3D) and two dimensions
(2D), with the “line” represented as a point in the latter case, indicating lines per-
pendicular to the plane of view. The planar object pictured in Fig. 3.2 demonstrates
3-fold rotational symmetry, as a 120◦ or 240◦ or 360◦ turn about its center brings
it into self-coincidence. In addition, this particular object has three mirror planes,
and the object’s reflection across these planes also brings it into self-coincidence.

Figure 3.2: A planar object (denoted by red-line segments that has 3-fold rotational
symmetry, as well as three mirror planes denoted by black line segments.

Fig 3.3 shows the types of proper rotation axes that we are concerned with, as well
as the symbols that will be used to represent each type. Referring back to Fig. 3.2,
the object pictured has 3-fold rotational symmetry about an axis directed out of
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3 SYMMETRY OF CRYSTALS 3.1 Types of Symmetry

the page, as a 360◦/3 = 120◦ rotation allows for self-coincidence. In other words,
an object has n–fold symmetry about an axis if a 360◦/n rotation about that axis
brings it into self-coincidence. All objects exhibit 1-fold symmetry or are brought
into self-coincidence by a full 360◦ turn about any axis. This case is trivial (hence
why there is no associated symbol) but important nonetheless.

Proper

Improper

Figure 3.3: Symbols for proper and improper rotational symmetries.

You may notice that other types of rotational axes (i.e., 5, 7, or greater) are not
provided. This is because such rotational axes are incompatible with translation
symmetry (which will be discussed in Chapter 4). In brief, this simply refers to the
fact that objects with, for example, 5-fold symmetry cannot be translated in a way
that fills all of space. For instance, Figure 3.4 demonstrates that pentagons cannot
be used to fill space without gaps (this is also known as tiling). A parallelogram,
which has 2-fold symmetry, can be translated to fill or tile all space in 2D.

Figure 3.4: An example of an object with 5-fold symmetry that does not (and
cannot) fill space.

3.1.3 Inversion Symmetry

An object is said to have inversion symmetry if there is some point (the center of
symmetry) from which identical elements would be encountered when preceding
equidistant forward and backward along a line passing through that point. An
example of a planar object with inversion symmetry is pictured in Fig. 3.5. When
a line is drawn through the center of symmetry of this planar object, corresponding
symmetry equivalent points of the object are equidistant in opposite directions
from the center. Open circles are commonly used to denote an inversion center as
shown in Fig. 3.5. It will coincide with itself if all points on the object are inverted
through the inversion center, which is also on this centerline. In terms of Cartesian
coordinates, point (x,y) is equivalent to point (-x,-y) in a planar object with an
inversion center (or center of symmetry) at (0,0). You will note that this object
also exhibits rotational symmetry, as a 180◦ turn about its center brings it into self-
coincidence. The nature of the inversion operation depends on the dimensionality
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3 SYMMETRY OF CRYSTALS 3.1 Types of Symmetry

of the system. In 2D, inversion symmetry is identical to 2-fold rotational symmetry,
while in 3D, inversion is distinct from other symmetries. Note that chiral objects
do not have a center of symmetry.

Figure 3.5: A 2D figure with an inversion center and 2-fold rotational symmetry

3.1.4 Improper Rotation Axes

An example of an improper rotation axis is the roto-inversion axis (or axis
of inversion), a hybrid symmetry operation combining a rotational axis and an
inversion center. Note that for a system containing such hybrid operations, it is not
necessarily the case that the two-component symmetries are present individually;
rather, it is the sequential application of both that results in self-coincidence. This
operation only exists in 3D, due to the redundancy of inversion with rotation in
2D. Since this operation is a combination of one that inverts the chirality of objects
(inversion) and one that preserves chirality (rotation), it will invert the chirality of
components.

Figure 3.3 shows the symbols utilized to denote roto-inversion axes in images. Note
that the 1-fold roto-inversion operation (1̄) is represented by an open circle, as it is
exactly equivalent to the inversion operation (given that 1-fold rotation is equivalent
to not changing the structure at all). To help visualize these operations, observe
Fig. 3.6, which is adapted from Vainhstein’s Modern Crystallography Vol I [? ]. The
arrangements depicted consist of perfectly asymmetrical, three-dimensional, chiral
objects related by both proper and improper rotational axes. Note the nature of
the 3D inversion operation demonstrated by the 1̄ example. The 2̄ operation is
equivalent to a mirror plane perpendicular to the axis of roto-inversion.
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3 SYMMETRY OF CRYSTALS 3.2 Symmetry Projections

Figure 3.6: Proper Rotation Axes (2D and 3D) and Improper Roto-inversion Axes
(3D only), from Vainshtein (Ref. [? ])

3.2 Projections of Symmetry Elements and Point Groups

There are simpler ways of representing symmetry operations, namely through a
system of stereographic projections. A more formal description of stereographic
projections will be given in Chapter 3. The top half of Fig. 3.7 depicts a view of a
body with its symmetry axis pointing out of the page and the circle representing
its perimeter. The symbol in the center indicates the 2-fold rotation symmetry
operation, and the two solid circles depict the 180◦ rotation of the body. The
darkened circle in the 2̄ symmetry operation projection represents a mirror plane.
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3 SYMMETRY OF CRYSTALS 3.2 Symmetry Projections

International Tables Azaroff

2

or above mirror plane below mirror plane

2 = m

Figure 3.7: Stereographic projection representation of the 2 and the 2̄ symmetry
operations.

3.2.1 Roto-inversion’s Effect on Arrangement of Symmetry-equivalent
Objects

Let’s look at an example. The following steps break down the 3̄ symmetry operation
used to generate the object in Figure 3.8:

1. Start at s1

2. Rotate counterclockwise 120◦

3. Invert to arrive at s2

4. Rotate counterclockwise120◦

5. Invert to arrive at s3,

6. Continue until you return to s1

7. ×’s and ◦’s mark all symmetry-equivalent positions (see Fig. 3.6).
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3 SYMMETRY OF CRYSTALS 3.2 Symmetry Projections

Figure 3.8: 3̄ symmetry stereographic projection. ×’s represent a geometric entity
above the plane, while ◦’s represent the same geometric entity (with opposite chirality)
below the plane. sn (with integer n) represent the steps applied after each 3̄ operation
(starting at s1) until the entity returns to s1. For the 3D representation, see Fig. 3.6.

Certain symmetry elements can be combined to form new patterns, such as the
product of a 2-fold and an inversion center shown in 3.9. This produces a 2-fold
rotation axis, which is perpendicular to a mirror plane, as indicated by the darkened
circle around the object.

Just like an algebraic operation, if A is one symmetry operation and B is another,
they may be grouped through some operator to produce a third symmetry element
or C.

A ·B = C

Figure 3.9: Stereographic projection of 2
m

symmetry operation, which has a 2-fold
perpendicular to a mirror plane. Note that 2

m
is not equivalent to the 2̄ operation

depicted in Fig. 3.6.

For the 2mm symmetry operation shown in Fig.3.10, the mirror plane lies paral-
lel to the rotation axis. There is also a third mirror plane that arises from this
combination, as shown by the second line drawn through the center of the dashed
circle.
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3 SYMMETRY OF CRYSTALS 3.2 Symmetry Projections

Figure 3.10: Stereographic projection of 2· m = 2mm point group symmetry.

Fig. 3.11 illustrates an object with symmetry that combines two rotation axes. In
this case, a 3-fold rotation axis is perpendicular to a 2-fold rotation axis. Note that
it does not matter whether the 3-fold or 2-fold operation is performed first, but
the 32 point group symmetry is not equivalent to the 23 point group symmetry.
Notice that point group symmetry refers to the symmetry operators acting on
an object about a point at the center of the object that brings that object into
self-coincidence.

Figure 3.11: Stereographic projection of 32 symmetry, which has a 3-fold perpen-
dicular to a 2-fold rotation axis.

As an example, the SiO2, quartz crystal has 32 point group symmetry. A naturally
grown quartz crystal is pictured in Fig. 3.12 , along with the left- and right-handed
habits for this chiral crystal. Note that a chiral object cannot be superimposed
onto its mirror image, while an achiral object can be superimposed onto its mirror
image. In Fig. 3.13, the placement of the 3-fold and three 2-fold axes are shown for
the right-handed quartz crystal habit (perfect shape).
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3 SYMMETRY OF CRYSTALS 3.2 Symmetry Projections

Figure 3.12: Picture of naturally grown SiO2, quartz crystal, along with the left-
and right-handed habits for this chiral crystal. Copied from Ref. [? ].

Figure 3.13: Quartz crystal habit showing 3-fold axis perpendicular to the three
2-fold axes, which are separated by 120°. Symmetry equivalent facets (faces) are
labeled with the same letter.

Note how the habit is brought into self-coincidence (or is invariant to) the following
symmetry operations:
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3 SYMMETRY OF CRYSTALS 3.2 Symmetry Projections

g0 = e = 1

g1 = 3

g2 = 32

g3 = 2X

g4 = 2Y

g5 = 2U

(3.2)

The symmetry operations are referred to in the following way:

⋄ g0 is the identity operation, which is rotation about any axis by 360°.

⋄ g1 corresponds to rotating by 120° about the 3-fold axis.

⋄ g2 corresponds to rotating by 240° about the 3-fold axis in that same direction.

⋄ g3 corresponds to rotating by 180° about the 2X axis

⋄ etc.

Note that successive symmetry operations also bring the object into self-coincidence.

g1 · g1 = g21 = g2 , g1 · g4 = g3

Note that g1 and g2 are the inverse of each other and that g3 , g4 and g5 are their
own inverse operation.

g1.g2 = g0 → g1 = g2
-1 and g3.g3 = g23 = g0 → g3 = g3

-1

This set of symmetry elements, g0, g1, g2, g3, g4, g5 is called the 32 or D3 point
symmetry group.

Note that the Cyclic group C3= { 0, 1, 2} under modulo-3 addition is directly
analogous to the 3-fold rotation axes point group.

There are only 32 point symmetry groups that can be generated by combinations of
the 1, 2, 3, 4, 6, 1̄, m, 3̄, 4̄, 6̄ symmetry operators. The stereographic projections of
all 32 point groups are displayed in Fig. 3.14. Every crystal has a set of symmetry
elements that is one of these 32 point groups or Crystal Classes. As described
in Table 1, crystal classes are further separated into Crystal Systems based on
minimal symmetry requirements.
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3 SYMMETRY OF CRYSTALS 3.3 Group Theory

Figure 3.14: Stereographic Projections of 32 Point Groups. Copied from Ref. [? ]
.

Table 1: Crystal Systems and Crystal Classes

Crystal System Minimal Symmetry Crystal Classes
Triclinic 1 (or 1̄) 1, 1̄

Monoclinic One 2 (or 2̄) 2, m, 2
m

Orthorhombic Three 2’s (or 2̄) 222, 2mm, mmm
Tetragonal One 4 (or 4̄) 4, 4̄, 4

m , 422, 4mm, 4̄2m, 4
m

2
m

2
m

Cubic Four 3’s (or 3̄) 23, 432, 2m 3̄, 4̄3m, 4m 3̄ 2
m

Hexagonal One 3 or 6 (or 3̄ or 6̄) 3, 3̄, 32, 3m, 3̄ 2
m ,

6, 6̄, 622, 6mm, 6̄m2, 6m , 6
m

2
m

2
m

Rotation Symmetry Axes of a Cube Referring to Table 1, it might seem
surprising that the minimal symmetry requirement for a cube is four 3-fold ( or 3̄ )
axes instead of three 4-fold axes. As shown in Fig. 3.15, the 3-fold axes are aligned
with the body diagonals of the cube.

3.3 Group Theory

Group Theory Axioms:

1. A group G consists of an operator “multiplication” and a set of elements gi ∈ G,
such that the group is closed under “multiplication”. gi · gj = gk ∈ G.
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3 SYMMETRY OF CRYSTALS 3.3 Group Theory

Figure 3.15: Rotation symmetry axes for a cube.

2. ”Multiplication ” is associative: gi · (gj · gk) = (gi · gj) · gk
3. There exists an identity element e ∈ G, such that e · gi = gi

4. For any gi there is an inverse g−1i ∈ G, such that gi · g−1i = e

Considering the above set of rules, prove to yourself that the set of integers under
the addition operator is an example of an infinite group, and the cyclic group C3=
{ 0, 1, 2} under modulo-3 addition is an example of a finite group.

3.3.1 Matrix Representation of Symmetry Operations

Objects with certain symmetries remain invariant under certain rotations, reflec-
tions, inversions, and translations. Each symmetry operation element of a point
group can be represented by a matrix A operating on the x,y,z Cartesian coordi-
nates of an object with that symmetry.

A11 A12 A13

A21 A22 A23

A31 A32 A33

x1y1
z1

 =

x2y2
z2

 (3.3)

such that point (x2, y2, z2) is symmetrically equivalent to (x1, y1, z1)

The Identity Element is an element of every point symmetry group.

1 or E or e =

1 0 0
0 1 0
0 0 1

 (3.4)

Other symmetry operation elements of the 32 point group are:
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3 SYMMETRY OF CRYSTALS 3.3 Group Theory

3 =

− 1
2 −

√
3
2 0√

3
2 − 1

2 0
0 0 1

 2X =

1 0 0
0 −1 0
0 0 −1

 (3.5)
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0 0 −1

𝑥
𝑦
𝑧

=
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−𝑧
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Figure 3.16: Stereographic projection of the 32 point group and symmetry equiva-
lent points (red circles) with their xyz Cartesian coordinates generated by the 3 and
2X matrix operators, which intersect at 000. The z-axis points out-of -the page along
the 3-fold. The x-axis points along the 2X . The y-axis points towards approximately
5 O-Clock. A + (or -) sign indicates that the point is at a positive (or negative) z
value above (or below) the plane of the paper.

Figure 3.16 illustrates how these two matrices operating on a general point xyz
define the Cartesian coordinates of other symmetry equivalent points.

Practice Exercise: Generate the other three symmetry operation elements of
the 32 point group, 2Y , 2U , and 32 . Hint, use matrix multiplication, starting with
3 and 2x . Show that this is a non-Abelian group; i.e., 3 · 2x ̸= 2x · 3 Show that 3
and 32 are inverses of each other. Show that the 2-folds are their own inverses.

Because symmetry equivalent points are equidistant from the origin, a matrix A
representing a point symmetry group operator is an Orthogonal Matrix. There-
fore, A−1 = AT and Det[A] = ±1. Pure rotation matrices (w/o reflection) are
orthogonal matrices with Det = +1. This is illustrated in Fig. 3.17. Note that the
symmetry operator of a mirror plane at z = 0 has Det = −1.

Northwestern—Materials Science and Engineering 18
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3  = 

−
1

2
−

3

2
0

3

2
−

1

2
0

0 0 1

32  = 

−
1

2

3

2
0

−
3

2
−

1

2
0

0 0 1

3•32  = 
1 0 0
0 1 0
0 0 1

m  = 
1 0 0
0 1 0
0 0 −1

x y z → x y -z Det[m] = -1

Figure 3.17: Illustration of orthogonal matrices.
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4 CRYSTAL LATTICES

4 Crystal Lattices

4.1 Indexing within a crystal lattice

A 2D or 3D crystal is a collection of atoms periodically positioned in 2D or 3D
space. This positional periodicity is mathematically described by an infinite array
of imaginary points called a 2D plane lattice or a 3D space lattice (or Bravais lattice).
Each lattice point has identical surroundings. A repeated unit that generates this
lattice is called a unit cell. A 2D unit cell is a parallelogram defined by two non-
collinear crystallographic axes a and b. A 3D unit cell is a parallelepiped defined by
three non-coplanar crystallographic axes a, b, and c. In general, there are 6 scalar
parameters (called lattice parameters) describing a 3D unit cell: the 3 lengths of
the axes a, b, and c, and the angles between them α, β, γ, as illustrated in Figure
4.1. For instance, the cubic crystal system has a = b = c, and α = β = γ = 90◦.
By convention, the c-axis points along the highest rotation symmetry axis.

Figure 4.1: The crystallographic axes a, b , and c and angles separating them
α, β, γ.

The crystal axes are used to specify the orientation of planes within the crystal
lattice structure using hkl Miller indices. The following procedure is used to
determine the Miller indices of a plane.

1. Determine the plane’s intercepts with the crystal axes

2. Take reciprocals of the intercepts

3. Remove common factors

4. Put in ( ), no commas

All parallel planes have the same (hkl) Miller indices. If a plane crosses through
the origin, as shown in the left axes of Figure 4.2, it can be translated to determine
its intercepts. By convention, a bar over the number indicates a negative index.
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4 CRYSTAL LATTICES 4.1 Indexing within a crystal lattice

c

a b1/5

c

a b

Figure 4.2: To determine the Miller indices of a plane passing through the origin,
change its position, but not its direction. The red line is an edge-on view of a plane
parallel to the a-axis.

a, b, c Intercepts: ∞, −14 , 1
5

Reciprocals: 0, -4, 5

Miller Indices: (04̄5)

Miller indices: If you need an additional refresher on Miller indices, the
Wikipedia page (https://en.wikipedia.org/wiki/Miller index) is very help-
ful. Here, we include a reminder of the notation used to indicate planes
and directions.
⋄ Specific planes: We use round brackets (as parentheses) - (hkℓ)
⋄ Planes of the Form: To indicate all planes that are crystallograph-

ically equivalent, we use curly brackets - {hkℓ}
⋄ Specific direction: We use square brackets - [uvw]
⋄ Class of directions: To indicate all directions that are crystallo-
graphically equivalent, we use angle brackets - ⟨hkℓ⟩

Determine the hkl indices of the plane shown in the figure below:

a

b

c

Figure 4.3: Plane in cubic unit cell

Note: The six faces of a cube are of the form (or family) ((100)) or {100}

4.1.1 Hexagonal Prism

Indices of hexagonal prism faces are not of the same hkl form. Instead, a redundant
index i is introduced to identify planes, in which i = −(h + k) or a1 + a2 = −a3.
Thus, there are only three independent indices. The four-index (hkil) Bravais-
Miller system more easily defines planes within a hexagonally structured crystal.
Figure 4.4 shows indexing within a hexagonal structure using the three Miller in-
dices. Figure 4.5 uses the a1, a2, a3, c axes in the Bravais-Miller scheme.

Northwestern—Materials Science and Engineering 21

https://en.wikipedia.org/wiki/Miller_index
x-dictionary:r:'Parentheses?lang=en&signature=com.apple.DictionaryApp.Wikipedia%27


4 CRYSTAL LATTICES 4.1 Indexing within a crystal lattice

(110)
_ a

b

c 120°

Figure 4.4: The hexagonal unit cell crystallographic axes a, b and c and the (hkl)
Miller indices for three nonparallel faces of a hexagonal prism.

(1100)
_

c

a1

120°

a2

a3

Figure 4.5: The (hkil) Bravais-Miller indices for three nonparallel faces of a hexag-
onal prism.

By using the Bravais-Miller scheme, the symmetry equivalent faces are all of the
same form {11̄00}.
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4 CRYSTAL LATTICES 4.1 Indexing within a crystal lattice

a1

a2

-a3

Figure 4.6: Notice that by vector addition a1 + a2 = −a3

4.1.2 Form

Planes (or faces) of a form are related by crystal symmetry but have different
indices. For instance, the six square faces of a cube (100), (010), (001),(1̄00), (01̄0),
and (001̄), are of the form ((100)) or {100}. These planes are all related by the
4-fold rotation axes perpendicular to the cube faces. Note that a form is indicated
by the indices of one plane enclosed in braces or {hkl}.

Example: Referring to the octahedron shown in Fig. 4.7, the eight faces are of
the form {111}. What Crystal System does this octahedron belong to?

a

b

c

Figure 4.7: Octahedron formed by eight congruent isosceles triangles (From Azaroff
Fig. 1-24 [? ])
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4 CRYSTAL LATTICES 4.1 Indexing within a crystal lattice

4.1.3 Direction Indices

Direction indices [uvw ] define a direction with respect to the unit cell axes a, b ,
and c.

[uvw] = ua+ vb+ wc (4.1)

Figure 4.8 demonstrates direction indices with respect to unit cell axes.

c a

b [110]

[410]

[100]

Figure 4.8: Orthorhobic unit cell example of direction indices [uvw], where u,v, and
w are integers of the lowest denomination.

4.1.4 Zone

Planes of a zone intersect at a line [uvw] known as a zone axis, to which they are
all parallel. All (hkl) planes that contain this line belong to the same zone. For a
book, the spine would be the zone axis, while the pages would be planes belonging
to the zone.

For instance:

⋄ Let σhkl be the normal vector for the plane (hkl).

⋄ Then σhkl · [uvw] = 0 if the hkl plane belongs to [uvw] zone

⋄ For cubic (and only for a cubic) unit cell σhkl = c[hkl] →hu+ kv + lw = 0

⋄ [010] is the zone axis for (001), (100), (102), (102̄) planes in Fig. 4.9.

102

100

001

021

010
210

Figure 4.9: Habit with labeled planes. What is the cubic point group?
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4 CRYSTAL LATTICES 4.2 Lattices

4.2 Lattices

A crystal structure is a periodic array of repeated, identical objects, i.e. 7’s,
atoms, molecules, ions, etc. Each object (or motif) has identical surroundings.
Periodicity is generated by translation symmetry operators t1,t2, t3. A crystal
structure is a lattice plus a set of atoms identically assigned to each lattice point.

The entire infinite array of objects can be described by giving the structure within
the unit cell and by giving t⃗1, t⃗2, t⃗3, which defines the infinite lattice by their linear
combination n1t1 + n2t2 + n3t3.

1-D t1 (a)
2-D t1, t2 (a,b)
3-D t1, t2, t3 (a,b,c)

Table 2: Translation symmetry operators.

Figure 4.10: 2D periodic array of 7’s defined by a single 7 at the origin and repeated
by the linear combination of translation symmetry operators n1t1 + n2t2, where
coefficients n1 and n2 are integers.

Lattice points are an imaginary set of periodic points that make up the vertices of
a unit cell and are translated to create an array pertaining to the crystal’s structure.
Each lattice point has identical surroundings.

2-D →Plane Lattice

3-D →Space Lattice

There are five possible plane lattices, or ways to arrange points in two-dimensional
space, such that each has identical surroundings. The five plane lattices, shown
in Figure 4.11, include the oblique P -lattice, rectangular P -lattice, rectangular C -
lattice, square P -lattice, and hexagonal P -lattice.
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4 CRYSTAL LATTICES 4.2 Lattices

Figure 4.11: The five plane lattices are shown on the left side. An example of a
plane group belonging to each plane lattice is shown on the right. (Hammond Fig.
2.4 [? ])

b

a

Figure 4.12: The Rectangular-C plane lattice is described by a non-primitive unit
cell with 2 lattice points per unit cell: one at the corners (shared by 4 surrounding
unit cells) and one at the center. The primitive unit cell for this lattice (diamond) is
also shown with a1 = a2 and γ ̸= 90◦.
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4 CRYSTAL LATTICES 4.2 Lattices

Azaroff International Tables
Parallelogram Oblique p
Rectangular Rectangular P
Diamond Rectangular C
Triangular Hexagonal P
Square Square P

Table 3: Two different naming conventions for the five 2D plane lattices

The five types of plane lattices are grouped into four axial systems.

Oblique 1 a ̸= b γ ̸= 90◦

Rectangular m a ̸= b γ = 90◦

Hexagonal 3 a = b γ = 120◦

Square 4 a = b γ = 90◦

Table 4: Four axial systems for 2D lattices, along with their minimal symmetry
requirements and lattice vector conditions.

Note: Only 1,2,3,4,6 are consistent with translation symmetry.

4.2.1 Unit cell

A unit cell is defined as a small region of space chosen to represent a lattice. For
2D lattices, it is defined by cell edges a, b. The repeated translation of the cell by
a, b generates the infinite lattice.

b

a

Figure 4.13: Unit cell edges

A primitive unit cell has one lattice point per cell and uses the smallest possible
area to represent the lattice. A non-primitive unit cell, such as the rectangular-c
unit cell in two dimensions, contains more than one lattice point within the unit
cell and is conventionally and conveniently chosen to emphasize the symmetry of
the lattice.

4.2.2 Plane Groups

Two-dimensional point symmetry is combined with two-dimensional translation
symmetry to create a plane group, as shown in Figure 4.14.
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4 CRYSTAL LATTICES 4.2 Lattices

A · t = B (4.2)

7
p3

Figure 4.14: 3-fold and hexagonal translation operators are combined to create the
p3 plane group. Using these symmetry operators, place the other 7s into this figure.
Now look for additional point symmetry elements and draw them in as well.

There are 17 such plane groups from which any two-dimensional periodic pattern
may be classified. The shorthand names of these plane groups, as shown in Figure
4.15 below, are generated by the following scheme: the “1” represents no symmetry
other than translation symmetry, the integers indicate the type of rotational sym-
metry, the ”m” indicates the presence of a mirror plane and the “g” stands for glide
symmetry. Glide symmetry is a hybrid symmetry resulting from the combination
of a mirror reflection followed by a translation along the mirror line direction. The
first image in Figure 4.16 demonstrates a familiar mirror plane symmetry, with R’s
reflected across the solid lines, while the second image shows reflection with one
R translated half a lattice spacing down. The dashed lines in the second image
indicate a special type of symmetry known as a reflection glide or a glide line of
symmetry. The glide lines give this pattern a translational form of symmetry along
the lattice rather than a simple reflection. In crystal structures, this shift in glide
symmetry would only be observable in an electron microscope, which allows for ob-
servation of distances of the order of 0.5–2 Å (50–200 pm). Lastly, note that 3-fold
symmetry axes do not exist in oblique, rectangular, or square lattices.
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pure
rotations

rotation &
reflection

pure 
reflections

p1: 1-fold

p2: 2-fold

pm: mirror

pg: glide

pmm: 2 mirrorsp3: 3-fold p3m1

p31m

pmg

pggp4mp4: four-fold

p4g cm

cmm

Centered cells:

p6mp6: 6-fold

Figure 4.15: 17 Plane Groups. Any 2D periodic patterns can be classified as one of
these.

Northwestern—Materials Science and Engineering 29



4 CRYSTAL LATTICES 4.3 Example Graphene

RR

RR

RRRR

RR

RR

 m m m

R

R R

R

RR

R

R

RR

R

R

g g g

Figure 4.16: Mirror Plane and Glide Symmetry in the pm plane group at the top
and the pg plane group at the bottom

4.3 Example Graphene

2D Crystal Structure

Figure 4.17: Ball-and-stick model of graphene, showing sp2 bonded carbons in a
honeycomb pattern. Identify the 2D unit cell, symmetry operators, plane lattice, and
plane group.
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4 CRYSTAL LATTICES 4.3 Example Graphene

4.3.1 Space Lattices or Bravais Lattices

Points in 3-D space can be arranged such that each has identical surroundings in
14 ways. These are divided into 7 Crystal Systems.

Crystal System Lattice Types
Triclinic P a ̸= b ̸= c α ̸= β ̸= γ

Monoclinic P,C a ̸= b ̸= c α = γ = 90◦ ̸= β
Orthorhombic P,I,F,C a ̸= b ̸= c α = β = γ = 90◦

Tetragonal P,I a = b ̸= c α = β = γ = 90◦

Trigonal P,R a = b = c α = β = γ ̸= 90◦

Hexagonal P a = b ̸= c α = β = 90◦; γ = 120◦

Cubic P,I,F a = b = c α = β = γ = 90◦

P: Primitive (1/cell) I:Body-Centered (2/cell) C: Base Centered (2/cell)
F: Face Centered (4/cell) R:Rhombohedral pattern in Hex. Cell (3/cell)

Table 5: 7 Crystal Systems. The number of lattice points per unit cell is listed at
the bottom.

4.3.2 Positions Within the Unit Cell

The origin of a unit cell is arbitrarily chosen. By convention, it is the highest
symmetry point. The position of any point in the unit cell is given by fractional
translations along the a⃗, b⃗, and c⃗ directions, written with no parentheses. Table 6
notes the positions of lattice points using this scheme.

Translation to an identical point is achieved by applying the translation symmetry
operator: t = n1a+ n2b+ n3c , where ni is an integer.

Figure 4.18: Possible locations for origin of unit cell for a square lattice

Body Centered I 000; 1
2
1
2
1
2

C-Centered C 000; 1
2
1
20

Face Centered 000+fct F 000; 1
2
1
20;

1
20

1
2 ; 0

1
2
1
2

Table 6: Lattice Point locations for non-primitive unit cells

4.3.3 Hexagonal Close-Packed Structure HCP

⋄ At room temperature Zn, Mg, or Be have an HCP crystal structure.
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4 CRYSTAL LATTICES 4.3 Example Graphene

Note that the HCP structure has two atoms per hexagonal-P unit cell ( or two atoms
per lattice point). The 000 and 1

3
2
3
1
2 points do not have equivalent surroundings;

therefore, only the 000 point qualifies as a lattice point.

000

Figure 4.19: c-axis projection of HCP . The atom (red dot) at the origin is also
a lattice point. The red dots located in the center of the equilateral triangles and
halfway up the c-axis are not at lattice points.

4.3.4 Rhombohedral (Hexagonal)

The Hex-R lattice can be described by a primitive or by a non-primitive unit cell.

For a Rhombohedral Primitive Cell:

⋄ 1 lattice point per unit cell at 000

For a Hexagonal R Non-Primitive Unit Cell:

⋄ 3 lattice points per unit cell at 000, 2
3
1
3
1
3 ,

1
3
2
3
2
3

Figure 4.20: Hexagonal R Non-Primitive Unit Cell

Counting Lattice Points: 1 corner point per unit cell at 000, since 8 corners are
shared with 8 neighboring unit cells.
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a

a

a

SIMPLE
CUBIC(P)

a

a

a

a

a

a

BODY-CENTERED
    CUBIC(l)

FACE-CENTERED
    CUBIC(F)

a
a

c

a

a

c

a

b

c

b
a

c

   SIMPLE
TETRAGONAL
     (P)

BODY-CENTERED
 TETRAGONAL
       (l)

    SIMPLE
ORTHORHOMBIC
      (P)

BODY-CENTERED
ORTHORHOMBIC
       (l)

BASE-CENTERED
ORTHORHOMBIC
     (C)

FACE-CENTERED
ORTHORHOMBIC
       (F)

c

a a
120o

a
a

a

a
a
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RHOMBOHEDRAL
       (R)
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     (P)

c b

a

c
b

a
a

b

c

   SIMPLE
MONOCLINIC (P)

BASE-CENTERED
MONOCLINIC (C)

TRICLINIC (P)

Figure 4.21: 14 Bravais Lattices. Based on Cullity and Stock (Ref. [? ]).
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5 STER. PROJECTIONS

5 Stereographic Projections

Recall the regular octahedron illustrated in Figure 5.1 exhibiting the m3̄m point
group symmetry.

Figure 5.1: Octahedron - Cubic Crystal System

How did we position the symmetry rotation axes and mirror planes in the 2D
projection of the m3̄m point group shown in Fig. 5.2?

Figure 5.2: Stereographic Projection of the regular octahedron’s symmetry ele-
ments, which corresponds to the m3̄m point group.

5.1 Poles on the Reference Sphere

Stereographic projections are a two-dimensional graphical representation of the
directions of crystal planes in a three-dimensional crystal. Stereographic projections
allow for easy visualization of crystallographic features and determination of the
angle separating any two crystallographic directions. Looking at Figure 5.3, the
normal to the (hkl) plane of the unit cell at the center of the sphere, (σhkl), intersects
the reference sphere at the hkl pole.
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5 STER. PROJECTIONS 5.1 Poles on the Reference Sphere

Figure 5.3: A cube at the center of a reference sphere. The ((100)) faces of the
cube have surface normals that intersect the sphere at poles labeled 010, etc..

Consider that all hkl planes pass through the center of the reference sphere, such
as the two planes shown in Fig. 5.4. Their two surface normals form poles P1

and P2. The two planes, when extended, intersect the reference sphere to form
two great circles traces. The angle α between the two planes and their respective
surface normals can be measured on the surface of the reference sphere by measuring
the angle between their two traces (Angle-True). Or better yet, by measuring the
partial great circle arc length between poles P1 and P2. The center of a great
circle coincides with the center of the reference sphere. All other circles on the
reference sphere are referred to as small circles. In geography, the equator and
longitudinal lines (meridians) are examples of great circles. The latitudinal lines
(except the equator) are examples of small circles.

Figure 5.4: Reference Sphere with two planes passing through its center separated
by angle α. Also shown are the traces, normal vectors, and poles P1 and P2 for the
two planes.

Rather than awkwardly measuring angles between planes on the surface of the
sphere, we employ an equiangular stereographic projection. Geographers, by the
way, use an equal-area projection.
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5.2 Projection Plane

Figure 5.5 demonstrates how a stereographic projection is constructed.

⋄ Start with a plane at the center ”C” of the reference sphere.

⋄ A point of projection ”B” is selected on the reference sphere.

⋄ The projection plane is constructed perpendicular to diameter BCA, tangent
to the sphere at point ”A”.

⋄ The normal to the plane forms pole ”P” on the reference sphere.

⋄ The projection of pole P forms line BPP’, which intersects the projection
plane at point P’.

⋄

Note the projections of the great circles.

⋄ The projection of N E S W = N’ E’ S’ W’ , which is the basic circle. All
projected poles lie within this basic circle.

⋄ The projection of W A E B = W’ A’ E’.

⋄ The projection of N A S B = N’ A’ S’.

Figure 5.5: Projections onto the projection plane from poles on the reference sphere.
Copied from Cullity and Stock Fig. 2-30. [? ]

5.3 Wulff Net

A Wulff Net is used to make angle measurements on the projection plane between
planes using their projected poles from the reference sphere. Referring to Fig. 5.6,
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the Wulff Net has a circular outer perimeter directly corresponding to the NESW
basic circle shown in Fig. 5.5. The projections of other great circles appear as the
EW equator and a set of longitudinal lines in 2◦ increments. Starting from the
center of the Wulff Net and moving laterally outward, the angles increase from 0◦

to 90◦. Angles between poles are measured along great circles (longitudinal lines,
basic circle, or equator). The horizontal arcs are projections of small circles in 2◦

increments.

To find the angle between two planes, rotate the projection around until both poles
lie on the same great circle, as shown in Figure 5.6.

Pole P1 at 20◦N, 30◦E
Pole P2 at 30◦S, 40◦E

Rotate until both poles lie on the same great circle→ 50◦ angle between the planes

Figure 5.6: Wulff Net

5.3.1 Cubic System StereoGrams

Figure 5.7 illustrates the (001), (110), and (111) stereographic projections of cubic
system poles for low-indexed (hkl) planes superimposed on Wulff nets. That is,
the pole at point A in Fig. 5.5 is the (001), (110), and (111) for these three
standard projections. Looking at the stereograms, you can use the Wulff net mesh
to determine the angles separating two hkl planes whose projected poles lie on the
projection of a great circle that aligns with a longitude or the equator of the Wulff
net. For example, from the leftmost stereogram, you should be able to estimate
that the angle between the (001) and (101) planes is 45◦ and between (111) and
(101) is 35.3◦. To use the Wulff net to measure the angle between two poles whose
projections do not coincide with a longitude or equator, simply rotate the Wulff net
about its central axis until both poles lie on the same longitude or on the equator.
This follows the principle that arcs measured along a great circle of the reference
sphere are angle-true.

Recall that for the cubic system (and only for the cubic system),
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⋄ The normal vector to the (hkl) plane, σhkl = c[hkl] = ha + kb + lc.

⋄ For the cubic system, a, b, and c are mutually orthogonal and a=b=c.

⋄ Therefore the angle α between two planes (h1k1l1) and (h2k2l2) is:

α = ArcCos[
h1h2 + k1k2 + l1l2√

(h21 + k21 + l21)(h
2
2 + k22 + l22)

]

THIS FORMULA, based on the vector dot product, IS ONLY TRUE
FOR CUBIC SYSTEMS. In the next section, we will introduce the reciprocal
lattice, which will allow us to use vector algebra to compute the angle between two
planes in any crystallographic system.

As shown in Fig. 5.7 , the [uvw] zone has (hkl) planes whose normals σhkl are
perpendicular to [uvw]. These normals lie in a plane whose intersection with the
reference sphere forms a trace. Looking at the middle stereogram, locate the projec-
tion of the (111) pole. The (111) plane, which is perpendicular to this pole direction,
intersects the reference sphere to form a trace whose projection is the great circle
that intersects the projections of the poles whose planes belong to the [111] zone.
These include the (11̄0), (101̄), (011̄), and (1̄10), which belong to the [111] zone.

Figure 5.7: Standard (001), (110), and (111) projections of cubic crystal, generated
by SingleCrystal Software. The lines in these stereographic projections represent
zones whose hkl poles are mutually perpendicular to a [uvw] zone axis. By inspection,
locate the Zone Axes for each of the Zones. For example, on the leftmost stereogram,
you can see that [100] is the zone axis for the (010), (011), (001), (01̄1), and (01̄0)
planes.

5.4 Vector Representation of Periodic (hkl) Planes

In addition to describing the direction of an (hkl) crystal plane, we also need to
describe the spatial periodicity of a set of planes in a given direction. This peri-
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odicity will be referred to as the interplanar spacing or diffraction plane spacing,
or d-spacing, (dhkl). To do this, we will use vectors, where the vector direction is
perpendicular to the set of (hkl) periodic planes, and the vector length is used to
represent the d-spacing.

We can satisfy these two conditions for a set of (hkl) planes in a cubic system
by defining a vector d̄hkl

with a direction [uvw] = [hkl]

and a length equal to the cubic d-spacing dhkl =
a√

h2+k2+l2
.

This is illustrated in Figure 5.8 for the cubic (110) and (220) planes.

(110) planes

(220) planes

000

1/2 1/2
0

Figure 5.8: Edge-on view of (110) and (220) planes in a cubic system.

The magnitude of d̄hkl for the (110) and (220) planes:

d110 = a√
2

d220 = a
2
√
2

The direction of d̄hkl is [hkl] = hā1 + kā2 + lā3.

ā2

ā1

0 ā2

ā1

0

Figure 5.9: Defining vector d̄hkl for a cubic system.
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Unfortunately, this scheme only works for cubic.

Try orthorhombic, α = β = γ = 90◦

(110) planes

[110]

Figure 5.10: Orthorhombic example showing that the [110] direction is not perpen-
dicular to the (110) planes.

For the orthorhombic case, the [110] vector is not perpendicular to the (110) planes.
Therefore, the above definition of vector d̄hkl does not work in this case for defining
the periodic (hkl) planes.

We need a vector representation of the (hkl) planes that works for all axial systems,
not just cubic. This can be achieved in reciprocal space, where the spatial fre-
quency of each set of hkl planes is represented by a reciprocal space vector. Note
that just as temporal frequency has units of 1/(sec), spatial frequency has units of
1/(Å).

5.5 Reciprocal Lattice Concept

Any (hkl) set of diffraction planes will be represented by a reciprocal lattice point
whose coordinate is hkl, such that:

1. The vector r*hkl, which starts at the origin 000 and ends at hkl, will be normal
to the (hkl) planes.

2. The distance from the origin to hkl, |r*hkl| = 1/dhkl, where dhkl is the inter-
planar spacing

Consider a monoclinic crystal with a = 4Å, b = 3Å, c = 6Å, and γ = 70◦. Show the
hkl reciprocal lattice points 000, 100, and 010 in relation to direct space axes a and
b.
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b

a

000 100

010

Figure 5.11: Reciprocal lattice points for a monoclinic crystal. The c⃗ axis is per-
pendicular to the plane of the page. Note the placement of the reciprocal lattice
origin 000 is arbitrary. The direction of r*100 that extends from 000 to 100 must be
perpendicular to b and c, since by definition it is perpendicular to the (100) planes.
While the length of r*100 is arbitrary, the ratio of the lengths is not arbitrary. In this

case
r⃗∗100
r⃗∗010

= b
a
.

Construct a hk0 reciprocal space lattice corresponding to the (hkl) planes belonging
to the [001] zone.

Figure 5.12: A portion of the hk0 reciprocal lattice in relation to direct space axes
a and b. As prescribed, the red vector, r*210 , is perpendicular to the (210) plane.

The reciprocal lattice, which is a 3D vector representation of the direction and
d-spacing of hkl periodic planes, works for any crystal system. As we will see later,
a diffraction pattern from a crystal will be directly related to its reciprocal space
lattice.

For any lattice in direct space defined by basis vectors ā,b̄, c̄, there is a set of
reciprocal space axes ā∗, b̄∗, c̄∗, as shown in Figure 5.13, with directions and lengths
determined by ā,b̄, c̄.
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5 STER. PROJECTIONS 5.5 Reciprocal Lattice Concept

Figure 5.13: The reciprocal space axes in relation to the direct space axes that
define them.

The following equations define the reciprocal space axes a*, b*, and c* for a given
set of direct space axes a,b, and c.

ā∗ =
b̄× c̄

ā · (b̄× c̄)

b̄∗ =
c̄× ā

b̄ · (c̄× ā)

c̄∗ =
ā× b̄

c̄ · (ā× b̄)

Note that:

⋄ ā∗⊥ bc plane, b̄∗⊥ ac plane, and c̄∗⊥ ab plane

⋄ ā∗ · b̄ = 0, ā∗ · c̄ = 0, b̄∗ · ā = 0, b̄∗ · c̄ = 0, c̄∗ · ā = 0, c̄∗ · b̄ = 0

⋄ ā · (b̄× c̄) = b̄ · (c̄× ā) = c̄ · (ā× b̄) = V =Volume of unit cell

⋄ ā∗ · ā = 1, b̄∗ · b̄ = 1, c̄∗ · c̄ = 1 Reciprocal Relationship

Special Case: α = β = 90◦

For α = β = 90◦(i.e., all but triclinic or rhombohedral)

Figure 5.14: Special Case (α = β = 90◦)
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c̄∗ ∥ c̄

γ∗ = 180◦ − γ

Figure 5.15: Special Case (α = β = 90◦)

γ = 90◦ − γ∗ + 90◦ − γ∗ + γ∗

γ = 180◦ − γ∗

5.5.1 Cartesian axial system

For α = β = γ = 90◦ →Cartesian axial system. Namely, Cubic, tetragonal, or
orthorhombic

ā∗ ∥ ā, b̄∗ ∥ b̄, c̄∗ ∥ c̄

And...

∣∣b̄× c̄∣∣ = bc

|ā · b̄× c̄| = abc = V

|ā∗| = | b̄× c̄
ā · b̄× c̄

| = bc

abc
=

1

a

a∗ =
1

a
, b∗ =

1

b
, c∗ =

1

c

...hence “reciprocal.”
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5.6 Use of Reciprocal Lattice Vectors

The reciprocal lattice vector extends in reciprocal space from the origin 000 to the
reciprocal lattice point hkl and is perpendicular to the corresponding (hkl) planes.
The set of all such hkl points corresponds to the reciprocal lattice. These vectors
have units of 1/length, so a larger vector indicates smaller spacing between planes.

r*hkl = ha⃗∗ + k⃗b∗ + lc⃗∗

Note: Hammond - r*hkl = d∗
hkl Cullity - r*hkl = Hhkl

The following examples show applications of reciprocal lattice vectors in determining
inter-planar relationships.

1. Find the inter-planar angle ϕ between planes (h1k1l1) and (h2k2l2)

i.e., find the angle between reciprocal lattice vectors r⃗∗1 and r⃗∗2 .

cos(ϕ) =
r̄∗1 ·r̄

∗
2

r∗1r
∗
2

, where r∗n = |r⃗∗n| =
√
r̄∗n · r̄∗n

r̄∗1 · r̄∗2 = (h1ā
∗ + k1b̄

∗ + l1c̄
∗) · (h2ā∗ + k2b̄

∗ + l2c̄
∗)

= h1h2a
∗2 + k1k2b

∗2 + l1l2c
∗2 + (h1k2 + k1h2)ā

∗ · b̄∗ + (h1l2 + l1h2)ā
∗ · c̄∗ +

(k1l2 + l1k2)b̄
∗ · c̄∗

Note: ā∗ · b̄∗ = a∗b∗ cos(γ∗), etc.

Example: Find the angle between (111) and (110) in the cube.

cos(ϕ) =
r̄∗111· r̄

∗
110

r∗111r
∗
110

= (1+1+0)a∗2
√
3a∗
√
2a∗ = 2√

6
⇒ ϕ = 35.26◦

Figure 5.16: Angle between (111) and (110) in cubic unit cell.

2. Find the zone axis for two intersecting planes (h1k1l1) and (h2k2l2).

Miller indices: If you need a refresher on Miller indices, the Wikipedia
page (https://en.wikipedia.org/wiki/Miller index) is very helpful. Here, we
include a reminder of the notation used to indicate planes and directions.
⋄ Specific planes: We use round brackets - (hkℓ)
⋄ Class of planes: To indicate all planes that are crystallographically

identical, we use curly brackets - {hkℓ}
⋄ Specific direction: We use square brackets - [hkℓ]
⋄ Class of directions: To indicate all directions that are crystallo-
graphically identical, we use angle brackets - ⟨hkℓ⟩
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z̄ = [uvw] = uā+ vb̄+ wc̄

Since r̄∗hkl⊥ (hkl) plane, r̄∗hkl⊥ z̄ for any (hkl) belonging to the zone z̄

z̄ · r̄1∗ = uh1 + vk1 + wl1 = 0

z̄ · r̄2∗ = uh2 + vk2 + wl2 = 0

Solve simultaneous equations for u, v, w

u = k1l2 − l1k2
v = l1h2 − h1l2
w = h1k2 − k1h2

2 equations and 3 unknowns → uvw determined to within a scale factor

Example: What is the zone axis (or edge formed by) for (1̄10) and (010)?

u = (1)(0)− (0)(1) = 0

v = (0)(0)− (−1)(0) = 0

w = (−1)(1)− (1)(0) = −1

z̄ = [uvw] = [001̄] or [001] = c̄−axis

Equivalent to doing vector cross-product:

r̄∗1̄10 × r̄∗010

Figure 5.17: Zone axis for (1̄10) & (010)

3. Find d-spacing dhkl

Use |r̄∗hkl| = r∗hkl =
1

dhkl

dhkl =⊥ distance between 2 ‖ planes with intercept differences = a
h ,

b
k ,

c
l

r∗hkl =
√
r̄∗hkl · r̄∗hkl
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r∗2hkl = h2a∗2 + k2b∗2 + l2c∗2 + 2hkā∗ · b̄∗ + 2hlā∗ · c̄∗ + 2klb̄∗ · c̄∗

For α = β = γ = 90◦ , ā∗ · b̄∗ = ā∗ · c̄∗ = b̄∗ · c̄∗ = 0

(100) planes

Figure 5.18: d100 spacing

Note: ā∗ · b̄∗ = a∗b∗ cos(γ∗)

For Orthorhombic - dhkl =
1

rhkl∗ =
1

(h
2

a2
+ k2

b2
+ l2

c2
)1/2

For Cubic - dhkl =
a

(h2+k2+l2)

Monoclinic

(α = β = 90◦) a = 4Å, b = 3Å, c = 6Å, γ = 70◦

r⃗∗100 = a∗ = 1
d100
̸= 1

4Å
d100 = a∗−1 a∗ =? ̸= 1

a since γ ̸= 90◦

Use ā∗ · a = 1→ a · a cos(π2 − γ) = 1

a∗ = 1
a sin(γ) =

0.250
0.94 = 0.266Å−1 ∴ d100 = a sin(γ) = 3.759Å ̸= 4Å

Likewise, b∗ = 1
b sin(γ) =

0.333
0.94 = 0.355Å−1 ∴ d010 = b sin(γ) = 2.819Å.

100000

a

b

010

Figure 5.19: Monoclinic d100 spacing. The green lines are an edge-on view of the
(100) planes. The red lines are for the (010) planes.

Note: For monoclinic, a∗
b∗ = b

a c∗ = 1
c = 1

6 Å
−1 since c̄ ∥ c̄∗

4. For every Direct Space Lattice, there is a uniquely defined Recip-
rocal Space Lattice.
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(220) (010)

(110) planes

(100)(200)

Direct Space

Ortho-P

100

200 210

110

220

120

020010000

Reciprocal Space

Figure 5.20: Direct vs Reciprocal Space for Ortho-P. Both lattices are Ortho-P
with an inverted aspect ratio. Namely, a∗

b∗ = b
a
.

(200)

(220)

Direct Space
Monoclinic-P

000
010

110

020

220

10
0

200

Reciprocal Space

Figure 5.21: Direct vs. Reciprocal Space for Monoclinic-P. Both are Monoclinic-P
with a∗

b∗ = b
a
.

5. Cell axis transformations (primitive →non-primitive)

e.g. Rhombohedral (α = β = γ = 60◦) →FCC

an

bn

cn

c0

b0

a0

Figure 5.22: FCC lattice with outlined in green rhombohedral-P unit cell axes ā0,
b̄0, and c̄0 .
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Let the old rhombohedral unit cell axes be ā0, b̄0, c̄0

The new FCC unit cell axes ān, b̄n, c̄n are related to the old by the following
three linear equations:

ān = u1ā0 + v1b̄0 + w1c̄0

b̄n = u2ā0 + v2b̄0 + w2c̄0

c̄n = u3ā0 + v3b̄0 + w3c̄0

In matrix form, this is written as:ānb̄n
c̄n

 =

u1 v1 w1

u2 v2 w2

u3 v3 w3

ā0b̄0
c̄0


Matrix of transformation

By inspection of Fig. 5.22, we see that the FCC basis vectors are linear com-
binations of the rhombohedral basis vectors as follows:

ān = ā0 + b̄0 − c̄0
b̄n = −ā0 + b̄0 + c̄0

c̄n = ā0 − b̄0 + c̄0

Transformation Matrix:

 1 1 −1
−1 1 1
1 −1 1


The Determinant of this transformation matrix is∣∣∣∣∣∣
1 1 −1
−1 1 1
1 −1 1

∣∣∣∣∣∣ = 4 → Vn = 4V0

The determinant value corresponds to the fact that the FCC non-primitive
unit cell has 4 lattice points per unit cell and, therefore, has four times the
volume of the rhombohedral unit cell.

We can also use this formalism for transforming (h0k0l0)←→(hnknln).

Since the inter-planar spacing and direction are the same, a particular set of
planes will have equivalent reciprocal lattice vectors: r̄∗h0k0l0

= r̄∗hnknln .

h0ā
∗
0 + k0b̄

∗
0 + l0c̄

∗
0 = hnā

∗
n + k0b̄

∗
n + lnc̄

∗
n

take dot product with ān = u1ā0 + v1b̄0 + w1c̄0

(u1ā0 + v1b̄0 + w1c̄0) · (hnā∗n + k0b̄
∗
n + lnc̄

∗
n) = hn

hn = u1h0 + v1k0 + w1l0
kn = u2h0 + v2k0 + w2l0
ln = u3h0 + v3k0 + w3l0

→

hnkn
ln

 =

u1 v1 w1

u2 v2 w2

u3 v3 w3

h0k0
l0
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Therefore, the same transformation matrix that was used for the axes is also used
for the indices.

Old Rhombohedral →New FCC example

hnkn
ln

 =

 1 1 −1
−1 1 1
1 −1 1

h0k0
l0


hn = h0 + k0 − l0
kn = −h0 + k0 + l0
ln = h0 − k0 + l0

Note that hn + kn = 2k0, is an even integer and kn + ln = 2l0, is also an even
integer.

Therefore, hn, kn, ln must all be even or must all be odd integers. i.e., FCC
reciprocal lattice points have ”unmixed” hkl Miller indices.

an

bn

cn

c0

b0

a0

Figure 5.23: Rhombohedral indexed (110) plane in an FCC lattice.

Let’s put this transformation matrix to work on the purple plane drawn in Fig.
5.23. Based on the plane’s intercepts with the rhombohedral axes, (h0k0l0) = (110).
Transformation of the (110) plane in the rhombohedral structure to its (hkl) in the
face-centered cubic structure.

(110)R = (???)FCC →

hnkn
ln

 =

 1 1 −1
−1 1 1
1 −1 1

1
1
0

 = (200)

This checks out, since the plane intercepts the FCC a-axis at 1
2 and is parallel to

both the b and c axes.
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In Figure 5.24 below, a non-primitive orthorhombic-C unit cell is illustrated, with
the c-axis pointing out of the page. The transformation of its lattice from direct
space to reciprocal space is shown in Figure 5.25. Notice that the a* and b* axes
only reach halfway to the first lattice point in their respective directions. This is
due to the organization of lattice planes in the a and b directions of the direct
space. For instance, going vertically in the a direction of Figure 5.24, the first set
of planes appears halfway between the lattice spacing. The planes that follow in
this a direction appear at the same spacing. Thus, this set of (200) planes within
the Orthorhombic-C unit cell can represent the fundamental period of planes in
the a direction. The same analysis can be done in the b direction, yielding the
(020) fundamental period of planes. From this, the first point in the reciprocal

space appears at 200 in the a⃗∗ direction and 020 in the b⃗∗ direction. Note that in
the c direction, which is not shown, the first plane is found at (001), due to the
base-centered structure.

a

b

Figure 5.24: Orthorhombic-C

Figure 5.25: Reciprocal Lattice l=0 layer

Note that the original, direct space lattice and the reciprocal space lattice have
a similar shape, with an inverted aspect ratio in the reciprocal lattice. Further-
more, they are both base-centered and have a similar primitive unit cell, which
is monoclinic. The missing base-centered reciprocal lattice points (e.g., 010, 100,
210, etc.) result from using a non-primitive unit cell in direct space for the trans-
formation. Had the primitive cell been used, all allowed reciprocal lattice points,
corresponding to allowed (hkl) Bragg diffraction planes, would be present. Anytime
a non-primative unit cell is used to describe the lattice, there will be missing hkl
reciprocal lattice points.

A c-axis projection of the FCC unit cell showing the a and b axes is illustrated in
Figure 5.26 below. The filled circles represent the lattice points in the plane of the
paper, and the open circles with the 1

2 label represent lattice points half a lattice
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spacing above the plane. The dashed lines indicate the set of (110) planes within
this unit cell. The transformation from the FCC direct space lattice to reciprocal
space generates a BCC lattice, as shown in Figure 5.27, and vice versa. Note that
the (100) planes are missing since the fundamental period of planes is (200) in the
a direction. This reasoning can be applied to other missing reciprocal space points,
using the fundamental period of planes in the direct space FCC lattice.

1/2

1/2

1/2

1/2

b

a

11
0

Figure 5.26: FCC unit cell lattice points

002
022

222

111

020

220200

000

Figure 5.27: Reciprocal Lattice - hkl unmixed (all even or all odd)
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6 Representative Crystal Structures

When discussing 2D symmetry in Chapter 4, we found that the 5 plane lattices
can be combined with point symmetry operators (plus glide) to produce a total
of 17 plane groups. Perhaps more to the point, any 2D periodic pattern found or
produced in our universe can be described by one of these 17 plane groups. In
3D, there are 14 Bravais lattices that, when combined with the 32 point symmetry
groups, can only produce a list of 230 possible space groups from which all 3D
crystals can be described.

6.1 Crystal Structure Examples

For 3D crystal structures, an identical atom or a fixed arrangement of atoms (ions,
molecules) is found at each Bravais lattice point. This could be 1000’s of atoms,
such as in a protein crystal. We will start simple with one or two atoms per lattice
point.

For the case of one atom per lattice point, we can look at the simple metal crystal
structures of body-centered cubic (BCC) (space group: Im3̄m) shown in Fig. 6.1
and face-centered cubic (FCC) (space group: Fm3̄m) shown in Fig. 6.2. One
can find the crystal structures for each element online at www.webelements.com.
There, you will find that solid argon is also FCC and that polonium (Po) is the only
element with a cubic-P crystal structure Pm3̄m.

Figure 6.1: Body-centered cubic (BCC or cubic-I) crystal structure with one atom
per lattice point. Examples of BCC metals include: α− Fe, Cr, Mo, V, and W. The
number of nearest neighbors or coordination number CN = 8.

Figure 6.2: Face-centered cubic (FCC or cubic-F) crystal structure with one atom
per lattice point. Examples of FCC metals include: γ−Fe, Cu, Pb, Ni, Au, Pt, and
Ag. CN = 12.

Unlike the examples in Figures 6.1 and 6.2, the hexagonal close-packed structure
has two identical atoms per lattice point. These two atoms are considered to be the
motif or repeating object within the hexagonal-P lattice.
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6 CRYSTAL STRUCTURES 6.1 Crystal Structure Examples

Figure 6.3 shows four different representations of a hexagonal close-packed structure
with two hexagonal close-packed structure atoms per unit cell - one atom at 000
and one atom at 2

3
1
3
1
2or

1
3
2
3
1
2 . The atoms in Figure 6.3(b) correspond to the nine

atoms illustrated in Figure 6.3(a). The association of two atoms with a single lattice
point is represented by the dashed lines connecting the pairs. Furthermore, (c) and
(d) show more of a hexagonal representation of the HCP atomic structure with the
stacking of atomic planes in a periodic arrangement.

c

(a) (b)

(c) (d)

Figure 6.3: Hexagonal close-packed (HCP) crystal structure (Space Group
P63/mmc) with two identical atoms per hexagonal-P lattice site. Examples of HCP
metals include: Zn, Mg, Zr, Ti, and Be. CN = 12.

The FCC crystal structure is as close-packed as the HCP structure, though its
relation to the HCP structure is not immediately apparent. Figure 6.4 demonstrates
the stacking of FCC (111) planes in a hexagonal pattern, similar to the (0002) HCP
planes stacking. One distinction between the two is that the HCP layer stacking
occurs in an ABAB pattern in the c̄ or [001] direction, and the layer stacking for
FCC occurs in an ABCABC pattern in the [111] directions. This is illustrated in
Figures 6.5 and 6.7 below.

A

B

C

[111]

(111)

A

Figure 6.4: Face-centered cubic (111) planes.
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A

A A

A

AA

A

C
B

C
B

C

B

Figure 6.5: Stacking of (111) planes in FCC.

A

B

A

[001]

(0002)

Figure 6.6: Hexagonal close-packed planes.

A A

A

AA

A A
B B

B

Figure 6.7: Stacking of (0002) planes in HCP.

There are other examples of crystal structures with two atoms per lattice point. The
first example, shown in Figure 6.8, is the diamond crystal structure seen in other
atoms besides carbon, such as silicon and germanium. In the examples following
Figure 6.8, compounds consisting of two unlike atoms follow unique arrangement
characteristics. For instance, if a compound’s structure consists of atoms A and B,
the structure of A atoms must possess the same symmetry elements of the crystal
as a whole. Namely, a symmetry operation characteristic of the entire crystal,
when performed on a given A atom, must bring it into coincidence with another A
atom. Furthermore, body-centering, face-centering, and base-centering translations,
if present, should begin and end on like atoms. An example of this is detailed above
in Figure 6.11.
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6 CRYSTAL STRUCTURES 6.1 Crystal Structure Examples

Diamond Structure

Example: C, Si, Ge

4 C atoms at 000 + face-center translations (fct)

4 C at 1
4
1
4
1
4 + fct

C

Figure 6.8: The Diamond crystal structure (Space Group Fd3̄m) has an atom at
each FCC lattice site plus a second same type atom displaced by 1

4
1
4

1
4
from each FCC

lattice site.

Zinc Blend

The face-centered cubic zinc blend structure in Fig. 6.9 can be likened to the
diamond structure in Figure 6.8 above, but the atoms at 000+fct (S) are now
different from those at the second set of positions - 1

4
1
4
1
4 + fct (Zn).

Example: GaAs, ZnS

4 S at 000+fct

4 Zn at 1
4
1
4
1
4 + fct

Figure 6.9: The Zinc Blend crystal structure (Space Group F 4̄3m) has an atom
at each FCC lattice site plus a second different type of atom displaced by 1

4
1
4

1
4
from

each FCC lattice site.
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6 CRYSTAL STRUCTURES 6.2 Voids in FCC

The CsCl structure illustrated in Figure 6.10 below is common to compounds
such as CsBr, NiAl, ordered β − brass, and ordered CuPd. Though it appears to
be a body-centered cubic structure at first glance, the body-centering translation
1
2
1
2
1
2 connects two unlike atoms rather than the required self-coincidence of a single

atomic element. Therefore, the structure is simple cubic (Cubic-P), and one may
think of the Cs+ cation at 000 and the Cl− anion at 1

2
1
2
1
2 as being related to the

single lattice point at 000.

Figure 6.10: CsCl structure (Space Group Pm3̄m) is Cubic-P

In the NaCl or rock salt crystal structure of Figure 6.11 below, the sodium cations
are at FCC sites. When face-centering translations are applied to the chlorine anions
( 12

1
2
1
2 ) , all chlorine atom positions are mapped. In addition, a 90◦rotation about

the fourfold rotation axis at [010] brings the chlorine atoms into self-coincidence.

[010]

Figure 6.11: NaCl (common to KCl, CaSe, PbTe,etc.)

6.2 Voids in FCC

The simple metal FCC structure shown in Fig. 6.2 has two types of voids: octa-
hedral and tetrahedral voids that naturally arise from the arrangement of atoms in
its crystal lattice.

Octahedral voids are located at 1
2
1
2
1
2+fct in the FCC structure. There is one

located at the center of the unit cell and one at the center of each of the unit cell
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edges. Since there are twelve edges and each edge is shared with four other unit
cells, this yields three edge octahedral voids per unit cell, in addition to the one
at the center. Thus, there are a total of four octahedral voids per unit cell. The
space labeled “A” in Figure 6.12 is an octahedral hole in the structure, which is
surrounded by 6 sulfur atoms. In Figure 6.11, note that Cl−in NaCl is octahedrally
surrounded by Na+.

The Zn atom at 3
4
3
4
1
4 , marked “B” in Figure6.12, is surrounded by four S atoms at

the corners of a tetrahedron. This is known as a tetrahedral void in the structure,
as the Zn atom is surrounded by a tetrahedral structure of sulfur atoms. In the
zinc blend structure, as well as in other FCC-structured crystals, there are a total
of eight tetrahedral voids per unit cell. For the zinc blend structure, however, only
half of these tetrahedral sites are occupied by Zn atoms, which is illustrated more
clearly in Figure 6.9.

Figure 6.12: Portion of the zinc blend structure

6.3 Atomic Sizes and Coordination

When picturing atoms within a crystal structure, atoms in ionic or metallic crystals
have non-directional bonding and can be represented by a simplified hard sphere
structure, with atomic spheres in direct contact with one another. For a monoatomic
metal, the maximized packing of equal-sized spheres leads to close-packing HCP
or FCC with CN=12. For an AB ionic compound crystal, the packing of two
different-sized spheres of opposite charge leads to CN = 8, 6, or 4, depending on
the disparity of the spherical sizes. This number of nearest neighbors (coordination
number or CN) is specific to a given crystal structure. The radius of a given
atomic element is generally considered to be constant regardless of conditions such
as phase or presence in a solution. The size of an atom may also be deduced from its
coordination number (CN), or number of nearest neighbors specific to its crystal
structure. The Cs and Cl atoms in the simple cubic structure, for instance, have a
coordination number of 8, as shown below. Ex.: CsCl

Structure - Cubic P (not BCC)

Cs+at 000 →CN=8

Cl−at 1
2
1
2
1
2 → CN=8
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6 CRYSTAL STRUCTURES 6.3 Atomic Sizes and Coordination

Figure 6.13: CsCl

Using the hard sphere model for atoms, along with the placement of atoms in the
unit cell of a given structure and known atomic radii, the lattice constant of a
crystal structure may be determined. The following procedure demonstrates the
evaluation of the lattice constant “a” in CsCl using known ionic radii:

rCs+ = 1.69Å rCl− = 1.81Å

The body diagonal of a cube =
√
3a = 2rCs+ + 2rCl−

and therefore a = 2√
3
(rCs+ + rCl−) = 4.04Å.

Note that the nearest neighbors experience an attractive force due to their opposite
charges, and the second-nearest neighbors experience a repulsive force due to their
like charges. Therefore, if the two ionic sizes become more disparate than those of
CsCl, then the packing changes to a NaCl structure. NaCl structure:

4 Na+at 000 + fct CN=6 (octahedral surroundings)

4 Cl−at 1
2
1
2
1
2+ fct CN=6 (octahedral surroundings)

fct ≡face-center translations ≡{(000), ( 12
1
20), (

1
20

1
2 ), (0

1
2
1
2 )}

rNa+ = 0.95Å rCl− = 1.81Å

If the NaCl structure were like “CsCl” structure,

then a = 2√
3
(rNa+ + rCl−) = 3.19Å

Therefore, the NaCl CN=8 structure would not bond since the Cl−-Cl−distance
a = 3.19Å < 2rCl− = 3.62Å

In other words, for the CN=8 CsCl structure, the distance of the required lattice
parameter would be greater than the available distance of two radii of the larger
ions that make up the lattice parameter “a”. Thus, there is a critical or minimum
radius ratio for which cation–anion contact is established in the CsCl structure.

a > 2r>, where r> =radius of larger ion & r< =radius of smaller ion

∴ Limit a = 2r> → 2√
3
(r< + r>) = 2r>

Radius Ratio ≡ r<
r>

=
√
3− 1 = 0.732
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6 CRYSTAL STRUCTURES 6.3 Atomic Sizes and Coordination

This radius ratio rule is different for various crystal structures, as shown in Table 7
below. Deviation from the radius ratio rule indicates a shift from ionic to covalent
bonding. Ex. Zinc blend structure: rZn2+ = 0.6Å rS2− = 1.80Å → r<

r>
< 0.33

Table 7: Radius Ratio Rules
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6 CRYSTAL STRUCTURES 6.3 Atomic Sizes and Coordination

Figure 6.14: Close-packed structure

What about HCP and FCC close-packed structures? For the HCP structures, the
coordination number is 12. An ionic crystal cannot have this coordination number
because there would be an equal number of anions and cations surrounding each
ion.
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7 DIFFRACTION

7 Introduction to Diffraction

Since the early 20th century, the experimental method of X-ray diffraction from
crystals has played a crucial role in determining crystal structures. This section
will outline the essential concepts of X-ray diffraction, including the properties of
X-rays and Braggs’ Law.

7.1 X-ray

An X-ray is an electromagnetic wave, similar to light, but of a much shorter wave-
length. As illustrated in Figure 7.1 below, an X-ray plane wave with wavelength
λ traveling in direction (i.e., k⃗) has an electric field (Ē) perpendicular to its prop-
agation direction and a magnetic field (H̄) perpendicular to its electric field. A
plane wave has a constant phase within a plane perpendicular to the propagation
direction, labeled as the Poynting vector S in Figure 7.1. The magnetic field will
be ignored within this text because it has a much weaker interaction with matter.

Figure 7.1: Frozen-in-time electromagnetic wave with oscillating E-field perpendic-
ular to magnetic field.

The following equation models the oscillation of the electric field in space and time
as a transverse plane wave traveling in the x-direction, with an amplitude of Ē0

that has the E-field Ē polarized in the y-direction:

Ē = Ē0 cos[
2π
λ (x− vt)], where λ = wavelength,v=velocity traveling in x-direction

Let Ē0 = E0ĵ

After a time, t has elapsed, the wave has been phase shifted to the right by x′ = vt.

7.2 Interference

Interference occurs when two or more coherent, or same wavelength, waves are
superimposed. If two interfering waves are in phase, then constructive interference
occurs, as illustrated in Figure 7.2. The superposition of two identical traveling
waves that are out of phase, as shown in Figure 7.3, produces a null vector.
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7 DIFFRACTION 7.2 Interference

Figure 7.2: Constructive interference between 2 identical traveling waves that are
perfectly in-phase.

-1

1

0 X

-1

1

0 X

0 X+

Figure 7.3: Complete destructive interference occurs by the superposition of two
identical traveling waves that are perfectly out-of-phase.

(1800) Young’s two-slit experiment

Young’s two-slit experiment, as illustrated in Figure 7.4 below, is a classic example
of the interference of light waves and resulting diffraction patterns.

Figure 7.4: Young’s two-slit experiment.

In Young’s experiment, a plane light wave of wavelength λ traveling to the right
with an “in-phase” wavefront parallel to the grating produces two coherent circular
waves emanating from the 2 slits at A and B. The two waves will add up in phase
at point P on a screen if the path length difference, s = BD , is an integer multiple
of the wavelength λ.

s = d sin θ = nλ → interference maxima at y
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7 DIFFRACTION 7.3 X-ray Diffraction History

To produce an interference fringe pattern of dark, destructive interference and bright
constructive interference spots, d ≈ λ

If d < λ, sin θ = nλ
d > 1→ impossible

If d >> λ, sin θ = λ
d → too small to separate n=1 max. from the direct beam

Note that Young’s 2-slit experiment proved that light was a wave. Ein-
stein later proved that light could also act as a quantum particle. This
mysterious wave-particle duality principle is observed over the entire
spectrum of electromagnetic radiation.

7.3 X-ray Diffraction History

In 1912, Max von Laue, a young Assistant Professor in Munich, was inspired by
the PhD thesis work of Ewald, who was working in the Sommerfeld Lab at the
University of Munich. Ewald’s thesis derived the theoretical expressions describing
the scattering of waves from a periodic array of dipole oscillators. Laue realized that
Ewald’s discovery was directly related to the scattering of waves from a crystal’s
periodic structure and collaborated with Friedrich and Rongten’s (discoverer of X-
rays) student Knipping to explore this idea. Their experiment demonstrated an
X-ray diffraction pattern from a crystal and proved that X-rays were waves with a
wavelength on the order of a d-spacing within a crystal.

Later that same year, W.L. Bragg, excited by the Laue discovery, worked with his
father to develop a simpler picture to explain X-ray diffraction.

7.4 How does X-ray diffraction work?

First, consider the reflection of a plane wave from a plane of atoms, as represented
by a horizontal line in Figure 7.5. Note that the atoms do not have to be evenly
spaced within the plane.

A B

C D

w
av
e

fr
on
t

Figure 7.5: Reflection from a plane of atoms

A plane wave is represented by rays 1 & 2 in phase at AC in Figure 7.5, and also
reflecting in phase. The path length difference of rays 1-1’ and rays 2-2’ is equal if
and only if AD = BC, and by trigonometry, this can only occur when the incident
angle is equal to the outgoing angle.

Since path lengths will be equal for all rays under this specular reflection condition,
constructive interference will occur when the outgoing angle equals the angle of
incidence. This is known as the Law of Reflection.

AD = CB → θi = θo
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7 DIFFRACTION 7.4 How does X-ray diffraction work?

Conversely, if θo ̸= θi the sum of all waves cancels each other out to produce
destructive interference.

Scattering from two planes

Second, consider the reflection from a set of equally spaced atom planes as illustrated
in 7.6.

A

B D

C

d

1

2

Figure 7.6: Reflection from a set of equally spaced atom planes

We use the Law of Reflection and some high school geometry to realize that

BC = CD = d sin θ. (7.1)

Here, we would like to know when the scattering from both planes will result in
constructive interference. If the path difference, δ=BCD of rays 1 and 2, is equal to
an integer multiple of the wavelength (nλ , where n is an integer), then the scattered
waves 1’ & 2’ are in-phase at yy.’ If the angle of incidence were tilted down slightly,
then the waves would no longer be in phase, and the conditions would no longer
allow for constructive interference. Applying the geometric relationship below yields
Braggs’ law. This states the essential condition necessary for diffraction to occur.

nλ = 2d sin θ (7.2)

n- order of reflection, number of wavelengths in the path difference between rays
scattered by adjacent planes

If θ is slightly different from the Bragg condition, each successive ray 1’,2’,3’,...will
be slightly phase-shifted with respect to the previous ray as illustrated in Figure
7.7. The amplitudes of the waves would sum to zero since every plane will have
another plane at some depth, which will scatter out of phase by 180◦.

Figure 7.7: Successive phase shifts of reflected rays when θi ̸= θB = Sin−1(nλ
2d

) .
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What about the “n” in nλ = 2d sin θ?

The “n” value, or order of reflection, may take on any integral value as long as sinθ
does not exceed one in Braggs’ law equation. For fixed values of d and λ, various
n values (n=1,2,3...) correspond to different angles of incidence (θ = θ1, θ2, θ3...) at
which diffraction may occur.

For a first-order reflection (n=1) the path length and phase difference of the scat-
tered waves 1’ and 2’ in Figure 7.6 would differ by one wavelength. For a second-
order reflection (n=2) the path length and phase difference of the scattered rays
would differ by two wavelengths. Thus, the waves scattered by all the planes of
atoms are completely in phase, leading to constructive interference.

1st order n=1 →δ = λ between consecutive planes spaced by “d”

2nd order n = 2 →δ = 2λ between consecutive planes spaced by “d”

Another way of looking at the reflection order:

λ = 2 d
n sin θ d

n = dhkl
n = dnhnknl

where hkl corresponds to the 1st order or fundamental reflection planes. Thus, the
Bragg equation may be rearranged in the following form, in which the “n” term is
dropped, and the dhkl does not need to be the lowest set of indices for a given plane
(i.e., dhkl=110,220, etc.):

λ = 2dhkl sin θ or λ = 2d sin θhkl

If the diffracted intensity is plotted as a function of sinθ, peaks corresponding to
crystallographic planes will be visible as shown in Figure 7.8.

100 200 300
I

Figure 7.8: Diffracted intensity

Now, consider diffraction from NaCl (111), for which a two-dimensional represen-
tation is shown in Figure 7.9 below.
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7 DIFFRACTION 7.4 How does X-ray diffraction work?

Figure 7.9: Bragg diffraction from the (111) planes of a NaCl crystal, where the
alternating Na and Cl planes are equally spaced and scattering counter phase to each
other.

The (111) diffraction condition (θ = θ111) allows for constructive interference from
the 1’ and 3’ waves and the 2’ and 4’ waves, as their path length difference measures
exactly one wavelength. Note that rays 1’&3’ fromNa+are in phase with each other,
but 180◦out of phase with rays 2’&4’ from Cl−.

If Na and Cl were equal in scattering strength, then this would lead to complete
destructive interference and 0 intensity. Due to the number of electrons in the two
atomic species, which are the primary source of scattering in atoms, the scattering
strength is not equal. Therefore, a small diffraction intensity peak will be observed
for θ = θ111 as shown in Figure 7.10.

For θ = θ222, the overall path length becomes longer and all rays 1’,2’,3’,4’ from
all planes Na+and Cl−are in phase. This leads to constructive interference and
higher intensity peaks shown in Figure 7.10. Note that this is a simplified model,
which solely accounts for the path length difference effect in scattering from different
planes that are not identical to each other. Other effects will be discussed later in
the text.

111

222

333

444
I

Figure 7.10: NaCl diffraction peaks

Observing the Bragg angles tells us about unit cell dimensions, namely the d-spacing
between planes, which can be used to derive the lattice constant. Furthermore,
observing relative intensities as shown in the NaCl structure for different θhkl tells us
about the structure within the unit cell. Namely, there was a pair of ions (Na+and
Cl−) associated with an FCC lattice point.

On the other hand, for a simple FCC metal, the (111),(333), ... peaks would not
have been weak.
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Hint: Look for weak and absent reflections to determine the atomic arrangement
within the unit cell.

7.5 Absent (or forbidden) Reflections

Figure 7.11 below shows a side-view projection of the (100) planes in a simple FCC
metal. The white circles represent atoms that are half a lattice spacing out of the
plane of the page.

1/2

1/2 1/2

1/2

C-axis projection

Figure 7.11: The (100) Bragg diffraction condition from an FCC metal crystal.

The plane of atoms halfway between the (100)-marked planes will scatter at 180◦out
of phase, canceling out the waves reflecting at the (100) planes. Therefore, the
θ = θ100 Bragg diffraction condition leads to perfect destructive interference, and
the (100) reflection is absent or not allowed. For simple cubic, the atoms halfway
between the planes would not be present. However, at the (200) Bragg condition,
all (200) planes scatter in phase, and the (200) reflection would be observed. This
reinforces the fact that in an FCC structure, the following conditions are true:

⋄ (200), (400), (600),etc. allowed.

⋄ (100), (300), (500),etc. forbidden

⋄ ∴hkl all even or hkl all odd (unmixed) for FCC

How would Bragg diffraction show that a crystal is cubic? i.e., not orthorhombic

Realize that for the cubic structure, the following relationship between the d-spacing
of the (110) and (100) planes is true: sin θ100

sin θ110
= d110

d100
= 1√

2
.

By determining the reflection angle for the (100) and (110) planes and then taking
the ratio of the sines, the cubic structure can be confirmed if it is equal to 1√

2
.

This same procedure may be used to determine if a crystal structure is FCC. Since
(110) and (100) are forbidden for FCC, then (220) and (200) can be used instead.
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8 Absorption/Emission

8.1 Spectrometers

The following three X-ray sources will be discussed in this text:

⋄ X-ray tube e.g., Cu target

⋄ Radioactive Source e.g., Fe55

⋄ Synchrotron e.g., e−storage ring

An X-ray tube contains three vital components: a source of electrons, a high voltage
to accelerate these electrons, and a metal target on which these highly accelerated
electrons will collide. Figure 8.1(a) below illustrates the cross-section of an X-ray
tube. This consists of an evacuated glass casing that insulates the anode at one
end from the cathode. The cathode is a tungsten filament, and the anode is a
water-cooled block of copper that also contains the desired target metal at one end
(Cu, Mo, Cr, Ag, or W). A lead of the high-voltage transformer, detailed in Figure
8.1(b) is connected to the filament and the other to the ground. The anode target
is grounded. In operation, the filament is heated with a current and emits electrons
(thermal emission) that are accelerated to the target via the electrostatic potential.
Around the filament is a metal focusing cup, which is kept at a high negative voltage
close to that of the filament and tends to focus the electrons on a focal spot on the
target. X-rays are emitted from this focal spot in all directions and escape through
the beryllium window in the tube.

(b)

Figure 8.1: (a) Schematic cross-sectional view of an X-ray tube. (b) Electrical
circuitry for passing current through W filament that is held at a high negative
potential. Copied from Cullity and Stock Ref. [? ]

.

Figure 8.2, below illustrates an X-ray radiation spectrum produced by an X-ray
tube source.

Figure 8.2: X-ray radiation spectrum from an X-ray tube.
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8.2 Bremsstrahlung Radiation

Bremsstrahlung radiation is the continuous smooth part of the X-ray spectrum
from an X-ray tube shown in Figure 8.2. This occurs due to the deceleration or
braking of electrons in the target. The acceleration (or deceleration) of any charge
q, an electron in this case, generates electromagnetic radiation.

Figure 8.3 illustrates a charge q, with acceleration in the ā direction. If you look in
the α direction relative to its acceleration vector, you will observe electromagnetic
radiation at point P, whose distance from charged particle q is indicated by r̄. The
electric field vector Ē of this radiation points in the transverse direction to the
propagation direction r̄. The following formula yields the magnitude of the electric
field generated by the accelerated charge:

|Ē| = qasinα

4πϵ0c2r
(8.1)

The following relationships for the electric field also hold true:

⋄ Ē ⊥ r̄ (transverse wave)

⋄ Ē ⊥ (ā× r̄)

Figure 8.3: Radiation from an accelerated charge

In the case of X-ray tube Bremsstrahlung radiation, the electrons are accelerated
from the tungsten filament cathode to the grounded anode. Electrons accelerating in
the negative z̄ direction as illustrated in Figure 8.4 create an azimuthally symmetric
dipole radiation field. In Figure 8.4, the angle θ is the complement of the angle α in
Figure 8.3. Note that the magnitude of r̄ does not change, and θ is the factor that
affects the intensity of the generated Ē field. Because the intensity is proportional to
the magnitude of the electric field squared, it is also proportional to sin2 α or cos2 θ.
This is consistent with what is observed in Figure 8.4 and the three-dimensional
representation in Figure 8.5, since the intensity at a minimum when when θ is 90◦

and at a maximum when θ goes to 0◦.

0.2

0.4
0.6

0.8

1.0

anode

Figure 8.4: Intensity of Ē field with varying θ. There is a node in the X-ray radiation
field along the azimuthal z-axis. The maximum lies in the xy plane.

Northwestern—Materials Science and Engineering 69



8 ABSORPTION/EMISSION 8.3 Synchrotron Radiation

Figure 8.5: Azimuthally symmetric cos2θ dipole radiation field.

sinα = cos θ

I ∝ |Ē|2 ∝ cos2 θ

Max intensity ⊥ ẑ

8.3 Synchrotron Radiation

Synchrotron radiation occurs when electrons are accelerated in a curved path
by a magnetic field. The electron experiences centripetal acceleration in the ra-
dial direction, producing a dipole radiation pattern of the same toroidal shape as
illustrated in Figures 8.4 and 8.5. The minimum intensity is observed in the radial
direction and maximized perpendicular. However, there is an extreme relativistic
effect due to the electron’s speed being nearly up to the speed of light, such that
the dipole radiation field is distorted in the lab frame of reference, creating an ex-
tremely narrow cone of radiation in the forward direction of the electron’s tangential
velocity.

Figure 8.6: (A) Dipole radiation field due to centripetal acceleration of a charged
particle. (B) Relativistic effect on dipole radiation field.

Recall that Bremsstrahlung radiation is white, or polychromatic, radiation resulting
from decelerating electrons following inelastic collisions with target atoms. The
kinetic energy analysis of this process is as follows:

The maximum energy loss is the electron’s kinetic energy (KE) at the vacuum-target
interface when the electron loses all of its energy from one inelastic collision.

∆EMax = KEe− = 1
2mv

2 = hv = hc
λ

This maximum photon energy for Bremsstrahlung radiation, by the de Broglie rela-
tionship hc

λ , is directly related to the minimum wavelength generated by the X-ray
tube. Note that this is a maximum case, and the range of energies will be anywhere
from this maximum value to zero. This maximum kinetic energy is, therefore,
directly related to the set potential of the X-ray tube, as shown below.

KE [keV] = V [kV]
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I.e., if the X-ray tube high voltage, HV = 50 kV →Max photon energy = 50 keV

The maximum photon energy in the continuous Bremsstrahlung spectrum will show
50 keV at its maximum, along with lower values.

de Broglie wavelength relationship: λ = hc
E → λ[Å] = 12.40

E[keV ]→short wavelength

limit λSWL[Å] =
12.40
V [kV ]

Therefore, the Bremsstrahlung spectrum will contain a continuum of wavelengths
showing an intensity pattern and a short wavelength limit (SWL) corresponding
to the maximum available energy. This is because wavelength and energy are in-
versely proportional. Figure 8.7 below shows a radiation spectrum from a copper
X-ray tube for various set potentials (25 kV, 20 kV, 15 kV, etc.). The smooth
curve indicates the continuous or Bremsstrahlung radiation curve, with the short
wavelength limit (SWL) corresponding to the leftmost point on a given curve. The
spikes are indicative of characteristic radiation, which will be discussed next.

Figure 8.7: Bremsstrahlung radiation spectrum from Cu tube at different high
voltage settings. Copied from Cullity and Stock Ref. [? ]

Note: for V=20 kV →λSWL = 0.62Å

The integrated intensity, or area under the curves in Figure 8.7, is proportional to
the voltage of the X-ray cubed multiplied by the atomic number of the target and
the current through the filament. Therefore, since each X-ray tube is rated for a
given maximum power (e.g., 3 kW), one would typically increase the voltage rather
than the current to maximize the integrated intensity.

I∝V 3Ztargeti

The following is a log-scale comparison of the spectra from different synchrotrons.
Notice the Bremsstrahlung spectrum near the bottom of the plot.
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Figure 8.8: On-Axis Brilliance vs Photon Energy (KeV) for various synchrotron
sources compared to an X-ray tube spectrum. Copied from Cullity and Stock Ref. [?
]

8.4 Characteristic Spectrum

Raising the voltage on an X-ray tube above a certain critical value for a given target
metal yields sharp, narrow intensity peaks, or fluorescent lines superimposed
on the continuous radiation spectrum. The characteristic spectrum consists of
several of these fluorescent lines (i.e., K, L, M, etc.) that are specific to the target in
use. For fluorescent lines from the target to occur, the electron beam must possess
enough kinetic energy to overcome the binding energy of an inner core electron and
knock it out of its atom. The transition of a higher energy electron to fill this hole
results in the production of an X-ray, which is characteristic of the given target
element. Figure 8.9 illustrates these fluorescent peaks on a continuous background
radiation spectrum for a copper target sample at 30 kV.

For fluorescence: KEe− = eV ≥WK(or≥WL)

where KEe− is electron energy & Wk orWLis the binding energy of target
electrons.

Typically, the K fluorescence lines comprised of Kα1, Kα2 and Kβ1 are useful in
X-ray diffraction because of the much higher intensity in these peaks compared to
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the Bremsstrahlung background. The Kα1 and Kα2 lines, referred to as the Kα
doublet, have very close wavelengths and are sometimes treated as a single line. In
addition, the subscript in the Kβ1 is usually dropped. The K indicates the principal
quantum number ”n” of the 1s hole that is being filled by the transition of an outer
electron to fill this hole. A useful diagram of the electron energy states for copper
is shown in Figure 8.10, with different principal energy levels (n=1=K and n=2=L)
followed by an integer number that indicates the sub-shell within a given energy
level (i.e., L1, L2, etc.). When an electron in the K shell is knocked out, the ion
is left in a high-energy state. icates the sub-shell within a given energy level (i.e.,
L1, L2, etc.). When an electron in the K shell is knocked out, the ion is left in a
high-energy state. This target metal atom (ion) transitions to its ground state when
a higher-energy electron, such as one from the L shell or the M shell, drops down to
fill the 1s core hole. Filling a K hole with an L-shell electron is more probable than
filling it with an M-shell electron, thereby yielding a higher Kα (corresponding to
the L shell transition) intensity peak relative to the Kβ (corresponding to the M
shell transition) intensity peak. Note that the K X-ray fluoresc

Figure 8.9: Cu characteristic spectrum at 30 kV. Note that the short wavelength
limit is at 0.4 Å due to this 30 keV accelerated electron beam.

In Figure 8.9 above, note that the intensity of the Kα peak is one hundred times
stronger than the background radiation curve. Furthermore, the Kα doublet differ
in intensity by a factor of two, and the Kα1and Kβ1 differ by approximately a
factor of five.

IKα
ICont

≈ 100

IKα1

IKα2
= 2

IKα1

IKβ1
≊ 5

The arrows in Figure 8.10 below demonstrate the Kα1 Kα2 and Kβ1 transitions,
with their lengths representing the difference in the energies of the two states. This
energy difference also equals the energy of the outgoing fluorescent photon. Note
that an arrow does not go from the 1s to the 2s electron energy state. Because the
electron originally in the 1s state has an orbital angular momentum of l = 0 and the
angular momentum of the photon is 1, the transition needs to be a p to s to conserve
angular momentum. The 1s and 2s states do not differ in angular momentum by 1,
thus the transition has a very low probability for producing fluorescent radiation.

Northwestern—Materials Science and Engineering 73



8 ABSORPTION/EMISSION 8.4 Characteristic Spectrum

M3
M2
M1

L3
L2
L1

K

0.075 keV
0.077
0.12

0.93 keV
0.95
1.10

8.98 keV

Figure 8.10: Copper electron energy levels showing a K hole, which can transition
to the L3, or L2, or M3 level to produce a Kα1, Kα2, or Kβ1 XRF photon.

Note that in Figure 8.10, there are twice the number of electrons in the L3 state
than in the L2 state. Due to this, the Kα1 electron transition from the L3 energy
level to the K energy level is twice as likely to occur as the Kα2 transition from
the L2 energy state to the K energy state. This is consistent with the double
intensity of the Kα1 fluorescence peak relative to the Kα2 fluorescence peak shown
above. The following calculations based on the conservation of energy determine
the characteristic Kα and Kβ fluorescence energies for a copper target and their
corresponding wavelengths:

Eγ λ

EKα1
=WK −WL3

= 8.05keV, 1.540Å

EKα2 =WK −WL2 = 8.03keV, 1.544Å

EKβ1 =WK −WM3 = 8.19keV, 1.392Å

(λ = hc
E → λ[Å] = 12.4

E[keV ] )

A measured X-ray spectrum from a Mo rotating anode is shown in Fig. 8.11.

Figure 8.11: X-ray spectrum from a Mo rotating anode operating at 50 KV and 40
mA that was collected by a θ − 2θ scan of a Si(220) monochromator crystal. The W
L XRF lines between 7.5 and 12 keV are due to a surface layer of W deposited on
the Mo surface of the anode from the W filament. These can be removed by surface
polishing.
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8.5 Auger Effect

TheAuger effect is a non-radiative process that competes with the radiative X-ray
emission process to fill an inner electron-hole (core hole). Rather than producing a
photon, this process ejects an electron known as an Auger electron. An energy
level diagram for Auger electron emission from a copper atom is illustrated in Figure
8.12. This process involves three discrete electron energy levels: the first is the K
energy level of the core hole, the second is the L1 or higher energy level from
which an electron drops down to fill the K-hole, and the last is the L3 energy level
from which the Auger electron is emitted. Based on energy conservation, the kinetic
energy of the Auger electron, therefore, is equal to the difference between its binding
energy and the energy difference between the L1 and K energy levels involved in
the filling of the electron-hole.

Energy analysis, where Ee is the energy of the Auger electron:

Ee =WK −WL1 −WL3

L3

L2

L1

K

Figure 8.12: Cu KL1L3 Auger process.

Ee = 8.98− 1.10− 0.93 = 6.95keV

Recall that the Auger effect and radiative fluorescence are two processes that com-
pete to fill a K-electron hole. If the fluorescence yield, or the probability of filling
a K-electron hole via X-ray emission, is ωk, then the probability of filling an elec-
tron K-hole via the Auger effect is 1− ωk. This Auger emission probability is very
high for a low atomic number. For germanium with atomic number 32, there is an
equal probability of filling the 1s or K electron-hole by either the non-radiative or
radiative processes. Elements with an atomic number lower than germanium (i.e.,
Z<32) will favor the Auger effect over a radiative process for filling a K hole.

Fluorescence yield: ωk= probability for K hole being filled by radiative process

K Auger Probability = 1 - ωk

The curve labeled “K” in Figure 8.13 below shows this relationship, in which a
higher atomic number corresponds to a higher fluorescence yield probability for
filling a K hole. The L-hole electron fluorescence probability is also shown in this
diagram as the line labeled “L.”
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Figure 8.13: Fluorescence yield vs atomic number

Note that because electrons cannot travel through air very easily like X-rays, the
Auger spectrometer is located inside a vacuum chamber. Furthermore, Auger
electron spectroscopy is much more surface-sensitive than X-ray fluorescence spec-
troscopy. Auger electron spectroscopy is primarily used as a surface science tech-
nique, where, for example, it can be used to determine the level of surface contam-
ination by low-Z elements like C and O down to a level of 0.01 monolayers.

8.6 Radioactive Source

Besides X-ray tubes and synchrotrons, another X-ray source comes from radioactive
isotopes such as Fe55, which exhibits a high probability of undergoing electron
capture. In this nuclear process, a proton in the nucleus combines with the 1s
electron, creating a neutron and a neutrino.

p+ e− → n+ ν (neutron + neutrino)

Notice the conservation of charge, baryon number, and lepton number in this pro-
cess. The atomic species is now manganese with an electron hole in its K energy
level. Following this, the manganese can emit a Kα1 XRF photon in filling the K
hole with an L3 level electron as shown in Figure 8.14. The observed XRF spectrum
will be characteristic of manganese.

Fe55 + e− → (Mn55) with K hole

↙↓↘

(Mn55) with L3 hole + Kα1 fluorescence

Example:

Fe55Electron Capture
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Figure 8.14: Kα fluorescence in manganese following Fe55 electron capture

Eγ =WK −WL3 = 5.90keV ← Kα1

The isotope Cd109 undergoes a similar process, whereby electron capture leads to its
conversion into Ag109, and characteristic fluorescence lines of Ag may be observed
by XRF spectroscopy.

Cd109 + e− → (Ag109)

8.7 X-ray Absorption

When X-rays pass through a material, part of the intensity is transmitted, and part
is absorbed. The attenuation of the incident X-ray intensity is directly related to
the traversed distance of the X-ray through the material. Referring to the diagram
in Figure 8.15, if an X-ray of incident intensity Io impinges on a slab of material
of known composition and passes through a distance dx, the fractional drop in the
transmitted intensity −dIx/I is proportional to this fractional distance traversed.

Iabsorbed = Io − Ix
Io= incident intensity

Ix= transmitted intensity

X

Figure 8.15: Drop in X-ray intensity over distance x through material

The constant of proportionality relating the absorbed intensity to the distance tra-
versed is µ, or the linear absorption coefficient.

In differential form: −dII = µdx , µ= linear absorption coefficient∫ Ix
I0

dI
I = −

∫ x

0
µdx→ ln(Ix)− ln(I0) = −µx

Exponential Relationship:

Ix = I0e
−µx
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The plot in Figure 8.16 below shows this exponential relationship, in which the
incident intensity Ix decays at a rate of µ times the distance x through the material.

Figure 8.16: Transmitted intensity vs thickness traversed

The linear absorption coefficient is directly proportional to the density of the mate-
rial; thus, the quantity µ

ρ , called the mass absorption coefficient, is constant for

a given material regardless of its state of matter. The µ
ρ value for a given atom is

normally listed in tables rather than listing various µ values for various compounds
or elements and accounting for structure or density factors. Furthermore, the mass
absorption coefficient is a function of the atomic number of the element as well as
the energy of the X-ray. The energy dependence is because there is a critical energy
above which the X-rays can overcome the binding energy of the electrons in the
atoms of the material and emit a photoelectron. Thus, there is a much higher prob-
ability of X-ray absorption above this critical energy, leading to a higher µ value.
Furthermore, there is a certain distance at which the initial intensity I0 is divided
by a factor of e. This distance is equal to 1

µ , which is referred to as the absorption
length.

µ ∝ ρ→ µ
ρ constant of material, independent of state (solid, liquid, gas)

µ
ρ = f(Z,Eγ) ≡ mass absorption coefficient

µ−1= absorption length

For chemical compounds or mixtures, the mass absorption coefficient of the sub-
stance is the weighted average of the mass absorption coefficient of its constituent
elements. A general formula for this is shown below. As a useful example, the
mass absorption coefficient for air is calculated in Table 8, using tabulated mass
absorption coefficients of nitrogen, oxygen, and argon along with their respective
weight percents in air.

µ
ρ =

∑n
i=1 wi(

µ
ρ )i , wi=weight fraction

Mass absorption coefficient for mixture of n elements with individual weight
fractions, wi, and mass absorption coefficients, (µρ )i.

Example: Air = 76% N2 + 23% O2 + 1.3% Ar
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i wi (µρ )
cm2

g wi × (µρ )i

N2 0.76 7.14 5.53
O2 0.23 11.0 2.53
Ar 0.013 120.0 1.56

(C&S Appendix 8) 9.52cm2/g=(µ
ρ
)Air

@ STP ρAir = 0.0013g/cm3 , µAir = 0.0124cm−1, 1
µ = 81cm

Table 8: Calculation of the X-ray mass absorption coefficient in Air at Eγ=8.05 keV
(Cu Kα)

From these calculations, it is determined that a copper Kα (8.05 keV) X-ray beam
is attenuated to 1

e = 0.37 = Ix
I0

after traveling through 81 cm of air. Figures 8.17
and 8.18 below plot the linear absorption coefficients and X-ray transmission for
beryllium as a function of the photon energy. Recall that a thin beryllium foil is
used as an X-ray tube vacuum seal/window.

Figure 8.17: Beryllium linear absorption coefficient as a function of X-ray energy.
Used https ://henke.lbl.gov/optical constants/atten2.html to calculate 1/µ.

Figure 8.18: X-ray Transmission through a Be window of 0.1 and 1.0 mm in thick-
ness. Output from https ://henke.lbl.gov/optical constants/filter2.html.

Northwestern—Materials Science and Engineering 79



8 ABSORPTION/EMISSION 8.8 X-ray Transmission Filters

8.8 X-ray Transmission Filters

As previously shown, the spectrum from an X-ray tube yields several fluorescent
lines, such as the characteristic Kα and the Kβ. Some applications require that an
X-ray beam be monochromatic, so that the Kβ fluorescence is significantly reduced
compared to the Kα fluorescence. This more monochromatic spectrum may be
achieved by using a metal foil filter that preferentially reduces the intensity of the
Kβ in the X-ray spectrum compared to the Kα. Note that absorption filters cannot
be used to remove the unwanted Kα2 component from the Kα radiation. Figure
8.19 below shows a basic setup of a nickel foil filter used in a copper X-ray tube.

Figure 8.19: Ni foil filter and Cu X-ray tube

Transmission filters make use of the X-ray absorption edge of a particular element.
In the second plot of Figure 8.20 below, the absorption edge for nickel can be ob-
served. This discontinuity corresponds to the energy required to eject an inner core
electron from an atom of the filter material. At energies just below this edge, the µ

ρ
mass absorption coefficient is significantly less than the mass absorption coefficient
at energies slightly above the edge. This translates into higher transmission for
X-rays with energies below the absorption edge line on the energy axis. By this
process, the initial X-ray spectrum, plotted as Io at the top of the figure, undergoes
a significant reduction in the intensity of the Kβ line as shown in the final plot of
transmitted intensity, Ix. Note that the high-energy background radiation is also
significantly reduced in the final plot.
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Figure 8.20: How a Ni transmission filter affects the spectrum from a Cu anode
X-ray tube.

Recall the X-ray transmission intensity formula, Ix = I0e
−µx. For an 8 mil Ni Filter

(1 mil = 0.001”= 25.4µm), the intensity of theKα fluorescence is five hundred times
greater than the Kβ fluorescence. Recall that without a filter, the Kα transmitted
intensity was five times greater than theKβ intensity.

8 mil (0.8 mils = 20µm) Ni Filter: I(Kα)
I(Kβ) = 500

In general, a filter with an atomic number that is one less than the target metal in
the X-ray tube is used, and the thickness X is chosen such that IKα

IKβ
= 1

500 . This

Z-1 relationship is utilized so that the absorption edge lies just above the desired
Kα and below the Kβ to be filtered. The mass-absorption law Ix = I0e

−(µ/ρ)ρx

may be used to calculate the thickness of the filter.

Generally, use a Z − 1 filter:

Cu→Ni Filter

Ag→Pd Filter

Mo→Zr ←(Z-2)

A thicker filter will better suppress the Kβ component, but this will also result in
unwanted suppression of the Kα component. Thus, it is useful to follow the 1

500
intensity ratio.

Figure 8.21 below illustrates a general absorption spectrum for an atom by plotting
the log of the mass absorption coefficient against increasing energy. Note the pres-
ence of the absorption edge previously discussed, which is labeled as the “K-edge.”
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In addition to the K-edge, other discontinuity spikes corresponding to the L electron
shell binding energies are present. The location of the K-edge and its associated
K-branch, further to the right on the energy axis, is due to the fact that this is the
innermost electron shell and, therefore, has the highest binding energy for a given
atomic element.

The overall absorption, labeled
(

µ
ρ

)
tot

is equal to the addition of the absorption

from the different electron energy level branches, i.e.,
(

µ
ρ

)
K
,
(

µ
ρ

)
L1

, etc. Note

that
(

µ
ρ

)
i
increases as the cube of atomic number, Z, and decreases as 1/E3. For

instance, if the X-ray energy is increased from 10 keV to 20 keV, the X-ray ab-
sorption will decrease by an eighth if there are no edges between 10 and 20 keV.
Furthermore, if the atomic species Z is increased by a factor of two from, say, Mg to
Cr, then the mass absorption coefficient will increase by a factor of eight. Since the
mass absorption coefficient (µρ ) is inversely proportional to the cube of the energy, it
follows that it is directly proportional to the wavelength cubed. These relationships
are summarized in Figure 8.21 below.

Figure 8.21: An atomic X-ray absorption spectrum.

8.9 Photoelectric effect

X-ray absorption is dominated by the photoelectric effect. This quantum effect
has the atom ejecting one of its core electrons with a kinetic energy of

Ee− = hν −Wi,

where hν is the photon energy and Wi is the binding energy of the core electron.
Of course, as explained earlier and discovered by Einstein, this can occur only if
hν > Wi. The photoelectric effect for a K or 1s electron is illustrated in Figure 8.22
below.
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K

Figure 8.22: Photoelectric effect

In addition to the conservation of energy, the angular momentum in this process
is conserved. That is, the incident photon’s intrinsic angular momentum is l = 1,
the 1s electron’s angular momentum is 0, and when combined, produces an emitted
photoelectron with l = 1 angular momentum. As illustrated in Fig. 8.23, if the
polarization of the absorbed photon is along the z-axis, then conservation of angular
momentum as a vector causes the angular distribution of the emitted photoelectron
to be described by the pz quantum state. That is, there is a high probability that
the emitted electron will be detected along the z-axis and a minimal probability of
its emission in the xy-plane. This is observed with angle-resolved photoemission
studies of 1s electrons excited by linearly polarized X-rays.

Overall, the photon having angular momentum l = 1 leads to the dipole selection
rule for electronic transitions where ∆l = ±1.

Figure 8.23: Conservation of angular momentum as a vector quantity in the 1s
photoelectric effect.

8.10 X ray scattered by an electron

Classical Thomson scattering is a wave phenomenon in which an X-ray interacts
with an electron, causing an acceleration of the electron due to the X-ray’s oscillating
electric field. (The effect of the X-ray’s magnetic field on the electron’s acceleration
is negligible.) This idea is illustrated in Figure 8.24 below.

Figure 8.24: Thomson Scattering

As discussed earlier, for Bremsstrahlung and synchrotron radiation, the accelera-
tion of a charge generates electromagnetic radiation. The oscillating Ē field of the
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incoming X-ray is given by the equation: Ē0(t) = Ē0 cos[2π(x − vt)/λ]. The force
on this electron is given by its charge multiplied by the incident electric field.

F̄ = −eĒ = meā (8.2)

Therefore, the acceleration of the electron is given by the following equation:

ā(t) =
−eĒ0(t)

me
(8.3)

This oscillating electron emits electromagnetic radiation in all directions as a scat-
tered wave. The wavelength of this scattered wave λs is equal to the wavelength of
the incident X-ray wave λ0.Therefore, this type of scattering is coherent, or elastic.

Oscillating E-field Ē0(t) = Ē0 cos[2π(x− vt)/λ]

↓

Oscillating Charge Particle (e−)

↓

E-M Radiation (oscillating fields) λs = λ0

8.11 Theory for Radiation Generating by Accelerated
Charge

The electric field generated by an accelerated charge q at a given position R̄ away
from the charge is illustrated in Figure 8.25 below. The acceleration vector is
indicated as ā in the vertical direction, with the R̄ position being at angle α relative
to the charge q’s acceleration vector.

Figure 8.25: E-field at R̄ generated by the acceleration of charge q.

1. Direction of the electric field: Ē ⊥ R̄ and in-plane of R̄ and ā

2. Magnitude of the electric field: |Ē| = 1
4πϵ0

qa sinα
c2R = 1

4πϵ0
e2

mec2
E0 sinα

R Note

that the electric field weakens as you increase the distance R̄ from the charged
particle.

|Ē| = re
E0 sinα

R , where re = 2.818× 10−5Å is the Classical e−radius

re =
1

4πϵ0
e2

mec2

The classical Thomson scattering equation, as shown below, gives the intensity of
the scattered X-rays from the electron as the square of the magnitude of the electric
field generated by the oscillating electron. Note that the intensity is a maximum in
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the direction perpendicular to the acceleration α = 90◦ and is zeroed out along the
acceleration direction.

Ie ∝ |Ē|2 = E2
0

r2e
R2

sin2α (8.4)

Ie
I0

=
r2e
R2 sin

2 α

Ie ≡Intensity of scattered X-rays from one e−at R̄

I0 =Intensity of incident X-rays

I = c
4π |Ē|

2 ≡ [energy · area−1 · time−1]

Why do we ignore the Thomson scattering from the (charged) nucleus?

Relative to the scattering of electrons, the scattering intensity from protons in the
nucleus of an atom is negligible, as shown in the following ratio:

Ip
Ie

= (me

mp
)2 = 3× 10−7.
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9 Scattering

X-rays interact very weakly with matter compared to electron and ion beams, mak-
ing them the ideal angstrom wavelength probe for in situ atomic-scale structural
analysis of buried structures. We have already discussed the photoelectric effect
that leads to the absorption of an X-ray photon particle by an atom that becomes
ionized by emitting a core photoelectron. Now, we will discuss the wave-like prop-
erties of X-ray scattering from electrons that lead to interference effects sensitive
to the electron spatial distribution in materials. We will start with X-ray waves
scattering from a single electron, and then escalate to two electrons, then to an
electron ”wave-function” cloud surrounding an atomic nucleus, then to atoms posi-
tioned within a unit cell, to a small single crystal with many unit cells, and finally
to polycrystalline materials.

9.1 X-ray Scattering & Polarization

Consider an incident X-ray traveling in the x̂ direction and scattered from an elec-
tron ”e−” positioned at the origin “O” as shown in Figure 9.1 below. Since it is a
transverse-wave, the incident X-ray, propagating in direction ŝ0= x̂ , has an electric
field polarized in a direction that lies in the y-z plane. We can, therefore, decompose
this electric field Ē0 with two orthogonal vector components: one in the y-direction
(Ē0y) and one in the z-direction (Ē0z).

Ē0 = Eoy ŷ + Eoz ẑ (9.1)

Note that the scattering angle 2θ is the complement of the angle α used in the
Thomson scattering equation described at the end of the previous chapter and
illustrated in Figure ??. Keep in mind that E-fields are complex with amplitudes
and phases. See Appendix XXX for a mathematical review of complex functions.

Figure 9.1: Incident X-ray traveling in x̂ direction, scattering from an electron at
the origin, with the scattered X-ray traveling in the x-z scattering plane. The E-field
of the incident X-ray, Ē0, is separated into y and z components, Eoy and Eoz.
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For an unpolarized incident X-ray beam from an X-ray tube, each photon is polar-
ized in a fixed direction in the y-z plane. Still, on average, the electric field is taken
to be evenly distributed in the ŷ direction and in the ẑ direction. Thus, each vector
component equals half of the total electric field. Recall that the magnitude of the
field dotted with its complex conjugate is proportional to the intensity of the wave.

Io ∝ |Ē0 · Ē∗0 | = |Eoy|2 + |Eoz|2 (9.2)

For an unpolarized beam, it follows that the intensity of X-rays polarized in the ŷ
direction is equal to the intensity polarized in the ẑ direction and half of the total
intensity.

|Eoy|2 = |Eoz|2 =
1

2
|Eo|2 → Ioy = Ioz =

1

2
Io (9.3)

The following procedure determines the scattered intensity Ie at the position P in
the x-z scattering plane in Figure 9.1 above. Point P is displaced by r̄ from the
electron at O.

We first consider the σ polarization case, where the electric field is totally polar-
ized in the ŷ direction and, therefore, perpendicular to the x-z scattering plane.

Ē0 = Eoŷ (σ polarization case, Ē0 ⊥ scattering plane)

Here, α = π
2 , thus yielding maximum intensity as expected by the sin2 α factor in

the classical Thomson scattering equation.

I⊥e = Io
r2e
R2

(9.4)

Secondly, we consider the π polarization case, where the electric field is totally
polarized along the ẑ direction and parallel to the x-z scattering plane:

Ē0 = Eoẑ (π polarization case, Ē0 ∥ scattering plane)

Here, α = π
2 − 2θ, yielding an intensity that varies depending on the scattering

angle 2θ.

I
∥
e = I0

r2e
R2 cos

2 2θ

Figure 9.2 below plots this cos2 2θ relationship with a varying 2θ value that is
present in the intensity function for the π polarization case.

Figure 9.2: Scattered intensity dependence on scattering angle for π-polarization
case.

Unpolarized X-rays, e.g., characteristic radiation from an X-ray tube, can be treated
as being half σ-polarized and half π-polarized. To obtain the total scattered inten-
sity at P, sum the intensities of the σ polarized and π polarized components.
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Ie =
1
2I
⊥
e + 1

2I
∥
e = I0

r2e
R2

(
1+cos2 2θ

2

)
↑polarization factor

Note that this relationship is independent of λ and dependent on 1
R2 .

At 2θ = 0 (forward scattering) and R=1 cm

Ie
I0

=
r2e
R2 = (2.818 × 10−13)2 = 7.94 × 10−26 ← very weak, an extremely small

fraction of the incident beam’s intensity

At 2θ = π
2

Ie
I0

= 1
2 (

Ie
I0
)2θ=0 only σ polarized X-rays are scattered in the 2θ = π

2 direction.

9.1.1 Barkla

British researcher Charles Barkla performed a double scattering experiment to prove
that scattering at π

2 produces a polarized beam. In this experiment, as shown in
Figure 9.3 below, unpolarized X-rays, along the x-direction, scatter from a small
particle at O. A very small fraction of those scattered X-rays travel along -z direc-
tion and rescatter from another small particle at P. To prove that this 90◦ scattered
beam along the -z direction is polarized in the y-direction, an X-ray photon count-
ing detector at Q is rotated around the z-axis in the x’-y’ plane. As shown in Figure
??, Barkla measured the scattered intensity as a function of angle ϕ and found that
it varied as cos2 ϕ. The intensity pattern of this rescattered beam matches the inten-
sity pattern expected for incident X-rays polarized in the y-direction, thus proving
that π

2 scattering produces a polarized beam. Essentially, in this experiment, we
have an X-ray polarizer at O and an X-ray polarimeter at Q.

P

O

Q

unpolarized

Figure 9.3: Barkla’s experiment to prove that scattering at 90◦ produces a polarized
X-ray beam.
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9 SCATTERING 9.2 Thomson Scattering by two electrons

Figure 9.4: Referring to the previous figure, this is the normalized scattered intensity
at Q as a function of ϕ.

9.2 Thomson Scattering by two electrons

Recall the Thomson scattered intensity from a free electron:

Ie = I0
r2e
R2

(
1+cos2 2θ

2

)
unpolarized X-ray beam

re = 2.818× 10−13cm

Note: λ independent & 1
R2 dependent

As shown in Figure 9.5 below, we can define the following parameters:

S̄0 ≡incident direction unit vector

S̄ ≡scattered direction unit vector

2θ =scattering angle

Figure 9.5: Define S̄0, S̄, 2θ

Reminiscent of Young’s 2-slit interference experiment, let’s now consider the scat-
tering from 2 free electrons, one at the origin and one at r̄, as shown in Figure 9.6
below.

Figure 9.6: Scattering of a plane wave from two free electrons.

Due to the path-length difference, |x1| − |x2| the two scattered waves will have a
phase difference δ = (x1 + x2)

2π
λ in the far field.
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Where x1 = r̄ · S̄0 , and x2 = r̄ · S̄

Equivalently, δ = − 2π
λ (S̄ − S̄0) · r̄

Note that in the forward scattering direction, as shown in Figure 9.7 below S̄ =
S̄0, the scattering angle 2θ = 0 and, therefore, the phase difference δ = 0. This
implies that for an incident plane wave scattering from a collection of electrons,
the scattered X-rays in the forward direction are all in phase and, therefore, have
perfect constructive interference.

Figure 9.7: Scattering of a plane wave from two electrons in the forward direction.

Referring again to Figure 9.6, the scattered E-field traveling waves from each elec-
tron at R in the S̄ direction are represented by the following equations:

Ē1(R, t) = Ē1cos

[
2πR

λ
− ωt

]
= Ē1cosϕ (9.5)

Ē2(R, t) = Ē2cos

[
2πR

λ
+ δ − ωt

]
= Ē2cos(ϕ+ δ) (9.6)

Note that the second electron’s scattered wave has a phase shift δ added into its
cosine function. Since the detector is at a distance much greater than the distance
between the two electrons, the amplitudes of the electric fields scattered from both
electrons are taken to be equal. Furthermore, the cosine factors of the equations
may be converted using Euler’s formula.

E2 = E1 ← R≫ r

use eiϕ = cosϕ+ i sinϕ

ei(ϕ+δ) = eiϕeiδ

At the detector, the total scattered field equals the sum of the scattered E-fields
from each electron. Note that Euler’s formula is used instead of the cosine terms in
the first line below. The intensity is determined by dotting the total field, labeled
ϵ̄ below, by its complex conjugate ϵ̄∗. Recall that the scattered intensity from one
electron was simply E2. Now for 2 electrons, this E2 is modified to account for the
fact that the electrons are at two different positions and a certain 2θ angle that
leads to scattered waves with phase difference δ. Notice that if δ = 0, 2π or 2nπ,
then the two scattered waves are perfectly in phase and produce four times the
scattered intensity as compared to scattering from a single electron. On the other
hand, if δ is an odd multiple of π, or (2n+1)π, then the two scattered waves are
completely out of phase, and no intensity is detected. Of course, there are instances
in between, such as δ = π

2 , in which the intensity is in between these two extremes.

ϵ̄(R̄, t) = Ē1e
iϕ + Ē2e

iϕeiδ = Ē1e
iϕ(1 + eiδ) (9.7)
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I ∝ |ϵ̄|2 = ϵ̄ · ϵ̄∗ = E2
1(1+ e

iδ)(1+ e−iδ) = E2
1(2+ e

iδ + e−iδ) = 2E2
1(1+ cosδ) (9.8)

|ϵ̄|2 = 4E2
1 for δ = 0, 2π, ...→ x1 + x2 = −r̄ · (S̄ − S̄o) = nλ

|ϵ̄|2 = 0 for δ = π, 3π, ...

|ϵ̄|2 = 2E2
1 for δ = ±π

2 , ...

Therefore, due to interfering waves, the scattered intensity from two electrons in-
creases from 0 to 4x that from one electron.

9.2.1 Thomson scattering from N electrons

The total E-field is the sum of the fields generated by each of the two electrons.

ϵ̄Total = ϵ̄1 + ϵ̄2 = eiϕ(Ē1e
iδ1 + Ē2e

iδ2) (9.9)

where ϕ = 2πR
λ − ωt .

Here, we are setting the phase of scattered wave 1 to zero: δ1 = 0

Where R is the distance to the detector, and r is the distance between the electrons.
Since R≫ r → E2 = E1 = Ee

In general, for N free electrons, the total electric field generated is the sum of the
scattered E-fields from all of the electrons. This is based on the superposition
principle, in which the sum of the individual forces yields an equivalent total force.
The detector “sees” the sum of all of these individual electric force fields, having
equal amplitude but individual phase factors resulting from varying positions and
2θ angles. Recall that only in the forward direction will each phase be equal to zero.

ϵ̄tot =

N∑
n=1

ϵ̄n = Ēee
iϕ
∑
n

eiδn (9.10)

Thus, the total intensity is equal to the square of the magnitude of this total elec-
tric field. In the equation below, the first factor before the summation equals the
scattered intensity from one electron. This is abbreviated as Ie seen in the second
line below.

Itot ∝ |ϵ̄tot|2 = E2
e |

n∑
n=1

eiδn |2 =
r2e
R2

(
1 + cos22θ

2

)
|

N∑
n=1

eiδn |2 (9.11)

Itot = Ie|
N∑

n=1

eiδn |2 (9.12)

If the scattered direction 2θ = 0, then the total intensity will be the intensity of one
electron times N2, where N is the total number of electrons. The intensity of the
scattered wave is N2 times, rather than N times, the scattered intensity from an
individual electron because of the interference of coherently scattered waves (waves
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of equal wavelength). Furthermore, if the 2θ angle is not zero, then the intensity is
less than N2.

2θ = 0→ Itot
Ie

= N2 , 2θ ̸= 0→ Itot
Ie
≤ N2

Note that if the scattered waves have slightly different wavelengths λn > λ0, this
is called modified or incoherent scattering. The waves will not interfere, and the
intensity will be affected by a factor of N as opposed to N2 in classical Thomson
scattering. →(Itot)mod = N(Ie)mod. This incoherent scattering, which competes
with coherent scattering, will be discussed in the next section.

9.2.2 X-ray Scattering from an atom with Z electrons in spherically
symmetrical distributions

According to quantum mechanics, the electrons involved in scattering are not at
discrete points in space but have a probability distribution that describes their
location around an atom’s nucleus. This probability of finding an electron in a given
shell is given by a wave function. This is pictorially represented by an electron cloud
rather than set electron locations, as illustrated in Figure 9.8 below. The electron
density in a given atom, therefore, is the sum of the individual probability densities
of its Z electrons. Thus, the sum is equal to the sum of each electron’s wave function
multiplied by the wave function’s complex conjugate, as shown below.

ρatom =

Z∑
1

ρe =
∑

ψeψ
∗
e (9.13)

H-like wave function ρe = |ψe|2.

9.2.3 Defining Atomic Scattering Factor

In Figure 9.8 below, an incident X-ray plane wave, represented by the blue arrow
pointing to the right and positioned to the left of the red electron cloud, is incident
on some differential volume at position r̄ with electron density ρ(r̄).

 

Figure 9.8: Scattering from e−cloud

The atomic scattering factor f, is defined as the ratio of the magnitude of the
scattered E-field amplitude from an atom as compared to the scattered E-field
amplitude from one single electron according to Thomson scattering.

f =
Eatom

Ee−
(9.14)
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The atomic scattering factor is calculated using the following integral: It sums the
scattering contributions from each differential volume while accounting for phase
differences (eiδ = ei

2π
λ (S̄−S̄0)·r̄) over the entire atomic volume.

f =

∫
atom

ρ(r̄)ei
2π
λ (S̄−S̄0)·r̄dV (9.15)

Recall that for N electrons, the magnitude of the electric field scattered in the
forward direction should equal N, since there is no phase shift between the scattered
waves. This is consistent with the formula above, as the eiδ factor, where δ is the
phase shift, goes to one, and therefore f = Z at 2θ = 0. The atomic scattering factor
is dictated by the 2θ scattering angle describing the phase shift between scattered
waves from multiple points within the electron cloud.

Essentially, as waves scattered by the atom’s electrons become more out of phase
(i.e., as 2θ increases), the atomic scattering factor decreases (f decreases) due to
the partially destructive interference in scattered waves. In addition to the 2θ angle,
the atomic scattering factor depends on the wavelength. At a fixed 2θ value, for
instance, a decrease in wavelength will make pathlength differences larger relative
to the wavelength, thus causing a greater degree of destructive interference between
scattered waves.

9.2.4 Calculating the Atomic Scattering Factor

Figure 9.9 below illustrates an incident X-ray plane wave in the S̄0 direction, in-
teracting with an atom at O and scattering in the S̄ direction. The following
formula may be used to calculate the amplitude of the scattering for one electron:
fe =

∫
ρee

i 2π
λ (S̄−S̄0)·r̄dV

Here, ρe describes the electron distribution, and the exponential factor calculates
the relative phase of the scattered wave from different positions r̄ within the electron
cloud. We will assume spherical symmetry → ρ(r̄) = ρ(r) .

Figure 9.9: Vectors and angles used for calculating the atomic scattering factor by
integration in spherical coordinates.

(S̄ − S̄0) · r̄ = |S̄ − S̄0||r̄| cosϕ = 2 sin θr cosϕ

Note:
∫ π

0
eiqr cosϕ sinϕdϕ can be integrated by parts.

Let u = qr cosϕ → du
dϕ = −qr sinϕ

ϕ = 0→ u = qr
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ϕ = π → u = −qr

⇒
∫ π

0

eiqrcosϕsinϕdϕ = − 1

qr

∫ qr

−qr
eiudu

= − 1

qr

[∫ qr

−qr
cosudu+ i

∫ qr

−qr
sinudu

]
= −2sin(qr)

qr

Let q = 4π sin θ/λ (Azaroff q ≡ k)

fe = 2π

∫ ∞
r=0

∫ π

ϕ=0

ρ(r)eiqrcosϕr2sinϕdϕdr (9.16)

fe = 4π

∫ ∞
r=0

ρ(r)r2
sinqr

qr
dr (9.17)

for a spherically symmetrical electron cloud distribution.

Example: Lithium

Suppose that the subshell electron densities for a neutral lithium atom of atomic
number Z=3 and electron configuration (1s22s1) are given by the following
hydrogen-like expression:

ρe(r) =
e(−2r/a)

πa2
, (9.18)

where for the two K electrons, aK = 0.20Å, and for the one L electron, aL = 1.60Å

The scattering factor for each electron may be calculated from the following equa-
tion:

fe = 4π

∫ ∞
0

e−(2r/a)

πa2
r2
sinqr

qr
dr =

1[
1 +

(
2πasinθ

λ

)2]2 (9.19)

Furthermore, lithium’s total atomic scattering factor is obtained by summing the
scattering factors of the two electrons in its K shell and the one electron in its L
shell. fLi = 2feK + feL Note that the electron scattering factors for lithium are
decreasing as a function of sin θ

λ = 1
2d in Figure 9.11 below. This describes the

intra-atomic interference effect.
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Figure 9.10: Li atomic scattering factor as a function of sin θ
λ

.

Fortunately, we do not need to make this laborious quantum calcula-
tion to analyze X-ray scattering data. The atomic scattering factors for
all atomic and many ionic species are tabulated as a function of sin θ

λ
in the International Tables for Crystallography Volume C [? ] and in
Cullity and Stock [? ] Appendix 10. Or one can go to the website
https://lampx.tugraz.at/ hadley/ss1/crystaldiffraction/atomicformfactors/formfactors.php
to find the parameterized formula for calculating f as a function of q = 4π sin θ

λ .

9.3 Compton Scattering

Compton scattering, also known as modified or incoherent scattering, is the
quantum effect in which scattered waves have lost energy due to inelastic scattering
and, therefore, have a slightly larger wavelength than their incident X-ray wave-
length. This occurs when X-rays scatter from loosely bound electrons and may be
explained by considering the incident beam to be comprised of a stream of pho-
tons of energy ℏωo, as illustrated in Figure 9.11 below. When one of these photons
strikes a loosely bound electron that is initially at rest, energy and momentum are
transferred from the photon to the electron. Due to this transfer of energy and
momentum, the inelastically scattered X-ray photon has lower energy and, there-
fore, a larger wavelength, thus making this scattering incoherent and preventing
interference effects.

y

x

Figure 9.11: Compton Scattering diagram showing incident photon traveling in x-
direction, Compton scattered photon in x-y plane at angle 2θ, and Compton scattered
electron in x-y plane at angle α.

The following equations combine the laws of conservation of energy and momentum
in the photon-electron collision to yield a function of the change in wavelength of
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the Compton-scattered X-ray with respect to the scattering angle. 2θ. Note that the
theory of Compton scattering expresses the energy and momentum of the photons
and electrons in relativistic values. These relativistic values are necessary because
the scattered photons are massless, and the energy transferred to the electron is
measured relative to its rest energy.

Conservation of energy:

ℏω0 = ℏω + 1
2mev

2
e assuming initial e−at rest

Conservation of momentum

ℏω0

c = ℏω
c cos 2θ +meve cosα ←x direction

0 = ℏω
c sin 2θ −meve sinα ←y direction

Eliminate α and ve, λ = 2πc
ω , and ℏ = h

2π

λ− λ0 = ∆λ = h
mec

(1− cos 2θ)

∆λ(Å) = 0.0243(1− cos 2θ)

Note that the change in wavelength in the forward direction is 0, and the change in
wavelength in the backward direction 2θ = 180◦ is about 0.05 Å.

∆λ = 0 at 2θ = 0◦

∆λ = 0.0486Å at 2θ = 180◦

The change in wavelength may be related to the change in energy by the following
equations:

λ− λ0 = ∆λ = h
mec

(1− cos 2θ) ∆E =
E2
γ(1−cos 2θ)

mec2+Eγ(1−cos 2θ)

where mec
2 = 511keV (electron rest mass energy)

Figure 9.12: Synchrotron undulator setup for monochromatic X-ray beam scattering
from the sample with an energy-dispersive solid-state detector collecting the X-ray
spectrum.

Ex: If 2θ = 90◦ Eγ = 18.5keV ∆E = 0.65keV
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Figure 9.13: The X-ray spectrum collected by the solid-state detector in the previous
figure. The sample is 1/2 monolayer of Sr on Si(001). The highest energy peak at
18.5 keV is from elastically scattered X-rays. The peak 0.65 keV below that in energy
is from Compton scattered X-rays.

Note that Compton scattering will not occur if the change in energy is less than the
binding energy for the electron. i.e., ∆E < EB .

For hydrogen, a one-electron atom, the total intensity according to the Thomson
scattering equation is equal to the summed intensities of the modified (Compton)
and unmodified scattered wave.

Ie = Iunmod + Imod (9.20)

Ie = I0(
re
R )2 sin2 α→ Thomson

Iunmod = Coherent→ Bragg Imod = Incoherent→ Compton

1= Iunmod
Ie

+ Imod
Ie

in electron units

1 = f2e + (Ieu)mod ⇒(Ieu)mod = 1− f2e
The modified, or Compton scattering, and the unmodified, vary in opposite ways
with respect to sin θ

λ , as shown in Figure 9.14 below.
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Figure 9.14: Modified, unmodified, and total scattered intensities from a hydrogen
atom with 1 electron.

The scattered intensity for atoms with atomic numbers greater than one, such as
lithium (Z=3), varies from the simple hydrogen model shown above. Again, the
modified scattering intensity for each electron is given by 1 − f2e . Recall that no
interfer nce effects can occur for incoherent scattering due to wavelength variations
after collisions; thus, the total incoherent scattering intensity is simply given by the
sum of the incoherent scattering intensities of the individual electrons.

(Ieu)mod = 2(1− f2e )K + (1− f2e )L = Z −
∑
n

(fe)
2
n (9.21)

Furthermore, the unmodified scattering intensity from an individual atom is equal
to the square of the atomic scattering factor since f = Eatom

Ee
, and the intensity is

the square of the magnitude of the electric field. Recall that for coherently scattered
waves, the most efficient scattering is in the forward direction, where f = Z. Since
the unmodified intensity varies as f2, the intensity in electron units (eu) will be less
than or equal to Z2. Furthermore, the modified scattering intensity will be less than
or equal to the atomic number of a given element. For lighter elements and short
wavelengths, the modified scattered intensity becomes more significant relative to
the total scattered intensity.

(Ieu)unmod = f2 ≤ Z2 (9.22)

(Ieu)mod ≤ Z ←significant for low Z and low λ

Figure 9.15 below demonstrates the relationship between scattered intensities and
sin θ
λ for atoms with Z > 1.
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Figure 9.15: Modified, unmodified, and total scattered intensities from an atom
with Z > 1. This is the case for Li with Z=3.

9.3.1 Anomalous Dispersion

Classical Thomson scattering, which treats electrons as being free (unbound), has no
wavelength dependence. However, there is a quantum effect that causes the atomic
scattering factor to be affected by the energy of the photon, which translates into
a λ dependence of f .

Anomalous dispersion is a phenomenon that occurs when the X-ray’s photon
energy is close to the energy of the absorption edge for a given element. In other
words, the frequency of the incoming photon is close to the natural frequency for a
bound electron within the atom, causing a resonance effect that changes the scat-
tered intensity. When this effect is considered, the following wavelength-dependent
formula gives the atomic scattering factor:

f = fo

(
sinθ

λ

)
+∆f ′(λ) + i∆f ′′(λ) (9.23)

fo →Atomic form factor

fo(q̄) =

∫
atom

ρ(r̄)eiq̄·r̄dr̄ (9.24)

scattering factor is Fourier transform of atom’s electron distribution.

q̄ =
2π

λ
(S̄ − S̄o) (9.25)

is the scattering vector with magnitude

q =
4πsinθ

λ
(9.26)
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The fo term is what was previously taken to be the atomic scattering factor, and
the ∆f ′ and i∆f ′′ correction terms account for the anomalous dispersion effect.
The latter two terms depend on the element and the wavelength of the incident
X-ray.

If the frequency of the incident X-ray beam is much greater than the natural res-
onance frequency of the electron (i.e., if the energy of the X-ray is much greater
than the binding energy for a K shell electron), the scattered wave will be π out
of phase with respect to the incident wave, similar to the π phase lag in Thomson
scattering by free electrons. However, if the energy of the incident beam is close
to the electron’s binding energy, the scattered wave will deviate from this π phase
shift with respect to the incident wave. If the incident photon energy is near the
K-edge of an atom, the in-phase waves scattered from the K electrons destructively
interfere with the out-of-phase X-rays scattered from outer electrons.

9.3.2 Honl’s Correction Factors

As shown in Figure 9.16 below, the ∆f real component is 180◦ out of phase with
the normally scattered radiation, fo, and affects the amplitude of the wave. Fur-
thermore, the ∆f ′′ imaginary component is 90◦ out of phase with respect to fo and
affects the phase of the scattered wave from the atom.

lm

Re

Figure 9.16: Honl’s correction terms as viewed in the complex plane.

Figure 9.17 below demonstrates the effect of increasing energy on the ∆f ′ and
∆f ′′ corrections. Note that the ∆f ′′ imaginary component becomes highly pos-
itive, slightly above the absorption edge. Conversely, the real ∆f ′ component
becomes largely negative close to the absorption edge. This proximity to the
absorption edge indicates that the frequency of the incident wave is close to
the electron’s natural frequency. Since the absorption edge is characteristic of a
given element, the correction factors in f = fo + ∆f ′ + i∆f ′′ can give chemical
sensitivity to the X-ray scattering process. These fo,∆f

′,∆f ′′ terms are tabu-
lated in the International Tables for Crystallography[? ]. One can go online to
https : //henke.lbl.gov/opticalconstants/asf.html and find the energy dependence
for the real and imaginary parts of the atomic scattering factor in the forward direc-
tion. In addition, since the intensity is proportional to ff∗ - the scattering factor
times its complex conjugate - the scattered intensity may be manipulated by using
a synchrotron radiation source with a tunable Eγ , or wavelength of the incident
X-ray beam.
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Figure 9.17: Anomalous dispersion corrections to the atomic scattering factor as a
function of incident X-ray energy near the binding energy for the 2 K electrons.

If the incident X-ray is not close to the absorption edge for an element, i.e., EK or
EL, etc., then the correction factors will be negligible with respect to fo. In this
course, we will ignore anomalous dispersion effects unless specifically stated.

9.3.3 X-ray Scattering by Many Atoms

For one atom, the scattered E-field amplitude is

Ea = fEe = fEo
re
R sinα sinα = 1 for σ-polarized case; sinα = cos 2θ for π-

polarized case

Elastic Coherent Scattering → f

re = 2.818× 10−13cm

f = fo
(
sin θ
λ

)
→ ∆f ′ = ∆f ′′ = 0

fo(0) =?

For unpolarized Ēo, Eox = Eoz = Eo√
2
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10 Kinematical Scattering Theory

Based on the superposition principle, kinematical scattering theory adds up the
scattered E-field waves and ignores the possibility of these scattered waves rescat-
tering before reaching the detector. Because X-ray scattering from an atom is such a
weak interaction, this simplification accurately describes scattering from collections
of atoms, including the case when they are assembled into a single crystal, as long
as it is small compared to the extinction length, measured in microns. Dynamical
scattering theory, which solves Maxwell’s equations for a periodic electron density,
is the rigorous but more difficult to apply theory that works for small and large
perfect single crystals. We will use kinematical scattering theory.

We first consider the scattering of an incident plane wave by a collection of N atoms,
as shown in Figure 10.1 below. Note that the incident direction is described by unit
vector S̄0 and the scattered direction is described by unit vector S̄.

Figure 10.1: Scattering from a collection of atoms. The scattered waves in direction
S̄ are considered parallel since the detector is very much further away than the inter-
atomic distances R̄m.

If we consider the scattering from atoms “0” and “3,” their scattered wave vectors
will be parallel and of the same wavelength, but the scattered waves will in general
not be in phase with each other due to a separation between the two atoms, indicated
by R̄3. The difference between the incident unit vector, S̄0, and the scattered unit
vector, S̄, dotted with the distance between the two atoms yields this extra path
length, as shown in the following expression:

Extra path length R̄m · (S̄ − S̄o)

We now introduce the scattering vector, which is a measure of spatial frequency.

Q̄ =
S̄ − S̄o

λ
= k̄ − k̄0, (10.1)

k̄0 = S̄0/λ is the incident wave vector and k̄ = S̄/λ is the scattered wave vector.
The magnitude of Q = 2sinθ/λ, where θ is one-half of the scattering angle 2θ. As
an alternative, we will sometimes use q̄ = 2πQ̄.

Q̄ · R̄m is the path length difference in units of the wavelength and

2πQ̄ · R̄m is the phase of the wave scattered by the mth atom relative to the wave
scattered by the atom at the origin 0.
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When Q̄ · R̄m = n, there is perfect constructive interference between the waves
scattered by mth atom and the atom at the origin.

10.1 Scattering from N atoms

The following equation sums each individual E-field to get the total scattered E-field
by N atoms. The exponential factor keeps track of the phase of each wave for all of
the atoms:

ETotal

Ee
=

N−1∑
m=0

fme
2πiQ̄·R̄m (10.2)

Note that fm is the amplitude of the scattered wave from the mth atom, which will
be the same for all atoms of the same type and distinct for different atoms. The
summed complex fields are normalized by the scattering amplitude that is expected
from one electron according to classical Thomson scattering- ETotal

Ee
.

fm = f, If all atoms are the same type, otherwise they can be different.

10.1.1 Scattered Intensity from N Atoms

The scattered intensity in electron units, or the scattered intensity of N atoms as
compared to the scattered intensity of a single electron is given by the following
equation:

I(eu) = |
ETotal

Ee
|2 =

[
N−1∑
m=0

fme
2πiQ̄·R̄m

][
N−1∑
m=0

fme
−2πiQ̄·R̄m

]
(10.3)

Here, the normalized total electric field equation is multiplied by its complex con-
jugate to yield the intensity. This is equivalent to the following double summation.

=

N−1∑
m=0

N−1∑
n=0

fmfne
2πQ̄·(R̄m−R̄n) (10.4)

In the following vector diagram for R̄m − R̄n , the origin is conveniently chosen to
be at the location of the green “0” atom. The difference of R̄3 and R̄4 gives the
inter-atomic distance between atoms 3 and 4, labeled r̄34.

Figure 10.2: R̄m − R̄n

Now, the r̄mn inter-atomic spacing vector replaces R̄m − R̄n and r̄mn = −r̄nm.
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ITotal

Ie
= Ieu =

N−1∑
m=0

N−1∑
n=0

fmfne
2πiQ̄·r̄mn (10.5)

From this double summation, there are a total of N2 terms.

There are N terms of the type: f2m. These terms, in which m=n, are the scattered
intensities from isolated atoms, in which no interatomic interference effects occur.
Here r̄mn = 0, and therefore e2πiQ̄·r̄mn = 1.

For terms where m ̸= n, there are N(N−1)
2 interatomic interference effect terms of

the type: fmfn(e
2πiQ̄·r̄mn + e−2πiQ̄·r̄mn) = 2fmfn cos(2πQ̄ · r̄mn)

This is the general equation for kinematical scattering from any type of atomic
collection - i.e. gas, solid, liquid, crystal, amorphous, etc. The following conditions
are specific to to gases, liquids and crystals:

⋄ gases & liquids ←require proper averaging of Q̄ · r̄mn (angle averaging)

⋄ crystals are periodic ←can use symmetry to reduce N2 terms

10.2 Scattering from Small Crystal

Consider an X-ray plane wave (λ, S̄0) incident on a small crystal with a detector for
coherently scattered X-rays at R and direction S̄, as seen in Figure10.3 below.

R

Figure 10.3: X-ray plane wave incident on crystal

The scattering vector determination is illustrated in Figure 10.4 below.

S
l

2θ

So
l

Q =
S - So( )

l

Figure 10.4: Scattering vector

The crystal contains M = M1M2M3 unit cells. Each unit cell contains N atoms,
which may or may not be of different types. Therefore, there are MN total atoms
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10 KINEMATICAL THEORY 10.2 Scattering from Small Crystal

in the crystal. Each atom in the unit cell is located by a vector r̄n , as shown in
Figure 10.5 below. The atom is illustrated as a black dot in the unit cell block.

Figure 10.5: Atom located by r̄n
in unit cell.

Assuming the crystal is parallelepiped, any unit cell’s origin may be located by
m1ā+m2b̄+m3c̄, where 0 ≤ mi ≤Mi−1 is an integer. This is given by translational
symmetry of unit cells. Therefore, any atom within the entire crystal is located by
the following position vector:

R̄n
m1m2m3

= m1ā+m2b̄+m3c̄+ r̄n

↖↑↗ ↖

u.c. location atom location in u.c.

The first three indices locate the specific unit cell containing the atom, using a
translational symmetry operator. The r̄nterm indicates the atom’s position within
that specific unit cell.

Figure 10.6 below illustrates the use of these four indices to locate an atom within
a crystal. Note that the selected location of the origin is arbitrary.

Figure 10.6: Location of an atom within the entire crystal by vector (R̄n
m1m2m3

).

The scattered electric field from the entire crystal relative to the scattered field from
a single electron is given by the following summation:

ETotal

Ee
=

M1−1∑
m1=0

M2−1∑
m2=0

M3−1∑
m3=0

N−1∑
n=0

fne
2πiQ̄·R̄nm1m2m3 (10.6)

=

M1−1∑
m1=0

M2−1∑
m2=0

M3−1∑
m3=0

N−1∑
n=0

fne
2πiQ̄·(m1ā+m2b̄+m3c̄)e2πiQ̄·r̄n (10.7)
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The four indices yield four summations.

The structure factor, given by the following summation, is the amplitude of the
scattered electric field from the N atoms in a single unit cell:

F (Q̄) =

N−1∑
n=0

fn(Q)e2πiQ̄·r̄n (10.8)

This structure factor, which accounts for the internal interference effect from the N
atoms within the unit cell, will be discussed later. For now, we will calculate the
total scattered field from the M unit cells, which which yields the following triple
summation:

ETotal

Ee
= F

M1−1∑
m1=0

e2πiQ̄·m1ā
M2−1∑
m2=0

e2πiQ̄·m2b̄
M3−1∑
m3=0

e2πiQ̄·m3c̄ (10.9)

Consider the following simplification:

M1−1∑
m1=0

e2πiQ̄·m1ā =

M−1∑
m=0

xm (10.10)

This geometric series, with potentially a billion terms, converges to

=
xM − 1

x− 1
=
e2πiQ̄·āM1 − 1

e2πiQ̄·ā − 1
=
e2iηM − 1

e2iη − 1
(10.11)

=
eiηM (eiηM − e−iηM )

eiη(eiη − e−iη)
=
eiηM sin ηM

eiη sin η
(10.12)

=
sin(πQ̄ · āM1)e

πiQ̄·āM1

sin(πQ̄ · ā)eπQ̄·ā
=

sin(πQ̄ · āM1)

sin(πQ̄ · ā)
eπiQ̄·ā(M1−1) (10.13)

In one dimension, the total scattering intensity for M unit cells relative to the
scattering intensity from one electron is given by the following:

Īeu =

∣∣∣∣Etotal

Ee

∣∣∣∣2 = |F |2 sin
2(πQ̄ · āM)

sin2(πQ̄ · ā)
(10.14)

1D Interference Function

The intensity scattered from a single unit cell is given by the structure factor am-
plitude squared, and the second factor accounts for interference from M repeated
unit cells.

In three dimensions, each factor is multiplied by its complex conjugate
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Īeu =

∣∣∣∣Etotal

Ee

∣∣∣∣2 = FF ∗

∣∣∣∣∣e2πiQ̄·āM1 − 1

e2πiQ̄·ā − 1
· e

2πiQ̄·b̄M2 − 1

e2πiQ̄·b̄ − 1
· e

2πiQ̄·c̄M3 − 1

e2πiQ̄·c̄ − 1

∣∣∣∣∣
2

(10.15)

yielding the following three dimensional interference function. This is a rigorous
theory for explaining X-ray scattering from a 3-D periodic lattice. Note that the
three factors account for repeated unit cells along three axes.

Īeu = |F |2 sin
2(M1πQ̄ · ā)

sin2(πQ̄ · ā)
· sin

2(M2πQ̄ · b̄)
sin2(πQ̄ · b̄)

· sin
2(M3πQ̄ · c̄)

sin2(πQ̄ · c)
(10.16)

3D Interference Function

Consider the 1D Interference Function, which has a mathematical form sin2 Mx
sin2 x

.
Both the numerator and denominator vary, with the numerator having M times
more oscillations than the denominator. When the denominator goes to zero, this
function does not blow up and go to infinity because the numerator also goes to
zero. By L’Hopital’s rule from Calculus, we find that

sin2 Mx
sin2 x

=M2 when x = hπ, where h = 0,±1,±2, ...

Physically, this corresponds to the occurrence of a Bragg peak at the condition
when Q̄ · ā = h.

Recall that Q̄ · ā is the extra path length in units of λ for the waves scattered by two
atoms separated by ā. This makes sense with previous considerations of Braggs’ law,
in which an integer multiple wavelength difference in paths yields a diffraction peak.
In Figure 10.7 below, sinx, sin2 x, and 1

5 sin
2 5x are plotted against x. The green

sin2 x curve represents the denominator, and the red curve represents the sin2Mx
numerator where M=5. Note that the red curve has five times the oscillations of
the green curve and the two have three common zeros in this range of x. Namely
at x = 0, π, and 2π.

Figure 10.7: 1D interference oscillations

In the one-dimensional interference function, the red function in Figure 10.7 is
divided by the green function to yield the plot in Figure 10.8.
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Note that the one-dimensional interference function is multiplied by a 1
M2 factor to

yield the following normalized function that has a maximum of one:

I(x) =
sin2Mx

M2 sin2 x
(10.17)

Figure 10.8 illustrates the unity amplitude diffraction peaks that occur when the
numerator and denominator have common zeros, at x = hπ, where h is an integer.
A zeroth order peak occurs when all waves are scattered in phase and in the forward
direction. In addition, in between any two consecutive Bragg peaks there are M −
2 subsidiary peaks (Laue oscillations), due to the numerator, sin2Mx, going to
zero. The periodicity these subsidiary peaks (or Laue fringes) is π

M . Note that
the numerator also goes to zero at the Bragg peaks. Therefore the Bragg peaks’
full-width-full-max, FWFM = 2π

M .

Figure 10.8: Normalized 1D interference function, where M=6

What is x in terms of the angle θ?

The quantity x is the scattering vector Q multiplied by π , and projected in the
direction of the lattice constant, a. If the lattice constant and the scattering vector
are in the same direction , this simplifies to the following expression:

x = πQ̄ · ā = πQa = π |S̄−S̄0|
λ a = π 2 sin θ

λ a

Figure 10.9: Physical relationship between X-ray directions, and ā - used in de-
scribing “x”
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At x = π
M = 2π sin θmin

λ a→ sin θmin
λ = 1

2Ma → θmin = sin−1
[

λ
2Ma

]
Here, θmin represents the first appearing minimum in the periodic intensity pattern.

For a very large M, sin θ can be set equal to θ, and the following expression can
be used to determine the full-width-full-max (FWFM) diffraction peak width as
illustrated in Figure 10.10. Note that this is simply twice the value of θmin.

2∆θ = 2θmin = λ
Ma for h=0

Therefore by measuring the FWFM of the entire diffraction peak, the value M
may be determined, which indicates the number of unit cells in the direction of ā.
Multiplying M by a yields the crystal’s thickness in the direction of a. Notice that
∆θ and Ma are inversely proportional; Therefore, as the thickness of a crystal Ma
increases the ∆θ, or width of the peak, gets smaller.

2Δθ

Figure 10.10: 2∆θ (FWFM) of peaks shown in Figure 10.8

Note the following correlation with Bragg’s Law:

λ = 2d sin θ, in this case λ = 2a sin θ

2a sin θ
λ = 1→ Q̄ · ā = 1 = h

Furthermore, for all other peaks (h ̸= 0)

FWFM = 2∆θ =
λ

MaCosθ
(10.18)

Since the Bragg peak intensity goes as M2 and the width goes as M−1, it follows
that the area under the Bragg peak is proportional to the number of unit cells M.
As M approaches ∞, the intensity pattern approaches a periodic series of delta
functions as shown in Figure 10.11.
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0
0

1 2 3

1

Figure 10.11: As M → ∞, the normalized 1D interference function approaches
a series of delta functions, where Q̄ is the scattering vector and ā is the 1D lattice
constant.

10.2.1 1D Interference Function Summary

For the scattering vector Q̄ parallel to a 1D periodic array of M delta-function scat-
terers with lattice constant ā, kinematical scattering theory predicts the scattered
intensity to be

I(Q) =
sin2(MπQa)

sin2(πQa))
.......Q =

2Sinθ

λ
(10.19)

Bragg peaks occur when the denominator → 0 at Q = h
a .

The Bragg peak Intensity Imax =M2.

Based on the numerator, the Laue fringe periodicity ∆Q = 1
Ma .

Based on the numerator, the Bragg peak width ∆Q ∝ 1
Ma .

The Bragg peak area ∝M .

10.3 1D Interference Function Example

Let’s see if we can interpret actual XRD data from a hetero-epitaxial thin film
structure in terms of the 1D interference function. This published data [? ] is
for a ferroelectric (FE) capacitor grown by chemical vapor deposition (CVD) on a
SrTiO3(001) single-crystal substrate. Referring to Fig. 10.12, the FE was a single
crystal film of PbZrTiO3 (PZT). The bottom electrode was a single crystal film of
SrRuO3, and the top electrode was a Ag film that does not show up in this data
because it was polycrystalline. This θ− 2θ scan was collected at an APS undulator
at a wavelength of λ = 0.914Å. The three prominent peaks are the first-order (001)
Bragg peaks for the three perovskite crystals as labeled. From the wavelength and
peak positions in the incident angle θ, we can use Braggs’ law to calculate the
c lattice constants for the SrTiO3, SrRuO3, and PZT to be c = d001 = 3.905,
3.970, and 4.130 Å. As predicted by the numerator of the interference function, the
widths of peaks and their Laue fringe periodicity are inversely proportional to the
film thickness (t). Namely, t = Mc = λ

2∆θCosθ , where ∆θ is the period of the Laue
fringes measured in radians.
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Figure 10.12: Experimental X-ray reflectivity from a PZT capacitor structure that
was collected at λ = 0.914Å. The inset shows the layers within the heteroepitax-
ial structure. If you measure the Laue fringe periodicity, you should find that the
SrRuO3 bottom electrode is 136-nm-thick and the PZT film is 20-nm-thick. The Ag
top electrode is polycrystalline and does not measurably contribute to the scattered
intensity in this high-resolution scan.
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11 Crystal Diffraction in Reciprocal Space

From the perspective of reciprocal space, we will now combine wave scattering
with what we learned earlier about crystallography. Recall the following 3D in-
terference function for an X-ray plane-wave scattering from a small crystal with
M =M1M2M3 unit cells.

Īeu = |F |2 sin
2(M1πQ̄ · ā)

sin2(πQ̄ · ā)
· sin

2(M2πQ̄ · b̄)
sin2(πQ̄ · b̄)

· sin
2(M3πQ̄ · c̄)

sin2(πQ̄ · c)
, (11.1)

11.1 Laue condition for diffraction

In three dimensions, Bragg diffraction occurs when all three denominators simulta-
neously go to zero; that is when the following three conditions are met:

Q̄ · ā = h

Q̄ · b̄ = k

Q̄ · c̄ = l

where h, k, l are integers.

This is known as the Laue condition for diffraction. Note that the h, k, l indices
are the same Miller indices used to describe the planes of a crystal in direct space.

The above three scalar equations, which describe the Q̄ values that lead to the Laue
condition, are equivalent to the following single vector equation.

Q̄ = hā∗ + kb̄∗ + lc̄∗ = r̄∗hkl (11.2)

Simply put, the Laue condition (Bragg diffraction) occurs whenever the scattering
vector Q̄, defined by the diffractometer, coincides with a reciprocal lattice vector
r̄∗hkl, defined by the hkl crystal planes. At the Laue condition, Q̄ will be perpendic-
ular to the hkl planes and have a length of 1

dhkl
.

Considering the scalar of this vector equation, we derive Braggs’ Law.

Q̄ = r̄∗hkl → |Q̄| = |r̄∗hkl| → 2 sin θ
λ = 1

dhkl
⇒ λ = 2dhklsinθ

Therefore, the maxima of the hkl diffraction peaks occur at:

Q̄ =
S̄

λ
− S̄0

λ
= r̄∗hkl (11.3)

Where Q̄ is the scattering vector, S̄
λ is the scattered wave vector, S̄0

λ is the incident
wave vector, and r̄∗hkl is the reciprocal lattice vector for the hkl diffraction planes
of the crystal.

This vector relationship is illustrated in Figure 11.1 below. The scattering vector
Q̄ is continuously adjustable over a range in 3D reciprocal space through the ad-
justment of the incident direction, wavelength, and 2θ direction of the detector.
(Usually, only the direction of the detector is varied in an X-ray diffraction (XRD)
experiment.) The r̄∗hkl vectors describe the sample, a crystal consisting of discrete
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11 RECIPRIOCAL SPACE 11.1 Laue condition for diffraction

sets of planes in discrete directions indexed by r̄∗hkl in reciprocal space. Therefore,
as described by the Laue condition, a diffracted beam will be detected when the
instrument’s continuously variable Q̄ vector coincides with one of the discrete r̄∗hkl
vectors of the samples.

000

Figure 11.1: The hkl diffraction peak condition (or Laue condition) described by
vectors in reciprocal space.

11.1.1 Vector Representation in Reciprocal Space

To picture a diffraction experiment in reciprocal space, recall that the crystal planes,
as referenced by their hkl Miller indices, are transformed into hkl reciprocal lattice
points in reciprocal space. Figure 11.2 illustrates the 012 reflection in the h = 0
reciprocal lattice layer of a cubic crystal. In this example, the incident beam is
described by the incident wave vector S̄o

λ with a fixed direction and wavelength.
The sample crystal is at C, the center of the Ewald sphere with radius 1

λ . The circle
is the sphere’s equator, coinciding with the h = 0 plane in reciprocal space. The
line segment centered at C represents the 012 diffraction plane with an orientation
to the incident beam. The incident angle has been rotated to the Bragg condition
θ = θB . Coherent (same wavelength) scattered wave vectors S̄

λ emanate outward
from C such that the locus of their tips forms a spherical surface referred to as the
Ewald sphere. The Laue condition is satisfied whenever a point on this sphere
coincides with an hkl reciprocal lattice point. The diffracted beam is detected by
rotating the angle of the detector to 2θ = 2θB .
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Io

θ
θC

S
l

So
l

Detector at 2θ

Q =
S

l
-
So

l
= rhk

*

(hkl) plane of crystal

Figure 11.2: The Ewald sphere construction for the 012 Laue condition for a cubic
crystal.

11.1.2 Ewald Sphere

(Radius = 1
λ )

If incident direction (S̄0) is fixed and λ is fixed

1. Sphere does not move or change size.

2. S̄0

λ always points from center (C) to 000.

3. As the crystal rotates in θ, the reciprocal lattice rotates in unison about 000.

4. S̄
λ points form C to any points on sphere.

5. Diffraction occurs when an hkl reciprocal lattice point coincides with the sur-
face of the Ewald sphere.

6. For X-ray wavelengths, multiple reflections are rare. This probability increases
at higher energies where the Ewald sphere has a larger radius.

11.2 Single Crystal Diffractometer

Consider the scenario where you go to a friend’s lab to borrow a Si(111) wafer.
Your friend has Si wafers but does not know if they are (111) or (001). How would
you use a θ− 2θ diffractometer and a monochromatic beam to determine if its face
is (111) or (001)?
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Figure 11.3: Si wafer

1. Rotate detector to 2θ = 0

2. Rotate sample to ω = 0, i.e., surface ∥to beam as depicted in Fig. 11.3.

In reciprocal space, move r̄∗hhh into diffractometer plane, i.e., rotate crystal
→ r̄∗hhh ⊥ S̄0 → r̄∗hhh ⊥ 2θ axis beam as depicted at top of Fig. 11.4.

3. Do coupled θ − 2θ scan.

Notice that at ω = 0 and 2θ = 0, the incident wave vector and the scattered
wave vector coincide with each other. ω and 2θ will be rotated, so that ω
is always half of 2θ. This rotation is continued until the condition in the
bottom of Figure 11.4b is reached. Note that the Ewald sphere is fixed, and
the reciprocal lattice points are now angled, indicating the crystal is rotating.

4. Looking at the diffraction peaks, the silicon wafer face is found to be (111)
since a (001) face would yield diffraction peaks of the order (00l), with l =
4, 8, 12, ....
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Figure 11.4: θ − 2θ scan of Si wafer that produces a sequence of Bragg peaks
expected for a wafer with a (111) surface. Top: The 2θ = 0 starting condition for the
scan. Bottom: The point in the scan where the 333 Bragg condition occurs.

Note: The 222 is missing because F222 = 0 for Si.

11.3 Diffraction Methods

Table 9 summarizes the Laue method, rotating crystal method, and powder method
based on the variability of λ and θ. The rotating crystal method, discussed in the
previous section, uses a monochromatic beam of fixed wavelength and has a variable
θ for scanning through a sequence of diffraction peaks. The Laue method has a
fixed θ and a variable wavelength since the incident beam is continuous rather than
monochromatic and allows for various diffraction peaks to appear at once. The
powder method has a monochromatic beam of fixed wavelength and a variable θ
since the crystallites in the beam have random orientations.

Diffraction Methods λ θ

Laue Method Variable Fixed
Rotating Crystal Method Fixed Variable

Powder Method Fixed Variable

Table 9: Diffraction methods
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11.3.1 Laue Method - white beam / single crystal

For the Laue method, there is an incident white beam consisting of a Bremsstrahlung
continuum of wavelengths that scatters from a crystal, as shown below in Figure
11.5. The crystal consists of sets of planes, indexed in reciprocal space by the r̄∗hkl
vectors perpendicular to the planes in real space. Satisfying Braggs’ law based
on these crystal planes creates a Laue spot on the film or 2D detector located
downstream from the sample. This film location is used in the transmission Laue
experiment setup.

Transmission Laue θ < 2θ < 90◦

0◦ < θ < 45◦

Figure 11.5: Transmission Laue diffraction.

In the back reflection geometry, the beam comes through a hole in the film or 2D
area detector and hits the crystal planes in the single crystal sample as illustrated
in Figure 11.6. The crystal selects a particular wavelength that matches up to a
particular reflection of planes and spacings such that the scattered monochromatic
beam satisfies Braggs’ law. There are multiple wavelengths that are harmonics or
integer multiples of each other that make up a Laue spot i.e. 220, 440, 880, etc.
However, the diffraction intensity gets weaker for higher harmonics due to several
different factors, including the atomic scattering factor.

Back Reflection Laue

90◦ < 2θ < 180◦

45◦ < θ < 90◦

white
beam

  film

Figure 11.6: Back reflection Laue diffraction.
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11.3.2 Reciprocal lattice treatment of Laue method

In reciprocal space, there is a continuum of Ewald spheres due to the continuum
of wavelengths in the incident white beam. Recall that the Ewald sphere radius
equals 1

λ . All Ewald spheres touch the origin 000, as illustrated in Figure 11.7.
Note that this illustration shows cross sections of the Ewald spheres, and a cut of
the orthorhombic P reciprocal lattice.

Figure 11.7: Orthorhombic P reciprocal lattice in conjunction with smallest and
largest Ewald spheres for Laue method.

The incident wave vector is in the direction of S̄o, and its length is continuum over
some range due to the continuum of wavelengths in the incident beam. In the case of
Figure 11.8, the crystal is oriented in a fixed direction such that the [100] direction
is coincident with the incident beam. The wavelength range of this beam is from
the short wavelength limit set by the accelerating voltage to a rough upper limit of
2Å due to absorption effects.

Figure 11.8: Incident wave vector

λSWL < λ < 2Å

Looking back at Figure 11.7, the smaller sphere corresponds to the upper wavelength
limit of lower energy, and the larger sphere corresponds to the short wavelength limit
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of higher energy. Note that the radius of the small sphere is AO, and the radius
of the larger sphere is BO. The two radii correspond to the limits of the incident
wave vector S̄0, ranging in length from AO to BO.

⋄ AO < S̄0

λ < BO

⋄ AO = 1
2Å

= 0.5Å−1

⋄ BO = 1
λSWL

≈ 5Å−1

Consider the (1̄30) Bragg reflection, whose vector diagram is illustrated in Figure
11.9. Note that the length of the normalized incident wave vector is equal to that
of the normalized scattering vector due to their equal wavelengths. This (1̄30) re-
flection is allowed since its vector is between the minimum and maximum Ewald
spheres AO and BO in Figure 11.7. Note that the two vectors form an isosceles tri-
angle and that the scattering vector Q̄ is coincident with the reciprocal lattice vector
r̄∗1̄30. Since the 2θ angle is less than 90◦, this is the transmission Laue condition.

AB C
000

Figure 11.9: (1̄30) reflection

2θ < 90◦ →Transmission Laue

Now consider the (3̄1̄0) reflection illustrated in Figure 11.10 , in which 2θ is greater
than 90◦. This is a back reflection Laue condition. Note that the incident and
scattered wave vector form two legs of an isosceles triangle with their vertex at
some point between the smallest and largest Ewald spheres for the experiment.

000

Figure 11.10: 3̄1̄0 reflection

2θ > 90◦ →Back Reflection Laue

In general, the reciprocal lattice points outside the smallest Ewald sphere of radius
1
2Å

and inside the largest sphere of radius 1
λSWL

may produce Bragg reflections.

11.4 Structure Factor Examples

Recall that at the Bragg peak, the intensity relative to the intensity of one electron
scatterer is derived from the 3D interference function. The following equation yields
this relative peak intensity: I(eu) = FF ∗M2
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Here, M =M1M2M3 represents the number of unit cells that are diffracting, where
in three dimensionsM1, M2, andM3 define the number of unit cells along the three
distinct axes. The structure factor times its complex conjugate, |F |2, affects the
relative intensity of the Bragg peak, and is given by the summation of the individual
atomic scattering factors of the N atoms in the unit cell and their respective phase
factors.

F (Q̄) =

N−1∑
n=0

fn(Q)e2πiQ̄·r̄n (11.4)

Structure Factor for unit cell with N atoms

Recall that the individual atomic scattering factor has a form factor and anomalous
dispersion corrections, such that fn = (f0(

sin θ
λ ) + ∆f ′ + i∆f”)n. We will simplify

this by assuming that fn = (f0)n.

You should consider the eiϕ phase factor as a unit vector in the complex plane. If
two atoms scatter in phase, their unit vectors will point in the same direction in the
complex plane. If they scatter π out of phase, the unit vectors will point in opposite
directions. Of course, the relative phase between two scattered waves is variable,
not just 0 or π . Carrying this further, the above summation can be thought of as
summation of N vectors with lengths fn and phases 2πQ̄ · r̄n in the complex plane
added tail to head in sequence to get the final resultant vector.

The position of the nth atom is expressed as: r̄n = xnā+ ynb̄+ znc̄.

At the hkl Bragg peak the scattering vector coincides with the reciprocal lattice
vector r̄∗hkl. That is Q̄ = r̄∗hkl = hā∗ + kb̄∗ + lc̄∗. Thus, r̄∗hkl replaces the scattering
vector in the above structure factor equation such that

r̄∗hkl · r̄n = (hā∗ + kb̄∗ + lc̄∗) · (xnā+ ynb̄+ znc̄) = hxn + kyn + lzn.

Notice that all the cross terms vanished in this dot product between a reciprocal
space vector and real space vector because ā∗i · āj = δij . (Here the Kronecker delta
is defined as: δij = 1, if i=j and δij = 0, if i ̸= j.)

Therefore, the hkl structure factor for any 3D crystal system, including triclinic, is:

Fhkl =

N−1∑
n=0

fne
2πi(hxn+kyn+lzn). (11.5)

We will now put this formula to work for several simple crystal structures.

11.4.1 Primitive Unit Cell (P)

The simplest structure factor example is a primitive unit cell with one atom per
lattice point. This atom is placed at the origin for convenience.

1 atom/lattice point →N=1 xn = yn = zn = 0

Fhkl = f

(
sinθ

λ

)
= f

(
1

2dhkl

)
(11.6)
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11 RECIPRIOCAL SPACE 11.4 Structure Factor Examples

FF ∗ = f2, for − all − hkl. (11.7)

11.4.2 Body-Centered (I) Bravais Lattice

For the body-centered cubic, tetragonal, and orthorhombic Bravais lattices with
one atom per lattice point, there are N=2 atoms per unit cell. A 2D projection is
illustrated in Figure 11.11.

The 2 identical atoms are located at positions r1 and r2:

r̄1 = 000, r̄2 = 1
2
1
2
1
2

Figure 11.11: Body-centered (I) Bravais lattice

The following is the structure factor calculation for any body-centered Bravais lat-
tice with one atom per lattice point:

Fhkl = f
(
1 + e2πi(

h
2 +

k
2+

l
2 )
)
= f(1 + eπi(h+k+l)) (11.8)

If h+k+l is an even integer, the structure factor is equal to 2f because the two
atoms are scattering perfectly in phase.

Fhkl = f(1 + 1) = 2f (11.9)

for h+ k + l = 2n (even sum)

If h+k+l is an odd integer, the structure factor is zero, because the two atoms are
scattering perfectly out of phase.

Fhkl = f(1− 1) = 0 (11.10)

for h+ k + l = 2n+ 1 (odd sum)

Note:

enπi = (−1)n =

{
−1, for odd n

1, for evenn
(11.11)
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11.4.3 Base-Centered (C) Bravais Lattice

The base-centered lattices have two lattice points per unit cell. If there is 1 atom
per lattice point → N=2

The atoms are located at the following positions:

r̄1 = 000, r̄2 = 1
2
1
20

Plugging these positions into the structure factor equation yields the following:

Fhkl = f(1 + eπi(h+k)) = f(1 + (−1)h+k) (11.12)

Again, there are two cases, one in which the two atoms scatter perfectly in phase
and one in which they scatter perfectly out of phase.

Fhkl =

{
2f h+ k = 2n

0 h+ k = 2n+ 1
(11.13)

The l index does not turn off the Bragg condition.

11.4.4 Face-Centered (F) Bravais Lattice

For the face-centered lattice with one atom per lattice point, there will be four
atoms total in the non-primitive unit cell.

1 atom per lattice point → N=4

The atoms are located at the following positions within the unit cell:

r̄n =
{
000, 12

1
20, 0

1
2
1
2 ,

1
20

1
2

}

b

c

Figure 11.12: a-axis projection of a face-centered (F) Bravais lattice

The face-centered crystal with 1 atom per lattice point has the following structure
factor:

Fhkl = f(1 + eπi(h+k) + eπi(k+l) + eπi(h+l)) (11.14)

There are two distinct cases for the face-centered structure. That is, when the hkl
are unmixed (all even or all odd), then all four atoms scatter waves perfectly in
phase, and when the hkl are mixed (even and odd), then the four atoms scatter
waves cancel each other out in pairs.
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11 RECIPRIOCAL SPACE 11.4 Structure Factor Examples

Fhkl =

{
4f h, k, l unmixed

0 h, k, l mixed
(11.15)

For instance, the 022 planes would yield perfect constructive interference. While
the 011 planes would yield perfectly destructive interference.

F022 = 4f
(

1
2d022

)
, and F011 = 0

11.4.5 Hexagonal Closed Pack (HCP)

For the hexagonal closed-pack structure, there are two atoms of the same type per
lattice point. Recall that the unit cell is hexagonal primitive, and there are two
atoms in total. One atom is positioned at the origin 000 and the other atom is in
the 1

3
2
3
1
2 position.

Hexagonal-P Bravais Lattice

Ex. Zn, Ti, Mg

Figure 11.13: HCP structure

Using the hexagonal closed-pack atom locations yields the following structure factor:

Fhkl = f
[
1 + e2πi(

h
3 +

2k
3 + l

2 )
]
= f(1 + e2πiq), where q = h+2k

3 + l
2

The structure factor times its complex conjugate eliminates the imaginary terms
and simplifies the expression into the following:

FF ∗ = f2
(
2 + e2πiq + e−2πiq

)
= 2f2(1 + cos 2πq)

Because there are two atoms in the unit cell, we expect two extreme conditions -
one in which the two scatter perfectly out of phase and one in which the two scatter
perfectly out of phase. When the parameter q is an integer, cos 2πq will equal 1,
producing a very strong reflection due to constructive interference. If q is equal to
an odd integer, then 2πq will equal −1, yielding a total intensity of zero.

Squaring the magnitude of the structure factor yields the following expression:
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|F |2 = 4f2cos2πq = 4f2cos2
[
π

(
h+ 2k

3

)
+
l

2

]
(11.16)

1. l = 2n (even) AND h+ 2k = 3m

⇒ q = (m+ n) ∈ Z → cos2 πq = (±1)2 = 1

|F |2 = 4f2 e.g., (002), (112), ... very strong (in-phase scattering)

2. l = 2n AND h+ 2k = 3m± 1 ⇒ q = (m+ n)± 1
3 = m′ ± 1

3

cosπq = cosπm′ cos π
3 ± sinπm′ sin π

3 = cos π
3 = 1

2

|F |2 = f2 e.g., (102), (200), (100)...weak reflection

3. l = 2n + 1 (odd) AND h + 2k = 3m ⇒ q = n + 1
2 +m = m′ + 1

2→ cosπq =
cosm′π cos π

2 − sinm′π sin π
2 = 0

|F |2 = 0 e.g., (001), (111), ... forbidden reflection

4. l = 2n+ 1 AND h+ 2k = 3m± 1 ⇒ q = n+ 1
2 +m± 1

3 = m′ ± 1
6

|F |2 = 3f2 e.g., (103), (013), (101)... strong reflection

Therefore, there are four types of diffraction peak intensities for this hexagonal
closed pack structure, ranging from forbidden reflections to very strong reflections.

11.4.6 More than one atom type per unit cell

We will now analyze the case of more than one atom type per unit cell such as the
rock-salt lithium fluoride structure.

LiF → NaCl structure FCC

The following indices locate the lithium and fluorine atoms within the face centered
cubic unit cell:

Li+at 000 + fct

F−at 1
200 + fct

fct =
{
000, 12

1
20, 0

1
2
1
2 ,

1
20

1
2

}
The structure factor is given by the following equation:

Fhkl =
∑8

n=1 fne
2πi(hxn+kyn+lzn)

Fhkl = fLi+
(
1 + eπi(h+k) + eπi(k+l) + eπi(h+l)

)
+

fF−e2πi
h
2

(
1 + eπi(h+k) + eπi(k+l) + eπi(h+l)

)
Fhkl =

⋄ 4(fLi+ + fF−) for h, k, l all even →(200), (222), etc.

⋄ 4(fLi+ − fF−) for h, k, l all odd →(111), (311), etc.

⋄ 0 for h, k, l mixed →(210), (001), etc.
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Recall, in the lab that you saw: a strong (200), weak (111), & forbidden (100) for
LiF powder diffraction.

Note that the Laue method is useful for finding the symmetry of crystal orienta-
tions, but not useful for finding the lattice constant due to a variable wavelength.
Furthermore, the Laue spot position is independent of the length of r∗ and only
dependent on its direction.

Figure 11.14: Laue spot position

11.5 Width of Diffraction Peaks (single crystal)

Reciprocal lattice points have dimensions which are inversely proportional to the
size of a crystal in a given direction. ∝ 1

aM1
, 1
bM2

, 1
cM3

Figure 11.15: Diffraction peak intensity vs Q based on 1D interference function.

Recall the 3-D Interference Function whoseM1 component is given by the following:

sin2(M1πQ̄ · ā)
sin2(πQ̄ · ā)

(11.17)

The numerator in the function causes the subsidiary oscillations and set the Bragg
peak widths of the diffraction pattern, whereas the denominator causes the Bragg
peaks to occur. When M1, M2, and M3 are small numbers, there is visibly broad-
ening of the peaks in the diffraction pattern. There is also a decreased peak height,
which varies as M2. The reciprocal lattice points which were previously assumed
infinitesimal, now have a breadth related to the width of the Bragg peaks as shown
in the two dimensional projection of Figure 11.16. Note that the size of the crystal
may be different in the a and b directions.
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11 RECIPRIOCAL SPACE 11.5 Peak Width

Figure 11.16: Widths of reciprocal lattice points to account for crystal size in the
ā and b̄ directions.

For a θ−2θ scan along the r̄∗100 direction, the diffraction peak width is proportional
to the breadth of reciprocal lattice spot in r̄∗100 direction or 2

aM1
. The full width half

max ∆θ length is estimated by Scherrer’s Formula,

∆θFWHM = ϵ1/2(radians) =

(
ln2

π

)1/2
λ

Dhklcosθ
=

0.47λ

Dhklcosθ
, (11.18)

Scherrer’s Formula

where Dhkl is the crystal size (or X-ray coherence length) in the r̄∗hkl direction.

e.g., D100 = aM1

If crystallites, such as those in a powder sample, are on the order of a tenth of a
micron, then the width of the peak will be one milliradian. D ≈ 1000Å → ϵ1/2 ≈
1mrad = 0.06◦

Therefore when measuring a diffraction pattern, you first locate the peaks which
give information about the lattice constant and symmetry of the crystal. The shape
of the peak is an indicator of the crystal size in different directions.

Each Bragg peak maximum is given by I
(eu)
hkl = |Fhkl|2M2, where Fhkl is affected

by atomic positions in the unit cell.

Each Peak Width → crystal size

In addition, crystal size may be determined from a transverse or longitudinal scan.

Dhkl from θ− 2θ scan (longitudinal scan) D(hkl)⊥ from ω scan (transverse scan) at
fixed 2θ.

What else can affect the height and width of the diffraction peaks?

⋄ Angular divergence of the incident beam - if an incident beam is very divergent

⋄ Crystal defects - affects the width of the peak

To smooth over these two effects, we use angle integrated peak intensities to find
relative values of |F |2 (then compare to calculated |F |2 from model).
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11.6 Transverse scan (ω − scan) ≡ rock crystal through peak
with 2θ fixed

In a transverse scan through an hkl point in reciprocal space, the incident angle
ω is varied and 2θ is fixed at the Bragg condition, such that Q= 1

dhkl
or 2θ =

2sin−1( λ
2d ). This experimental setup is illustrated in Figure 11.17 below. in which

case the reciprocal lattice points rotate about 000, as illustrated by the black dashed
lines on the left side of Figure 11.17. Since 2θ is restricted to the width of the slit, the
Ewald sphere intersection with lattice point at 010 will produce a line of points that
does not capture the entire integrated intensity of the reciprocal lattice ellipsoid.
Recall that this is a two dimensional projection, and that the line of points depicted
by a horizontal red line across the blue ellipse in Figure 11.17, is actually a plane
intersection of the 010 reciprocal lattice ellipsoid. If we remove the slit and do the
same scan across ω, the entire intensity is captured, as illustrated by the red ellipse
in Figure 11.17. This is an angle integrated scan.

Figure 11.17: Transverse Scan through the 010 reciprocal lattice point with and
without a slit.

The integrated counts or the energy in a peak is given by the following equation:

Ihkl =
I0
ω′
r2eF

2 λ
3

V 2
uc

(
1 + cos22θ

2sin2θ

)
δV (11.19)

ω′ = dω
dt ≡ angular velocity of crystal rotation, a step rotational scan is now used

ω′ = ∆ω
∆t ≡

angular step size
time per step → step rotational scan, a faster scan yields fewer counts

Vuc = unit cell volume Vuc = (V ∗uc)
−1

δV ∝M1M2M3 = Effective volume of irradiated sample(
1+cos2 2θ

2

)
=Polarization Factor for unpolarized beam

(sin 2θ)−1 = Lorentz Factor for single crystal diffraction with constant ω′, θ ∝ time
taken to sweep Ewald sphere through a relative point (reciprocal lattice point)

Note that the tangential velocity of relative point through Ewald sphere is given by
ω′r̄∗hkl.
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11 RECIPRIOCAL SPACE11.7 Polycrystalline Aggregate (Powder sample)

In Figure 11.18, notice that the 200 and 400 diffraction conditions are scanned at
different speeds due to the geometry of the Ewald sphere . The intensity for the
200 lattice point will be greater because the Ewald sphere travels and scans more
quickly through this point yielding a smaller intensity relative to the 400 lattice
point.

This is another reason why I200 > I400 for LiF

Figure 11.18: r̄∗200 vs r̄∗400 scan

11.7 Polycrystalline Aggregate (Powder sample)

In the powder method, the crystal is reduced to a fine powder of thousands
of randomly oriented small single crystalline grains to be placed in a beam of
monochromatic X-rays. In reciprocal space, this random orientation results in a
set of concentric spherical shells centered at 000 with radii r∗hkl. The illustration in
Figure 11.19 below illustrates a reciprocal lattice vector range from r∗200 to r∗400.

000

Figure 11.19: Ewald spheres for powder sample

The surface density of hkl relative points is equal to the number of crystallites
divided by the surface area of the spherical shell.

⋄ Surface density ∝ N
4πr∗2hkl

We assume that since the powder sample is isotropic, each sphere has uniform
surface density. For a textured sample a preferred direction exists and the density
is non-uniform.
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11 RECIPRIOCAL SPACE11.7 Polycrystalline Aggregate (Powder sample)

11.7.1 Ewald construction

Note: for one r∗hkl with uniform density

The Ewald sphere for one r∗hkl with uniform density is illustrated in Figure 11.20
below. This blue Ewald sphere has a definite center and radius, and the monochro-
matic incident beam s̄0

λ passes through its center to hit the origin of the sample’s
reciprocal lattice sphere at 000. The intersection of the Ewald sphere and the sam-
ple’s sphere for one r∗hkl, marked by the red dashed circle, represents the entire
set of allowed scattered wave vectors s̄

λ that will emanate from the center of the
Ewald sphere. This circular locus of points will produce a diffraction cone of scat-
tered wave vectors beginning from the origin of the Ewald sphere and ending at
the circular intersection of the two spheres. In a small slit powder diffractometer,
only a segment of the circle is captured as the slit scans around 2θ. Placing a film
downstream from the sample would show the entire Bragg ring.

000

Locus of             points satisfying
Laue condition

powder

Bragg
powder cone
for a given

Figure 11.20: Ewald construction for powder method

This satisfies the Laue condition in which the scattering vector is equal to a specific
reciprocal lattice vector of the sample.

s̄−s̄0
λ = r̄∗hkl

11.7.2 Calculated Diffracted Intensity (Power)

P = I0
cosθ

2
r2eF

2 λ
3

V 2
uc

(
1 + cos22θ

2sin2θ

)
NδV (11.20)

This is for entire Bragg Ring of circumference:

C = 2πR(sin 2θ), cos θ ∝ locus circle
great circle of r∗

Figure 11.21: Spherical film of radius R

A horizontal diffractometer with 2θ detector slit at R and vertical slit height l
records a fraction of the Bragg ring l

2πR sin 2θ .
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11.7.3 Multiplicity Correction

The case of multiplicity occurs when different combinations of hkl have the same
same r∗hkl length in reciprocal space. Since these all contribute to the same spherical
shell, then the overall intensity of the diffraction condition will be greater.

E.g. Cubic:

r∗100 = r∗010 = r∗001 = r∗1̄00 = r∗01̄0 = r∗001̄ = 1
a

∴ m100 = 6, mh00 = 6

Note: C&S m → p

11.7.4 Powder Diffraction Intensity

Adding in the multiplicity correction factor, the measure of the power for a diffrac-
tion condition of a given hkl is given by the following:

P ′hkl =
I0l

16πR
r2e
λ3

V 2
uc

F 2
hklmhkl

(
1 + cos22θ

sin2θsinθ

)
V s (11.21)

WhereVs = effective sample volume NδV and LP = 1+cos2 2θ
sin 2θ sin θ =

Lorentz-Polarization factor for powder diffraction

Note: sin 2θ = 2 sin θ cos θ

Why do we use a symmetric reflection geometry for powder diffraction, if the random
orientation of the crystals in the powder allow for various sampling angles and
diffraction conditions at once?

(i.e. ω = θ = 2θ
2 or θ − 2θ scan)

11.7.5 Absorption Effects

Recall that the linear absorption coefficient is represented by µ and that the absorp-
tion length of a material is given by 1

µ . A low Z material like water or a hydrocarbon

has a longer absorption length 1
µ than a solid metal.

Consider a large planar sample with thickness t in reflection geometry as illustrated
in Figure 11.22. The incident beam with area A across enters at an angle α, and
scatters from a differential volume at some depth z. The 2θ detector is lined up to
pick up the scattered intensity at the angle β. In general, α and β do not have to
be equal.

dz
z

 

A

z t

Figure 11.22: Planar sample in reflection geometry

Northwestern—Materials Science and Engineering 130
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the beam area produces a projected area of the slab that is A/ sinα

Therefore the volume element is given by dV = A
sinαdz

The diffracted intensity at depth z is given by the following:

dIz = C
A

sinα
dzI0e

−uz/sinαe−uz/sinβ (11.22)

There is an absorption effect that attenuates the beam as it enters and exits sample,
which is accounted for by the following two transmission factors:

e−uz/ sinα- in transmission factor

e−uz/ sin β- out transmission factor

To calculate the total intensity, we integrate over the total thickness:

I =

∫ t

0

dIz = I0C
A

µ

(
1 +

sinα

sinβ

)−1
(11.23)

Assuming the thickness is much greater than the attenuation length, or µt ≫ 1 -
for a typical oxide material this thickness is about 0.5 mm.∫ t

0
dIz =

∫∞
0
dIz “t” drops out by assuming µt≫ 1 or t→∞

For symmetric reflection α = β = θ→ I = I0C
A
2µ

A
2µ = effective volume = Veff

Note that the effective volume, Veff , is constant and independent of θ for α = β =
θ. As you increase the angle in this geometry, you are increasing the depth but
decreasing the effective area. Therefore, it is convenient to use symmetric reflection
geometry for a powder diffraction experiment, in order to be able to avoid varying
absorption effects from a varying effective volume.

We could also do diffractometry in symmetric transmission mode as illustrated in
Figure 11.23.

We want as much material in front of the beam to yield a high scattering intensity,
but we also want a small enough thickness to avoid too much absorption. There
is an optimal thickness in this transmission geometry, 1

µ , that yields the maximum

scattering compromised correctly with the absorption. Recall that 1
µ is the absorp-

tion length.

Effective Volume: At
cos θ e

−µt
cos θ

Here,Veff depends on θ.

Northwestern—Materials Science and Engineering 131



11 RECIPRIOCAL SPACE11.7 Polycrystalline Aggregate (Powder sample)

Figure 11.23: Transmission geometry

11.7.6 Summarize: Powder diffractometer in symmetric reflection ge-
ometry

The area under the diffraction peak is proportional to:

Ihkl = |Fhkl|2mhkl

(
1 + cos22θ

sin2θcosθ

)
e−2M (11.24)

Fhkl- structure factor hkl and sin θ/λ

mhkl- multiplicity (hkl)(
1+cos2 2θ
sin2 θ cos θ

)
- Lorentz polarization factor, θ

e−2M - temperature dependent Debye-Waller factor sin θ/λ accounting for atomic
vibrations

Our objective is to measure the integrated intensities Ihkl’s and use the structure
factor Fhkl’s to determine the crystal structure.

At extreme angles, the Lorentz polarization factor has a considerable effect, as
shown in Figure 11.24.

LP =
(

1+cos2 2θ
sin2 θ cos θ

)←Polarization correction

←Geometrical correction
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Figure 11.24: Lorentz polarization factor. LP vs. θ

11.7.7 Multiplicity Factor

mhkl: number of (hkl) planes in the {hkl} family for a given crystal system

Example:

0kk

022 02̄2̄
202 2̄02̄
220 2̄2̄0
022̄ 02̄2
202̄ 2̄02
22̄0 2̄20

Cubic → m0kk = 12, since all 12 |r∗|’s are equal

triclinic a ̸= b ̸= c, α ̸= β ̸= γ

r∗022 ̸= r∗220 triclinic mhkl = 2

r∗022 = r∗02̄2̄ Since only r∗
h̄k̄l̄

= r∗hkl

See Cullity and Stock Appendix 11
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Cubic: hkl
48∗

hhl
24

0kl
24∗

0kk
12

hhh
8

00l
6

Hexagonal
and Rhom-
bohedral:

hk·l
24∗

hh·l
12∗

0k·l
12∗

hk·0
12∗

hh·0
6

0k·0
6

00·l
2

Tetragonal: hkl
16∗

hhl
8

0kl
8

hk0
8∗

hh0
4

0k0
4

00l
2

Orthorhombic: hkl
8

0kl
4

h0l
4

hk0
4

h00
2

0k0
2

00l
2

Monoclinic: hkl
4

h0l
2

0k0
2

Triclinic: hkl
2

Table 10: Multiplicity factors for powder XRD data

11.7.8 Indexing Powder Diffraction Patterns

We can determine r∗hkl lengths (not directions) from experimentally measured θ′s
and a known λ using the following relationships:

2sinθhkl
λ

= r∗hkl = (r̄∗ · r̄∗) 1
2 (11.25)

= [(ha∗)2+(kb∗)2+(lc∗)2+2hka∗b∗cosγ∗+2klb∗c∗cosα∗+2hla∗c∗cosβ∗]
1
2 (11.26)

First index the series of peaks (i.e. determine (hkl)n), then determine the lattice
constants of the Bravais lattice : a, b, c, α, β, γ

Initially check for cubic, the simplest case, where a = b = c, α = β = γ = 90◦ .

Cubic: r∗
2︸︷︷︸

measured

= a∗
2

[h2 + k2 + l2]︸ ︷︷ ︸
unknown

subject to Bravais lattice conditions.

See Cullity and Stock,[? ] Appendix 9 - also shown below in Table 11.
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h2 + k2 + l2 hkl P F I Diamond

1 100 x
2 110 x x
3 111 x x x
4 200 x x x
5 210 x
6 211 x x
7
8 220 x x x x
9 300,221 x,x
10 310 x x
11 311 x x x
12 222 x x x
13 320 x
14 321 x x
15
16 400 x x x x

Table 11: Determining cubic unit cells from h2 + k2 + l2. ”x” indicates an allowed
hkl reflection for a listed cubic Bravais lattice, P, F, or I, or for Diamond.

Therefore, we can check for pattern in the sequence of measured r∗2 values, which
are proportional to h2 + k2 + l2, and relate these to the corresponding unit cells
using Table 11.

If {r∗2i } =

C{1, 2, 3, 4, 5, 6, 8, ...} → Cubic-P

C{1, 43 ,
8
3 ,

11
3 , 4, ...} → Cubic-F

C{1, 2, 3, 4, 5, 6, 7, 8} → Cubic-I

C{1, 83 ,
11
3 ,

16
3 ,

19
3 , ...} → Diamond

Note that we need to measure r∗ = 2 sinϑ/λ for at least the first seven peaks to
distinguish between Cubic-P and Cubic-I.

Tetragonal and hexagonal (“uniaxial”)

Tetragonal: r∗2hkl = a∗2(h2 + k2) + c∗2l2 = a∗2
[
(h2 + k2) +

(
c∗

a∗

)2

l2
]

Hexagonal: cos γ∗ = 1
2

r∗2hkl = a∗2(h2 + k2 + hk) + c∗2l2 = a∗2
[
(h2 + k2 + hk) +

(
c∗

a∗

)2

l2
]

(
c∗

a∗

)2

=
(
a
c

)2
is unknown

is 1st peak ?:

100 or 001 (P)
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11 RECIPRIOCAL SPACE11.7 Polycrystalline Aggregate (Powder sample)

110 or 002 (Tetragonal I)

100 or 002 (HCP)

sin2 θ = λ2

4 r
∗2
hkl = A(h2 + k2) + Cl2 ← Tetragonal

A(h2 + k2 + hk) + Cl2 ← Hexagonal

11.7.9 Example 1

λ = 1.542Å

Line No. sin2 θ (sin2 θ)n
(sin2 θ)1

h2 + k2 + l2 hkl

1 0.0603 1 3/3 3 111
2 0.1610 2.67 8/3 8 220
3 0.221 3.67 11/3 11 311
4 0.322 5.34 16/3 16 400
5 0.383 6.35 19/3 19 331
6 0.484 8.03 24/3 24 422
7 0.545 9.04 27/3 27 333
8 0.645 10.7 32/3 32 440

Table 12: Indexing Powder Patterns, Example 1

Ratios →Cubic

(sin2 θ)n
(sin2 θ)1

= (h2+k2+l2)n
(h2+k2+l2)1

unmixed hkl: Cubic F

h+ k + l ̸= 4n± 2: diamond cubic

What is “a”?

r∗400 = 16a∗2 = 16
a2 = 4 sin2 θ400

λ2

a = 4λ
2 sin θ400

= 2×1.542Å
(0.322)1/2

= 5.434Å

Silicon a=5.431Å

11.7.10 Example 2

λ = 1.542Å
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11 RECIPRIOCAL SPACE11.7 Polycrystalline Aggregate (Powder sample)

Line No. sin2 θ (sin2 θ)n
(sin2 θ)1

nA+mC (sin2)calc hkl

1 0.0806 1.00 A+C 0.0806 101
2 0.0975 1.21 4C 0.0976 002
3 0.1122 1.39 2A 0.1124 110
4 0.210 2.61 2A+4C 0.210 112
5 0.226 2.80 4A 0.225 200
6 0.274 3.40 A+9C 0.276 103
7 0.305 3.78 5A+C 0.306 211
8 0.321 3.98 4A+4C 0.323 202

Table 13: Indexing powder patterns, example 2

Ratios →not cubic

Note Relations:

(4)=(2)+(3)

(5)=2(3)

(7)=(5)+(1)

(8)=4(1)

Assume Tetragonal:

sin2 θ = A(h2 + k2) + Cl2

Tetragonal P→(1) = 100 or 001

No peak at 2(1) →not P

2(1) =110, if (1) = 100

Tetragonal I: (1) =110,101, or 002

Try (1)=101 → sin2 θ = A+ C

sin2 θ = A(h2 + k2)n + C(l2)n

hk 00 10 11 20 21 22 30 31 32 ... l 0 1 2 3 4 ...

h2 + k2 0 1 4 5 8 9 10 13 ... l20 1 4 9 16 ...

If (1) = 101 = A+ C → (2) = 002 = 4C *

If (1) = 002 = 4C → (2) = 101 = A+ C
If (1) = 110 = 2A → (2) = 101 = A+ C

}
Think about it

Try:

(2)→ 4C = 0.0975
(1)→ A+ C = 0.083

}
A = 0.0562, C = 0.0244

Note (3) = 2A→ 110 = A(12 + 12) + C(02)

Check to see if each (sin2 θ)n = A(h2 + k2)n +Cl2n for A = 0.0652 and C = 0.0244

Conclusion: Tetragonal I
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11 RECIPRIOCAL SPACE11.7 Polycrystalline Aggregate (Powder sample)

Lattice constant: a=? c=?

(2)→ 2c∗ = 2
c = 2 sin θ002

λ ⇒ c = λ
sin θ002

= 1.542Å

(0.0975)
1
2
= 4.94Å

(3)→
√
2a∗ =

√
2
a = 2 sin θ110

λ ⇒ a = λ√
2 sin θ110

= 3.62Å Indium

Procedure for hexagonal similar to tetragonal except:

(sin2 θ)n = A(h2 + k2 + hk)n + l2C

where h2 + k2 + hk = {0, 1, 3, 4, 7, 9, 12, 13, ...}

Indexing difficulty increases as crystal symmetry decreases: need computer

Note: When Kα1 and Kα2 are unresolved (at lower 2θ), use weighted average
λKα = 2/3λKα1 + 1/3λKα2

= 1.5418Å

At higher 2θ, Kα1 and Kα2 may be resolved, use correct λKα1 and λKα2, not λKα

11.7.11 Quantitative Analysis

Recall: Ihkl = C|Fhkl|2mhkl

V 2
C
LP A

2µ , ignore e−2M

Consider a 2 phase powder with:

vA = volume fraction of phase A, 1− vA = vB = volume fraction of phase B

Phase A diffraction peaks

IA = C

[
|Fhkl|2

mhkl

V 2
C

LP

]
A

vA
A

2µ
= CKAvA

A

2µ
(11.27)

KA varies with hkl

µ varies with vA

Phase B diffraction peaks

IB = CKB(1− vA)
A

2µ
(11.28)

µ is the same

Hence,
IA
IB

=
KA

KB

vA
(1− vA)

(11.29)

To determine the volume fraction for a mixture of 2 powder crystalline phases A&B

IA
IB︸︷︷︸

measure

=

calculate︷︸︸︷
KA

KB

vA
(1− vA)︸ ︷︷ ︸

determine vA

(11.30)
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11 RECIPRIOCAL SPACE 11.8 Rotating Crystal Method

The relative intensities of peaks for each phase should be checked to ensure an
ideally random powder sample. Texture will cause errors in quantitative analysis.

In the analysis of the integrated area under the diffraction peaks, the Debye-Waller
factor, e−2MA ; e−2MB , may be included if known. The two different phases are
made up of atoms in two different lattices with different vibrational amplitudes.
The vibrational amplitude M is given by the following:

M =
2π2

〈
u2hkl

〉
d2hkl

(11.31)

Here
√
⟨u2hkl⟩ is the root-mean-square (rms) vibrational amplitude in the hkl di-

rection. These vibrations are typically isotropic with a magnitude of ≈0.1Å. An
increase in temperature increases the vibrational amplitude of atoms.

11.8 Rotating Crystal Method

In the rotating crystal method, a single crystal is mounted with an axis that
is normal to a monochromatic beam. A cylindrical film encloses the single crystal,
which records a diffraction pattern as the crystal is rotated. This setup is illustrated
in Figure 11.25. Whereas older films required chemical exposure to develop, X-ray
sensitive image plates are used today, and diffraction patterns are read out by a
laser.

In this procedure, the crystal is rotated smoothly about a chosen axis that coincides
with the axis of the film cylinder and different planes cause diffraction peaks at
points in the rotation. Diffraction peaks occur when a set of lattice planes make
the correct Bragg angle for reflection. In the setup illustrated in Figure 11.25,
prior to inserting the crystal in the camera, the c-axis of the crystal’s unit cell was
determined and the crystal is then rotated about this axis. Due to this rotation
about the c-axis, the spots appear in layers with heights according to constant l
index values. All of the center spots are hk0 .

The rotating crystal method helps determine the structure of a crystal in an orga-
nized manner, and is useful for methods where a single crystal can be attained as
well as when the c and c∗ axes of a crystal’s unit cell coincide with each other.

11.8.1 Rotating Crystal Method

1. Monochromatic X-ray beam diffraction from single crystal surrounded by film
cylinder.

2. The crystal continually rotated about the axis that coincides with film cylinder
axis

3. If rotation axis = unit cell axis (e.g., c̄) then reflection pattern (spots) on film
form circles at heights corresponding to constant (e.g., l)

⋄ This is for unit cells where c∗|| c
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11 RECIPRIOCAL SPACE 11.8 Rotating Crystal Method

Figure 11.25: Rotating crystal method using a cylindrical camera.

Figure 11.26 below illustrates a developed rotating-crystal film of a quartz crystal.
The extra streaks around the center of the pattern are due to Bremsstrahlung
radiation not removed by the filter.

Figure 11.26: Rotating-crystal pattern of a quartz crystal (hexagonal) rotated about
its c axis. Filtered copper radiation. (Courtesy of B.E. Warren.)

11.8.2 Reciprocal Lattice Treatment of Rotating-Crystal Method

How do we picture the rotating-crystal method in reciprocal space? Visualizing the
method in reciprocal space, the Ewald sphere is the instrument, and the reciprocal
lattice structure is the crystal sample. An orthorhombic crystal crystal centered at
the Ewald sphere may be rotated about the c-axis, as illustrated in Figure 11.27
Recall that the incident wave vector always points from the center of the Ewald
sphere to the origin of the reciprocal lattice. If the crystal is rotating about the
c-axis, then reciprocal lattice rotates about its c̄∗ or b̄3 axis. A diffraction peak will
appear when a reciprocal lattice point touches the Ewald sphere. In this camera,
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11 RECIPRIOCAL SPACE 11.8 Rotating Crystal Method

all diffracted beams will be detected and recorded except those that travel close to
the cylinder’s central axis and miss the film.

b̄1 = ā∗, b̄2 = b̄∗, b̄3 = c̄∗

Figure 11.27: Rotating crystal method in reciprocal space

⋄ The reciprocal lattice rotates about r̄∗100 = c̄∗ as the crystal rotates about c̄.

⋄ Spots appear on the film when reciprocal lattice points coincide with the
Ewald sphere.

⋄ Recall the Laue condition, when S̄
λ −

S̄0

λ = Q̄ = r̄∗hkl

We will divide the scattering vector into horizontal and vertical components, r̄∗H
and r̄∗V .The α and β angles determine the in plane and out of plane components of
r̄∗hkl.

r̄∗ = r̄∗H + r̄∗V
Horizontal and Vertical components

α =In-Plane Angle
β =Elevation Angle

Chicago = 88◦W, 42◦N

Figure 11.28: Ewald sphere geometry

After the scattered diffracted beam places various spots on the film, the film is
unrolled and the specific x and y coordinates of these characteristic spots are noted.
Using these coordinates and the radius of the cylinder, α and β may be determined
using the following equations:
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11 RECIPRIOCAL SPACE 11.8 Rotating Crystal Method

tanβ − y/R (11.32)

α = x/R (11.33)

|r⃗∗V | =
(
1

λ

)
sinβ (11.34)

|r⃗∗H | = |ha⃗ ∗+k⃗b ∗ |2 =
1

λ2
[2(1− cosαcosβ)− sin2β] (11.35)

Example: λ = 1.542Å,a∗ = 0.25Å−1, b∗ = 0.15Å−1, c∗ = 0.36Å−1, and R = 50 mm

000

Ewald
Sphere

R = 50 mm

x

y

Figure 11.29: Convert x,y coordinates of film spot to α, β

11.8.3 Ewald Construction for Rotating Crystal Method

In the rotating crystal method, the diffraction spot positions (x, y coordinates) are
experimentally determined and the film cylinder radius is known. The y coordinate
gives the layer line, such as l = 0, l = ±1, etc. and the x coordinate indicates where
this spot is located on the layer line. Using these values, we can determine the
in-plane (α) and elevation (β) angles, as well as information about the scattering
vector which is coincident with the reciprocal lattice vector for a diffraction spot.
Geometric relationships using the Ewald sphere are pictured in Figure 11.20 below.

Define angles:

α = x/R→ in-plane angle

tanβ = y/R→ elevation angle

Separate r̄∗hkl = r̄∗H + r̄∗V
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11 RECIPRIOCAL SPACE 11.8 Rotating Crystal Method

|r⃗∗V | =
∣∣∣ S̄λ ∣∣∣ sinβ → λr∗V = sinβ

Note: cos 2θ = cosα cosβ

λ2(r∗H)2 = 2(1− cosα cosβ)− sin2 β

Bragg’s law below

(r∗hkl)
2 = (r∗H)2 + (r∗V )

2 = 4 sin2 ϑ
λ2

Figure 11.30: Ewald sphere for rotating crystal method

A. For hexagonal, tetragonal, cubic, orthorhombic, etc., where c̄ coincides with
c̄∗, measuring the y coordinate allows us to calculate the elevation angle, and the
vertical component of the scattering vector y → β → r∗V ⇒ r∗00l → c determined
directly

By remounting the crystal to rotate about ā or b̄, we can determine a and b.

B. Indexing a reflection in layer line

For a given layer line, β is constant.

r̄∗H = hā∗ + kb̄∗for l = constant layer line

λ2(r∗H)2 = [h2(a∗)2 + k2(b∗)2 + 2hka∗b∗ cos γ∗]λ2

= 2(1− cosα cosβ)− sin2 β

α = x/R tanβ = y/R

∴ x, y → r∗H , r
∗
V

11.8.4 Bernal Chart

The Bernal chart is a graphical method that aids in the conversion the x and y
coordinates of diffraction spots to λr∗H , λr

∗
V . This graphical aid can be superimposed

on the film roll, as shown in Figure 11.31 below.

Graphical method for converting x, y → λr∗H , λr
∗
V

Horizontal Lines→ constant l for c̄ axis rotating λr∗H lines equally incremented from
0 to 2.0. The maximum is when 2θ = π λr∗H = 0 → x = 0 → α = 0 → hk = 00
λr∗H = 2→ x = πR→ α = π → r∗ = r∗H = 2

λ for l = 0

Start with l = 0 layer
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11 RECIPRIOCAL SPACE 11.8 Rotating Crystal Method

⋄ Assume a∗ = b∗, γ∗ = 90◦ → 1
a (h

2 + k2)
1
2

⋄ Assume a∗ ̸= b∗, γ∗ = 90◦ → r∗H =
(

h2

a2 + k2

b2

)1/2

Figure 11.31: Schematic view of film overlain on a Bernal chart. Note that the
X-ray diffraction spots lie along rows of constant ξ and ζ. (Only a few possible
reflections are indicated)
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11 RECIPRIOCAL SPACE 11.8 Rotating Crystal Method

Figure 11.32: C-axis rotation photograph

Once the lattice constants and orthorhombic unit cell have been determined, index
and determine Lattice Type: P, I, C, F.

Measure X and Y from the film

R = 50 mm , λ = 1.542Å

For l = 0 layer, → β = 0→ r∗H = 1
λ

√
2(1− cosα)
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X [mm] α = X/R α[◦] r∗H [Å−1] hkl

22.4 0.488 25.67 0.288 110
23.3 0.466 26.70 0.299 020
39.6 0.792 45.38 0.500 200
40.8 0.816 46.75 0.515 130
46.6 0.932 53.40 0.583 220
48.1 0.962 55.12 0.600 040
63.1 1.262 72.31 0.765 310
64.6 1.292 74.03 0.781 240
65.5 1.31 75.06 0.790 150
74 1.48 84.80 0.875 330
76.7 1.534 87.89 0.900 060
88 1.76 100.84 1.000 400

r∗Hdefines radius of circle in the l = 0 reciprocal space plane

Table 14: Conversion of X to hkl

Figure 11.33 below demonstrates the graphical solution for layer l = 0.

Plot hk0 lattice: a∗ = 0.25Å−1 & b∗ = 0.15Å−1

Plot circles with radii r∗H , shown in Figure 11.33 below.

The blue squares represent the reciprocal lattice points corresponding to the planes
that caused diffraction to occur.

a*

b*

000

020

200

110

400

060

240

Figure 11.33: Graphical Solution for r∗H = h2a∗2 + k2b∗2

Repeat this procedure for l = 1 layer → β = tan−1(y/R)

r∗H =
1

λ

√
2(1− cosαcosβ − sin2β (11.36)
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12 Temperature Effects

The atoms in a crystal vibrate about equilibrium lattice positions, even at 0◦K,
and the vibrational amplitudes increase as temperature increases. With increasing
atomic kinetic energies, the unit cell expands, and the lattice constant becomes
greater. This temperature effect, also known as the Debye-Waller effect, affects the
area under diffraction peaks even at room temperature. It is important to account
for this effect since the area under diffraction peaks gives information about the
crystal structure via the structural factor.

Figure 12.1 illustrates a simple model of interatomic spacing in a crystal as a func-
tion of energy, in which the red dots indicate the average interatomic distance. Note
that as temperature and energy increase, the width of the potential well widens to
the right, towards a greater separation distance. An increase in temperature leads
to a sampling of higher energies in the potential well and a lattice expansion, as
indicated by the red dots in the plot. The width bounded by the two walls of the
potential also increases, allowing the atoms to take greater path lengths and have
greater vibrational amplitudes.

Figure 12.1: A simplified description of the potential well for bonding two neigh-
boring atoms. There is a hard-sphere repulsion due to Pauli-exclusion at short inter-
atomic separation. The widening of the well as kinetic energy (temperature) increases
leads to increased vibrational amplitude. The asymmetry of the well leads to thermal
expansion as temperature increases.

12.1 Describe a crystal in terms of a primitive unit crystal.

Considering a crystal of M primitive unit cells, the R̄′m will replace the former
lattice point position vector, which now includes an extra factor - a time-dependent
displacement vector for each atom.

⋄ For simplicity sake, we will assume one atom per lattice point at the origin

⋄ Let M =M1M2M3 = # of unit cells

⋄ Let m = {m1m2m3} = unit crystal index

⋄ Let R̄m = lattice point position vector to locate origin of the mth unit cell

⋄ Let R̄′m(t) = R̄m + ∆̄m︸︷︷︸
△≡instantaneous displacement changing in time

(t)
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12 TEMPERATURE EFFECTS 12.1 Primitive Unit Crystal

Atoms can vibrate longitudinally or transversely, as shown in the figures below.

Figure 12.2: Transverse Wave

The summation of the coherently scattered wave intensities in electron units from
M atoms for a crystal with one atom per unit cell is given by the following:

I(eu)(Q̄) =

[
M∑
m

fme
2πiQ̄·R̄′

m

][
M∑
m

fme
−2πiQ̄·R̄′

m

]
=

M∑
m

M∑
n

fmfne
2πiQ̄·(R̄′

m−R̄
′
n)

(12.1)

Assuming all of the atoms are the same, the fm and fn terms may be factored out
of the summation. Adding in the time-dependent Debye-Waller factors yields the
following:

I(eu)(Q̄) = f2
∑
m

∑
n

e2πiQ̄·(R̄m−R̄n)e2πiQ̄·(∆̄m−∆̄n) (12.2)

Recall that Q̄ is the scattering vector coincident with r̄∗hkl under the hkl Bragg
diffraction (or Laue) condition.

Figure 12.3: Scattering vector and ∆

Q̄ · ∆̄m =
2sinθ

λ
↪→Q

∆mcosϕm (12.3)

um is the projection of the instantaneous displacement vector along the scattering
vector’s direction:

um = ∆m cos θm (12.4)

Figure 12.4: um

Note that um = 0 for longitudinal wave along diffraction plane.
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12 TEMPERATURE EFFECTS 12.1 Primitive Unit Crystal

Using 2πQ = 4π sin θ
λ = q, the intensity equation is the following:

I(eu)(Q̄) = f2
∑

m

∑
n e

2πiQ̄·(R̄m−R̄n)eiq(um−un)

Note that ∆m;umare instantaneous vibrational displacements that occur in a
phonon lifetime which is on the order of ˜ 10−14 seconds, and the intensity mea-
surement time is ¿ 10−3seconds. Therefore, a time average of these instantaneous
intensities as affected by vibrational effects is used.

The function is integrated over a period of time T that is long relative to the
fluctuations and is normalized by dividing by T.

⟨f(t)⟩ = 1

T

∫ T

0

f(t)dt (12.5)

The time-averaged intensity is indicated by bracket notation:

⟨I(eu)⟩ = f2
∑
m

∑
n

e2πiQ̄·(R̄m−R̄n)⟨eiq(um−un)⟩ (12.6)

Simplifying, by Maclaurin series expansion:

eix =

∞∑
n=0

inxn

n!
= 1 + ix− x2

2
− ix3

6
+ ... (12.7)

⟨eiq(um−un)⟩ = 1 + iq⟨um − un⟩ −
q2

2
⟨(um − un)2⟩ − ... (12.8)

≊ 1− q2

2
⟨(um − un)2⟩ = e

−q2
2 ⟨(um−un)

2⟩ = e
−q2
2 ⟨u

2
m+u2

n−2umun⟩ (12.9)

⟨u2m⟩ = ⟨u2n⟩ = ⟨u2⟩ (12.10)

⇒ (12.11)

⟨eiq(um−un)⟩ ≊ e−q
2⟨u2−umun⟩ (12.12)

Let
⟨umun⟩ = αmn︸︷︷︸

correlation function

⟨u2⟩ (12.13)

which accounts for the correlation of vibrational motion between the atoms, and
may range from 0 to 1.

⟨eiq(um−un)⟩ = e−q
2⟨u2⟩(1−αmn) (12.14)

and
⟨I(eu)⟩ =

∑
m

∑
n

f2e2πiQ̄·(R̄m−R̄n) eq
2⟨u2⟩αmn︸ ︷︷ ︸

=1+q2⟨u2⟩αmn for q2⟨u2⟩αmn≪1

(12.15)
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= e−q
2⟨u2⟩

∑
m

∑
n

f2e2πiQ̄·(R̄m−R̄n)︸ ︷︷ ︸
[CR]

+ q2⟨u2⟩e−q
2⟨u2⟩︸ ︷︷ ︸

xe−x

∑
m

∑
n

f2αmne
2πiQ̄·(R̄m−R̄n)

(12.16)

[CR] = Crystal Reflection = f2[3-D interference function]

With higher 2θ, the diffraction peak intensities decrease due to the damping term
e−q

2⟨u2⟩ at the front.

xe−x = x(1− x+
x2

2
− ....) ≈ x− x2 ≈ 1− e−x = x− x2

2
+
x3

6
... (12.17)

⇒ ⟨I(eu)⟩ = e−q
2⟨u2⟩[CR] +

(
1− e−q

2⟨u2⟩
)∑

n

f2αmne
2πiQ̄·(R̄m−R̄n) (12.18)

q2⟨u2⟩ = (2πQ)2⟨u2⟩ = 2B

(
sinθ

λ

)2

=
BQ2

2
= 2M (12.19)

The new term, B, is sensitive to the temperature and vibrational amplitudes. Using
B, the intensity can be written as follows:

⇒ ⟨I(eu)⟩ = e
−BQ2

2︸ ︷︷ ︸
attenuated sharp diffraction peaks

[CR] +

Thermal diffuse factor increases with Q︷ ︸︸ ︷(
1− e−

BQ2

2

)∑
m

∑
n

f2αmne
2πiQ̄·(R̄m−R̄n)

︸ ︷︷ ︸
broadened peaks centered at Q̄ = r̄∗hkl

(12.20)

Since the correlation function is equal to unity at an atom (i.e. αmm = 1) and only
has a considerable effect at a small region around an atom, the diffraction peaks in
the second summation are broadened. Recall that a smaller number of unit cells
produces broader peaks than a relatively larger amount of unit cells.

Why time average?

Because measurement time for intensity (1 sec) ≫ phonon lifetime (10−14 sec)

Why do odd powers of ⟨un⟩ = 0?

We assume about u = 0

The average time displacement for odd powers averages to zero, but for even powers,
the area under the curve is π. This explains why even powers are present in the
time-average and odd powers are not.
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Figure 12.5: Harmonic oscillation assumes symmetric potential well

Figure 12.6:
∫ 2π

0
sin(mx)dx = 0

1

1/2

0

m=1

Figure 12.7: Area =
∫ 2π

0
sin2(mx)dx = π

Average = Area
2π = 1

2

12.2 Debye Theory of Lattice Dynamics/ Heat Capacity —
Corrected by Waller

The quantity B, which describes the vibration of the atoms, is described by the
following equation:

B =
6h2T

mAkBθ2D
Q

(
θD
T

)
= 8π2⟨u2⟩ (12.21)

where the variables are defined as follows:

⋄ mA = atomic mass = A× 1.660 ∗ 10−24g/amu

⋄ h = Planck’s constant = 6.628 ∗ 10−27erg − sec

⋄ T =◦ K absolute temp

⋄ kB = Boltzmann’s constant = 1.380 ∗ 10−16erg/◦K

⋄ θD =Debye temperature (related to stiffness of crystal) e.g. θGe
D = 360◦K,

θAl
D = 394◦K, θSi

D = 625◦K

Q(θD/T ) ≈ 1 for T > θD/2 declines rapidly for T < θD/2

Unvarying constants: 6h2

mAK = 1.151× 10−12cm2 = 1.151× 104Å2/A

B[Å2] = 1.151× 104 T [K]
A[amu]θ2

D[◦K]
Q
(
θD
T

)
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Therefore, the mean square vibrational amplitude (assume Q=1) is given by the
following:

⟨u2⟩ = B

8π2
= 145.8

T

Aθ2D
[Å2] (12.22)

⋄ For Si28.1(⟨u2⟩) 1
2 = 0.063Å at R.T. (T = 300◦K)

⋄ For Ge72.6(⟨u2⟩) 1
2 = 0.068Å at R.T. (T = 300◦K)

⋄ For Al27(⟨u2⟩) 1
2 = 0.10Å at R.T. (T = 300◦K)

Debye-Waller Factor = e−2M = e−BQ2/2 = e−4π
2⟨u2

hkl⟩/d
2
hkl

If we look at the Debye-Waller factor in terms of real components, uhkl and dhkl,
we see a comparison between the vibrational displacement and the d-spacing within
a crystal.

For silicon, the (220) peak intensity is diminished by 4% as shown below. If we
move to higher-order peaks, such as (880) with a smaller d spacing, the attenuation
significantly affects the peak intensity.

⋄ For Si (220), d220 = 1.92Å e−2M = e−0.0425 = 0.958 at R.T.

⋄ For Si (880), d880 = 0.48Å e−2M = (e−0.0425)16 = e−0.0680 = 0.506 at R.T.

Note that the (880) d-spacing is 1/4 of the (220) d-spacing. Since the dhkl is
squared in the Debye-Waller factor, this causes the peak intensity of the (880) to
be 1

d2
hkl

= 1
16 of the (220) intensity.

e−2Mh2l2k2

e−2Mh1k1l1
= (e−2Mh1k1l1 )

if cubic︷ ︸︸ ︷
(h22 + k22 + l22) /(h

2
1+k2

1+l22) = (0.0958)16 = 0.503 (12.23)

⟨Ieu⟩ = e−BQ2/2[CR] + (1− e−BQ2/2)
∑
m

∑
n

f2αmne
2πiQ̄·(R̄m−R̄n)

︸ ︷︷ ︸
Note : Original Debye Theory αmn = { 1, m=n; 0, otherwise = (1− e−BQ2/2)f2M

Suppose we only account for the 3-D interference function and divided by f2. In
that case, the intensity will always have an intensity ofM2, as shown by the dashed
curves in Figure 12.8. However, the Debye-Waller factor attenuates the peaks in an
exponential fashion with an increasing Q, as shown by the three peaks with ampli-
tudes following the e−BQ2/2 curve. Finally, the TDS increases the background and
produces broad peaks below the sharp Bragg peaks, but this effect is exaggerated
in the figure below.
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12 TEMPERATURE EFFECTS 12.3 Powder Diffraction

Figure 12.8: Intensity as a function of Q

Figure 12.9: Intensity with temperature effects

12.3 Symmetrical Reflection Powder Diffraction

P ′ =
I0l

16πR
r2e
λ3

V 2
c

mhkl|Fhkl|2e−2M (LP )
A

2µ
= C(LP )mhkl|Fhkl|2e−2M (12.24)

The intensities are multiplied by the Debye-Waller factor - e−2M = e−BQ2/2, there-
fore as Q increases, the integrated peak intensities diminish.

M depends on:

⋄ crystal type (Si, Ge, etc. )

⋄ direction of r∗hkl (anisotropic crystals) - network of “springs” different in dif-
ferent directions, such as graphite

⋄ d-spacing ˜ 1/r∗hkl

⋄ Temp. T

⋄ Crystal bonding (covalent, molecular, etc. )

“B” can be measured by comparing integrated intensity of hkl to 2h 2k 2l reflection,
Measuring B is like measuring bonding properties and temperature effects.

For h k l P ′1 = Cmhkle
−BQ2

1/2|Fhkl|2(LP )1

For 2h 2k 2l P ′2 = Cmhkle
−BQ2

2/2|F2h2k2l|2(LP )2
P ′

1

P ′
2
= (LP )1

(LP )2

|Fhkl|2
|F2h2k2l|2 e

2BQ2
1/2 Since Q2 = 2Q1 Q

2
2 = 4Q2

1

All of the above are known, except B B = 8π2⟨u2⟩ where, u is the vibrational
amplitude around a given atom.
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13 THIN FILM X-RAY SCATTERING

13 Thin Film X-ray Scattering

The growth of single-crystal epitaxial thin films is at the heart of many different
types of electronic, magnetic, and optical device technologies. This type of epi-
taxy starts with an atomically clean, supporting, single-crystal substrate surface
that forms a 2D lattice closely matching that of the film and thereby providing a
template for controlling the crystallographic growth direction of the film. Chemical
vapor deposition (CVD) and physical vapor deposition (PVD) are typically used
for growing epitaxial films.[? ]

Low-angle X-ray reflectivity (XRR) characterizes the film electron density, thick-
ness, and interfacial roughnesses. High-angle X-ray scattering defines the film’s
crystal structure, determines the orientation of the film’s crystallographic axes rela-
tive to those of the substrate, measures the strain induced in the film by the lattice
mismatch at the interface, and determines the film’s single crystal domain size.

Most single crystal epitaxial films have a low-indexed growth direction that matches
the hkl surface normal of their supporting substrate, such as 001, 110, or 111.
The specular scattered intensity from the thin film is directly related to the 1D
interference function as it senses the projection of the electron density along the
surface normal, z-axis. In this specular geometry, the scattering vector q points
along the surface normal direction. In this chapter we will use small q, instead of
big Q. Where

q = 2πQ = 4π sin θ
λ

θ = 1
2 of the scattering angle 2θ

An incident wave vector and a scattered wave vector, as well as the scattering vector
are illustrated in Figure below.

2 q = k - k0

Figure 13.1: Reciprocal space vector diagram defining the scattering vector q̄.
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13 THIN FILM X-RAY SCATTERING 13.1 1-D interference function

13.1 1-D interference function

If there are N scattering points along a line with period d and the scattering vector
q is parallel to this line, the scattered intensity from these points is

I(q) =
sin2(Nqd/2)

sin2(qd/2)
. (13.1)

Note that the function peaks at N2, as shown in Figure 13.2. The Bragg peak
half width full max and the period of the Laue fringes come from the period of the
numerator, given by ∆q = 2π/t. Where t = Nd.

Figure 13.2: 1-D interference for N=6 unit cells. x= qd/2.

⋄ Peak intensity ∝ N2

⋄ Denominator→ 0→ Bragg peaks

⋄ Numerator → 0→ Bragg peak width

⋄ Crystal size (thickness) = Nd = t

⋄ Bragg peak HWFM = Fringe period = period of the numerator = ∆q = 2π/t

⋄ Bragg peak area ∝ N

13.2 HRXRD of single crystal Ferro-Electric Ultra-Thin
Film

In the following high-resolution X-ray diffraction (HRXRD) experiment from
Thompson et al.,[? ] a PbT iO3 film was grown epitaxially by CVD on a
SrT iO3(001) substrate. While the two perovskite lattices have the same in-plane
lattice constant, their out-of-plane lattice constants differ by 6 %, which causes their
respective Bragg peaks to appear at different q values in a θ − 2θ specular scan.

At the 001 Bragg peak → d001 = c = 2π
qpeak

SrT iO3 is cubic with a = c = 3.905Å

PbT iO3 is tetragonal with a = 3.905Å and c = 4.135Å
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13 THIN FILM X-RAY SCATTERING 13.2 Ferroelectric Film

Figure 13.3: Thin film scattering in specular geometry.

The following figure shows the reflectivity from this thin film collected in a θ − 2θ
scan through the (001) peaks of the SrT iO3 substrate and PbT iO3 thin film. The
strontium titanate is like a semi-infinite crystal, therefore yielding a very narrow
delta function-like Bragg peak. As predicted in the previous section, the broad
PbT iO3 peak has a FWFM that is twice the width of the subsidiary peaks (Laue
fringes). From this, we can calculate the film thickness as

t = 2π
∆q = 2π

0.063Å−1
= 99Å→ N = 24 unit cells thick.

q

Δq t = 2π/Δq

Figure 13.4: Reflectivity from PbT iO3 film grown on SrT iO3(001).

As illustrated in Figures 13.5 and 13.6, PbT iO3 is a ferroelectric with the center
of its Pb and Ti cation sublattices offset along the c-axis from the center of its
O anion sublattice. Two energy-equivalent domains can form: polarized up or
polarized down. PbT iO3 transforms from ferroelectric to paraelectric when the
temperature goes above 490oC. Single c-domain films can be grown on SrT iO3(001)
for thicknesses less than 700 Å.
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13 THIN FILM X-RAY SCATTERING 13.3 Friedel’s Law

Figure 13.5: Tetragonal PbT iO3 perovskite crystal structure with electric dipole
polarized up or down.

Up Down

O2-

Figure 13.6: b-axes projections of polarized up and polarized down PbT iO3 crystal
structure.

Can the measured reflectivity be used to determine the polarization direction of the
film? Note that the y-axis scale in Fig. 13.4 is on an absolute reflectivity scale. The
reflected counts per second into the detector were divided by the counts per second
in the straight-through beam at 2θ = 0 with the sample out of the beam.

In determining the structure factor, the exact positions of the atoms must be known.

13.3 Friedel’s Law

If X-ray Absorption is neglected, then F−H = FH∗

PbTiO3

3.9051 3.9051 4.156 90.0 90.0 90.0

400.
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13 THIN FILM X-RAY SCATTERING 13.4 PZT thin-film

1.0 1.0 1.0

3 1 1 1

Atoms in basis # 1

Pb

82 1.000

1

0.00 0.00 0.1159

Atoms in basis # 2

Ti

22 1.000

1

0.500 0.500 0.5769

Atoms in basis # 3

O

08 1.000

3

0.50 0.00 0.5

0.50 0.5 0.00

0.0 0.50 0.50

13.4 Experimental Reflectivity along the (00L) Crystal
Truncation Rod (CTR) for ferro-electric PZT thin-film
capacitor heterostructure

PZT = Pb(Zr0.3Ti0.7)O3

In Figure 13.7, the experimentally measured X-ray reflectivity of the PZT capacitor
structure is taken at λ = 0.914Å. The inset shows the layers within the heteroepitax-
ial structure, a SrT iO3(001) substrate, a 136-nm-thick SrRuO3bottom electrode,
a 20-nm-thick PZT film and a 30-nm-thick Ag top electrode. The angle positions
for the three distinct (001) Bragg peaks mark off the the three distinct c lattice
constants of SrT iO3, SrRuO3, and PZT.

c = 3.905, 3.970, 4.130Å

The two patterns of oscillation are due to the thickness of the SrRuO3and PZT
films, where the smaller period oscillation belongs to the thicker film. The Ag top
electrode has a polycrystalline structure and does not measurably contribute to the
scattered intensity in this high-resolution scan.
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13 THIN FILM X-RAY SCATTERING 13.4 PZT thin-film

Figure 13.7: Reflectivity of PZT thin film

As predicted by the numerator of the interference function, the widths of the peaks
and their Laue fringes are inversely proportional to the film thickness.

t = 2π/∆q = λ/ (2∆θ)︸ ︷︷ ︸
↪→radians

cosθ (13.2)

q =
4πsinθ

s2
(13.3)

∆q =
4πcosθ∆θ

s2
(13.4)

What about diffraction from 2D crystals?

In one dimension, there is a set of periodic scatterers and in reciprocal space, there
exists a set of parallel periodic planes with a 1

a spacing. In two dimensions, there
are two constants for the Laue condition, yielding a net of parallel rods in reciprocal
space as shown in Figure 13.8.

Northwestern—Materials Science and Engineering 159



13 THIN FILM X-RAY SCATTERING 13.4 PZT thin-film

Crystal D Real-
Space
Basis

Laue Condition Recip.
Space

Periodicity

1D a ha∗ = const. ∥ planes,
⊥ a

2D a1,a2 hā∗1 = const.
kā∗2 = const.

∥ rods,
⊥ a1a2
plane

3D a1, a2, a3 hā∗1 = const
kā∗2 = const.

lā∗
3=const.

points

Table 15: Real Space ⇔ Reciprocal Space

From 1D Laue Condition:

hth diffraction peak at Q = ha∗→ Qa = h → hλ = 2a sin θh

Figure 13.8: 2D Reciprocal Space Periodicity
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13 THIN FILM X-RAY SCATTERING 13.4 PZT thin-film

Figure 13.9: Real ⇔ Reciprocal Space (From Ref. [? ])

2D crystal diffraction can be explained in reciprocal space by combining the 1
λ radius

Ewald sphere with the set of rods depicted in Figure 13.8. The Ewald sphere center
(C) connects to the k-space origin by the incident wave-vector k0.
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13 THIN FILM X-RAY SCATTERING 13.4 PZT thin-film

Figure 13.10: Ewald reciprocal-space diagram for diffraction from a 2D square
lattice with the incident beam k0 perpendicular to the ab-plane

Figure 13.10 illustrates an example of low energy electron diffraction (LEED), where
k0 is directly perpendicular to the 2D crystal AC-plane. This is a cut in k-space
showing only the (h0) rods with ˜ 13λ.

Diffracted wave vectors khk (or k) extend from C to the intersection point of the
(hk) rod and the Ewald sphere. Note that each rod can produce a forward diffracted
beam and a back reflected beam, due to two intersections with the Ewald sphere.
This diagram also portrays diffraction from a 1D periodic grating, in which case
the (h0) rods become (h) planes seen edge-on in k-space.

Low-Energy Electron Diffraction

For a low energy electron diffraction instrument, the accelerating voltage is con-
trolled.
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13 THIN FILM X-RAY SCATTERING 13.4 PZT thin-film

Recall the de Broglie relation for X-rays: λ = hc
E , where hc=12.4 keV. More gener-

ally, λ = h/p, where momentum p = mv and p = Ec for a photon since m = E/c2

⋄ For non-relativistic massive particles, λ = h
mv = h√

2m( 1
2mv2)

⋄ For electrons: λ(Å) = 12.3√
V (volts)

→ λ = 1Å for 150V (electron beam with a

wavelength on one angstrom requires 150 V).

⋄ For neutrons: λ = 1Å, KEn = 150eV
mn/me

= 150eV
1839 = 82meV . Greater kinetic

energy is required for neutron of greater mass relative to electrons.

⋄ Thermal neutrons kT = 26meV at RT.

⋄ Neutron diffraction has a different sensitivity to elements than x-rays.

The filament is in vacuum, and a negative potential relative to sample at ground is
applied to accelerate the the electrons toward the sample. The diffracted electrons
hit a fluorescent screen placed below the sample reveals the diffraction spots.

Figure 13.11: LEED pattern from Cu(110) surface

Wavelength gives radius, spacing is 1
a for copper.

Why is electron diffraction surface sensitive, in comparison to x-ray diffraction?
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13 THIN FILM X-RAY SCATTERING 13.4 PZT thin-film

Electron beam interacts very strongly with matter, showing scattering from top
one or two layers whereas x-rays interact very weakly. Universal mean free path for
electrons based on inelastic scattering (plot vs KE)

To achieve surface sensitivity with x-rays we must use total external reflection which
produces and evanescent wave with nanometer penetration depth.

(100) (110) (111)

[001]

[010]

FCC BCC
[001]

[010]

(100)

 

(110)

(111)

Figure 13.12: Low-index ideal surfaces of hard-sphere cubic-F & cubic-I crystals
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13 THIN FILM X-RAY SCATTERING 13.4 PZT thin-film

4-Bromostyrene SAM on Si (111) surface.

R(qz) calculated for 1/2 ML coverage.

A z-axis projection can be performed for the structure.

Figure 13.13: caption

Figure 13.14: simulated specular reflectivity from Si(111) with and without 1/2 mL
of bromostyrene.

Substrate Reflectivity:

Rs = |rs(q)|2

like 1D interference function. The period of the subsidiary peaks has gone to zero
since N is so large.

rs(q) =
4πireFs(q)

Aq(1− e−iqc)
(13.5)

A = Area of 1x1 u.c. =12.8Å2

Fs(q) = 2fSicos(qc/8), (13.6)

c = d111 = 3.135Å (13.7)
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13 THIN FILM X-RAY SCATTERING 13.4 PZT thin-film

RTot(q) = |rs(q) + rM (q)2|2 (13.8)

rM (q) =
4πireΘFM (q)

Aq
(13.9)

Θ = Molecules per 1x1 u.c = 1/2

FM (q) = fc(q)

8∑
j=1

eiqz
C
i + fBr(q)e

iqzBr (13.10)

Figure 13.15: Overhead schematic view of 18kW rotating anode setup in Nu X-ray
Lab used for XRR, XRF and XSW measurements of SAM-Si (111) samples

⋄ LS: Vertical Line Source, at focus of parabola.

⋄ Cu Anode (8.04 keV) used for XRR;

⋄ Mo anode (17.44 keV) used for XRF and XSW

⋄ MM: Parabolic multilayer-mirror

⋄ S1-4: slits

⋄ SS1&2: solar slit for 1◦vertical collimation

⋄ PM: Si (111) post-monochromator to increase angle resolution

⋄ Sample on stepping motor driven θ − 2θ 2-circle, X-translation, and x-tilt

⋄ Nal: pulse counting X-ray detector for reflected intensity on 2θ arm

⋄ SSD: Solid-state XRF detector with pulse-height analysis and multi-channel
analyzer

13.4.1 Total External Reflection of X-rays from a Mirror Surface

Start with the zeroth order structure factor F000 = F0 = number of electrons in the
unit cell

F0 is related to the zeroth order Bragg diffraction peak

For x-rays, the index of refraction: n <≈ 1, because x-rays are above the natural
frequency of the electrons in the sample.

n = 1− δ where δ = 1
2ΓF0, Γ = reλ

2

πVu.c.
, re = 2.818× 10−5Å
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13 THIN FILM X-RAY SCATTERING 13.4 PZT thin-film

Ne= electron density

θ2 = 0→ TER→ θ1 = θc critical angle

Snell’s law

n1 cos θ1 = n2 cos θ2

therefore cos θc = n2/n1=n2 for n1 = 1

Figure 13.16: caption

Dynamical Theory for Total External Reflection of X-rays form a Mirror Surface

n = 1− δ − iβ (13.11)

δ = Nereλ
2

2π , β = λµ
4π

Fresnel Theory for reflectivity from ideal mirror

ER

E0
=
x−

√
x2 − 1− iy

x+
√
x2 − 1− iy

(13.12)

where x = Q/Qc and y = β/δ

R =

∣∣∣∣ER

E0

∣∣∣∣2 (13.13)

Penetration Depth: For θ ≫ θc → Λ = sin θ/µ

For θ < θC → Λ
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13 THIN FILM X-RAY SCATTERING 13.4 PZT thin-film

Figure 13.17: caption

This is a Dynamical Theory

X-ray Reflectivity (XRR) Analysis

XRR is very sensitive to surfaces

Example: SAM/Si (111)

Figure 13.18: SAM/Si (111)
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13 THIN FILM X-RAY SCATTERING 13.4 PZT thin-film

Figure 13.19: XRR data and fit

q = 4π sin θ/λ

Fresnel Theory:

R ∼ q for q < qc = 0.031Å−1 Si mirror TER

RF = (2q/qc)
−4 for q ≫ qc. Fourier transform of a step function

At 1st dip, the scattered plane-waves from the top and bottom interfaces have a
λ/2 path-length difference (or π phase difference).

Modulation period →film thickness Range: 1 to 100nm

Modulation amplitude →relative electron density of film

Modulation damping →roughness of interface(s) Range: ¡ 2nm

13.4.2 X-ray Reflectivity of UDAME monolayer on Si (111) Substrate

First step in DNA covalent attachment

Sample: Reagan Kinser (Prof. Mark Hersam)

UDAME: CH2 = CH − C8H16 − COO − CH3

H − Si(111)

UDAME-Si (111)
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13 THIN FILM X-RAY SCATTERING 13.4 PZT thin-film

Figure 13.20: Sample

Figure 13.21: Tilt Angle = 33◦, 8.04keV @NWU X-ray Lab March 2003

Exper. Theor.

Ne(e
−/A3) 0.28 0.30(liq)

t(Å) 12.5 15.0

σs(Å) 1.8

σl(Å) 3.8

0.28e−/Å3 = 0.41ML

Table 16: caption

13.4.3 X-ray Reflectivity Analysis Fundamentals

Kinematical approach:

q = 4π sin θ/λ
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13 THIN FILM X-RAY SCATTERING 13.4 PZT thin-film

Figure 13.22: caption

R(q) = RF (q)|Φ(q)|2 (13.14)

Φ(q) =
1

ρ∞

∫
dρ

dz
eiqzdz (13.15)

FT of gradient of e− density profile

R(q)

RF (q)
= [1− 4b(1− b)sin2(qt/2)]e−q

2σ2

(13.16)

For 1 slab model

ρ(z) = e−density profile, b = ρF /ρSi , σ = σs = σl = (rms)roughness, t = film
thickness

Figure 13.23: caption

b t(Å) σ(Å)

0.5,0 12.2 3.2
0.5,3 13.3 3.6

Table 17: Table caption
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13 THIN FILM X-RAY SCATTERING 13.4 PZT thin-film

Figure 13.24: XRR Analysis of C60 attached to Silica surface; Grown by the Mirkin
Group at NU
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14 ORDER-DISORDER

14 Order-Disorder

14.1 Order-disorder geometry

Consider β Brass CuZn (Cubic Structure)

⋄ Ordered from →Cu at 000, Zn at 1
2
1
2
1
2 , or CsCl structure

– Diffraction pattern would indicate Cubic P structure

⋄ Disordered →some Cu occupy Zn sites, some Zn occupy Cu sites. In a
randomly disordered structure, each site has an equal likelihood of Zn or Cu
occupation Cubic I.

– Diffraction pattern would indicate Cubic I structure

Cu

Zn

Figure 14.1: Ordered β brass CuZn; Superlattice reflections (100),(300),(111), etc.
→ allowed by Cubic P and disallowed by Cubic I

The Zn is out of phase, and the zinc and copper do not scatter equally. The absent
reflections for the randomly disordered phase are called superlattice reflections, and
are sensitive to the order of the crystal.

Fundamental reflections are allowed by both P and I : h+ k + l = 2n

The intensity in the superlattice reflection indicates the degree of order present
in the crystal. A high temperature form is generally disordered, while one that
is cooling down has ordered domains meeting at domain walls. Zinc would like to
have copper nearest neighbors and copper would like to have zinc nearest neighbors,
therefore favoring an ordered structure at cooling.

14.2 Long-range Order (W.L. Bragg and E.J. Williams)

Consider a binary compound (CuZn, Au3Cu, etc.) with 2 types of atoms - A and
B - and two correct sites in the unit cell - α and β.

There are NA atoms of type A and sites α and NB atoms of type B and sites β.
Therefore the total number of atoms in the crystal is given by the following:

N = NA +NB

The following are fractions that change with temperature:

⋄ rα = fraction of rightly occupied α sites

⋄ wα = fraction of wrongly occupied α sites

⋄ rβ = fraction of rightly occupied β sites

⋄ wβ = fraction of wrongly occupied β sites
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14 ORDER-DISORDER 14.2 Long-range Order

The fraction of wrongly occupied sites and rightly occupied sites sum to one:

rα + wα = rβ + wβ = 1.0

In the complete order case, rα = rβ = 1.0, wα = wβ = 0 .

For complete or random disorder → rα = NA/N = mA

In general Nawα = NBwβ → mAwα = mBwβ

14.2.1 Long range order parameter

The unitless quantity S is the long range order parameter, ranging from 0 to 1.
Complete order has a value of S=1 and random disorder has a value of S=0.

S = rα − wβ = rβ − wα

ConsiderAu3Cu in P cubic cell

Figure 14.2: P cubic cell

B →Cu at (000) β site

A→Au at { 12
1
20,

1
20

1
2 , 0

1
2
1
2}αsites

⋄ mA = 3
4 = NA

N mB = 1
4 2wα = wβ

14.2.2 Effective Atomic Scattering Factor

The ensemble average of the atomic scattering factor from the α and β sites is
calculated by the following equations:

⋄ fα = rαfA + wαfB α site scattering factor

⋄ fβ = rβfB + wβfA β site scattering factor

For hkl unmixed

⋄ Fhkl = fβe
0 + fα(e

πi(h+k) + eπi(h+l) + eπi(k+l))

⋄ The beta site is at 000 and the alpha sites are face centered.

⋄ = fβ + 3fα

⋄ = rβfB + wβfA + 3rαfA + 3wαfB = (3rα + wβ)fA + (rβ + 3wα)fB

Simplifying with 3rα + wβ = 3(1− wα) + wβ = 3− 3wα + wβ = 3

⋄ yieldsFhkl = 3fA + fB for hkl unmixed (fundamental reflection) inde-
pendent of S

For hkl mixed (superlattice reflections)
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14 ORDER-DISORDER 14.2 Long-range Order

⋄ Fhkl = fβe
0 + fα(e

πi(h+k) + eπi(h+l) + eπi(k+l))

– = fβ + fα(−1)

– = (rβfB + wβfA)− (rαfA + wαfB)

– = (rβ − wα)fB − (rα − wβ)fA

– = (fB − fA)S recall S = rα − wβ = rβ − wαThis is completely sensitive
to the long range order parameter.

Therefore, for Au3Cu

⋄ Fhkl = 3fAu+fCu for hkl unmixed and Fhkl = (fAu−fCu)(−S) for hkl mixed

Note fAu > fCu , zAu > zCu, 79 > 29

Figure 14.3: Au3Cu Powder XRD Patterns

Powder diffraction pattern, as S goes from 1 to zero, there is a

14.2.3 Order-disorder phase transitions

Measured by comparing a superlattice XRD peak to a fundamental

Temperature is normalized by the critical temperature. Measure S by comparing a
fundamental diffraction peak intensity to a superlattice diffraction peak intensity.

Figure 14.4: Order-disorder phase transitions
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14 ORDER-DISORDER 14.2 Long-range Order

1st order phase transition: AuCu3 and Au3Cu both have a discontinuity at TC ,
TC = 633K for AuCu3

2nd order (continuous) phase transition CuZn TC = 730K
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15 SPECIAL TOPICS

15 Special Topics: X-ray Absorption Spectroscopy
(XAS)

As discussed in Ch. 8, X-rays undergo several types of interactions with matter.
One of which is the photoelectric effect. Wherein an X-ray photon of energy Eγ =
ℏω interacts with (is absorbed by) an atom to cause one of its core-level electrons
with binding energy, EB , to be emitted with a kinetic energy,

KE = Eγ − EB .

As Einstein found, the photoelectron is only emitted for Eγ > EB . This Nobel
prize winning discovery proved that light behaves as a quantum particle, which we
call a photon. The Eγ dependence of the probability (cross-section) for the core
photoelectron emission by an atom is described by its X-ray absorption spectrum
(XAS), with threshold jumps (or edges) at photon energies matching the binding
energies for ground state energy levels of the atom. See Fig. 15.1. Since each
element has a unique number of protons (Z), these energy levels are unique for each
element. Thus making XAS a sensitive measure of the elemental composition of a
material. As we will see, XAS is used to determine the local atomic-scale structure,
and unlike XRD, does not require any long-range order. Therefore, XAS can be
applied to gasses, liquids, and amorphous solids.

Figure 15.1: X-ray energy dependence of photoelectric effect cross section for four
different atoms.

For a monoatomic, ground state, gas like krypton (Kr) you would see an X-ray ab-
sorption spectrum that has a linear relation to the photoelectric effect cross section
calculated for a single Kr atom. However, the same is not true for atoms arranged
in other forms of matter, such as molecular gasses and liquids, pure metals, ionic
compounds, etc. For these materials the XAS, or probability for an atom to emit a
photoelectron as a function of photon energy, is affected by its closely surrounding
atoms in two measurable ways. These two ways refer to different processes that
modify different regions of the spectrum as illustrated in Fig. 15.2. In the photon
energy range near an absorption edge the XAS is referred to as the X-ray absorption
near-edge structure (XANES). The range above the XANES region is referred to as
the extended X-ray absorption fine structure (EXAFS).
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15 SPECIAL TOPICS 15.1 XANES

Figure 15.2: The Ni K-edge XAS showing the XANES and EXAFS regions.

15.1 X-ray Absorption Near-Edge Structure (XANES)

Modifications to the XAS in the XANES region are due to changes to the electronic
structure of the emitting atom brought about by bonding to neighboring atoms.
For example, if we compare the Fe K-edge XANES spectra of pure Fe to that of
its oxides: wustite (FeO), hematite (Fe2O3), and magnetite (Fe3O4) as shown in
15.3, we see that the threshold photon energy for emission of the 1s electron shifts
to higher energies as the Fe oxidation state goes from Fe0 in metallic Fe to Fe+2 in
FeO, and to Fe+3 in Fe2O3. The increase in binding energy occurs because there
are fewer outer valence electrons to shield the positive charge from the 26 protons
in the iron (Fe) nucleus. This results not only in a shift of the energy edge but also
alters the shape of the XANES spectrum. This is due to the photoelectron probing
the unoccupied density of states near the Fermi level which differs for different local
environment surrounding the Fe atom.

Figure 15.3: Fe K-edge XANES spectra for iron in different oxidation states. This
data was collected in transmission mode at NSLS-II beamline 6BM by Supriyo Ma-
jumder.
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15 SPECIAL TOPICS 15.2 EXAFS

As a simple ”fingerprint” technique, one can compare a XANES spectrum from an
unknown material to known standard spectra to determine the chemical state and
local coordination of the target element. At a more sophisticated level of analysis
one would propose a model for the local structure and then compare the density
functional theory (DFT) predicted spectrum to the measured spectrum.

15.2 Extended X-ray Absorption of Fine Structure (EXAFS)

The incident x ray beam causes the emission of a core photoelectron. The electron
“feels” the surrounding atoms, which yields an absorption spectrum.

x-ray beam
atom

atome-

Figure 15.4: XAFS overview

Figure 15.5: Subdivision of the XAS spectrum into XANES and EXAFS regions.

X-ray Absorption Spectroscopy proves the perfect tool for studying in-depth
nanoparticle structure.

From the lower energy XANES region of the spectrum, we can determine the
oxidation state, charge transfer, and chemical fingerprint of our element of interest.

From the extended EXAFS region, we obtain information about atomic coor-
dination, inter-atomic spacing, as well as structural and thermal disorder. This
ultimately enables us to answer the question: How many of what type of atom are
at what distance from my element of interest?
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15 SPECIAL TOPICS15.3 Outgoing photoelectron: electrons as spherical waves

15.3 Outgoing photoelectron: electrons as spherical waves

e

Figure 15.6: Outgoing photoelectron

The de Broglie wave-particle duality principle, as applied to the nonrelativistic
emitted photoelectron, tells us that the emitted electron has a wave number k,
wavelength λ, and momentum p with the following relationship:

k = 2π
λ = p/ℏ

KE = ℏω − E = p2

2m = ℏ2 k2

2m

k =

√
2m(ℏω−E)

ℏ , or k(Å−1) = 0.521
√
KE(eV )

Due to electron delocalization, we can describe the emitted core photoelectron as a
spherical wave to describe its wavefront.

Ψout(
−→r ) = Ψ0e

i
−→
k ·−→r

r = Ψ0e
ikr

r

15.4 XAFS spectra of mono and diatomic gases

e

Figure 15.7: Photoelectron wave emitted by a monatomic gas atom like Kr.

Figure 15.8: Photoelectron wave emitted by an atom in a diatomic gas molecule
like Br2, which can scatter from the other atom.
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15 SPECIAL TOPICS 15.4 XAFS spectra of mono and diatomic gases

How the photoelectron interacts with surrounding atoms

Here, Ψinc is the wave incident on the second atom at R, f is the scattered fraction,

and ei(k|
−→r −
−→
R |+ϕ) is the new spherical wave centered on the second atom

Ψscattered(
−→r ) = Ψinc.fe

i(k|−→r −
−→
R|+ϕ)

|−→r −
−→
R |

Ψinc. = Ψout.(
−→r =

−→
R )

Ψscattered(
−→r ) = Ψ0e

ikR

R
fei(k|

−→r −
−→
R|+ψ

|−→r −
−→
R |

The scattered wave at the center of the original emitting atom (i.e., at r = 0):

Ψscattered(
−→r = 0) = Ψ0

R2 fe
i(2kR+ϕ)

15.4.1 How surrounding atoms affect the modulations

How the nearby atom affects the probability of creating a core hole is calculated by
summing the two wave functions together at r=0.

Ψtotal = Ψ0 +Ψscat. = Ψ0(1 +
f
R2 e

i(2kR+ϕ))

The wavefunction times its complex conjugate gives the probability of creating the
core hole.

I = ΨΨ∗ ∝ 1 +
2f

R2
sin(2kR+ ϕ)︸ ︷︷ ︸

interference between incoming and outgoing waves

+...

Recall from earlier in the course: I = |E|2

15.4.2 How XAFS data is measured: transmission and fluorescence de-
tection

Figure 15.9: Transmission mode for collecting XAS data.

sample
10

incident
x-ray beam

   XRF
detector

fluorescence
x-rays

Figure 15.10: Fluorescence mode for collecting XAS data.
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15 SPECIAL TOPICS 15.4 XAFS spectra of mono and diatomic gases

Transmission µ ∝ −ln( ITI0 ) and Fluorescence µ ∝ ( IFI0 ) ↷

Figure 15.11: Ni K-edge absorption spectrum.

15.4.3 Background subtraction: extracting the quasi-periodic modula-
tions

µ→ γ0, pre→γ , post → γ∗

Figure 15.12: Subtracting the background: fitting pre-edge and post-edge lines

Figure 15.13: Background subtracted data in k-space

χ(E) =
γ − γ0

(γ0 − γ∗)
(15.1)
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15 SPECIAL TOPICS 15.4 XAFS spectra of mono and diatomic gases

15.4.4 E-Space to K-Space conversion

E(eV ) = hv − E0 = ℏ2 × k2

2m →k(Å
−1)0.5123(hv − E0)

1/2

Figure 15.14: K-Space conversion

15.4.5 The EXAFS equation: Describing the k-space data mathemati-
cally

χ(k) =
NS2

0f(k)

kR2
e−2k

2σ2

sin[2kR+ δ(k)] (15.2)

N - Degeneracy; S2
0 - Amplitude Reaction Factor

f(k)- Scattering Factor; k - Wave number

R- Interatomic distance; σ2- Mean-squared disorder

δ(k)- Phase shift

15.4.6 What affects the k-space data?

Reduction in CN → reduction in amplitude of k-space oscillations

Figure 15.15: Reduction in CN
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15 SPECIAL TOPICS 15.4 XAFS spectra of mono and diatomic gases

Change in interatomic spacing → change in period of k-space oscillations

Figure 15.16: Change in interatomic spacing

15.4.7 Fourier transform

k → r (Fourier transform):

Ã(r) =
(

1√
π

) ∫
A(k)e2ikrdk

r → k (inverse Fourier transform):

A(k) =
(

1√
π

) ∫
Ã(r′)e−2ikr

′
dr′

Figure 15.17: Transforming EXAFS data in k-space to EXAFS data in R space

Figure 15.18: Inverse Fourier transform
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15 SPECIAL TOPICS 15.4 XAFS spectra of mono and diatomic gases

15.4.8 How do multiple coordination shells affect the spectrum?

In the figure below, the Au spectrum with only the first shell is shown in red, and
the Au spectrum with the first four shells is shown in blue.

Figure 15.19: Single vs. multiple coordination shells

15.4.9 Recap: Extended X-ray Absorption Fine Structure (EXAFS)

The EXAFS method allows one to determine how many of what type of atom is at
what distance from the absorbing atom.

Figure 15.20: EXAFS region
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15 SPECIAL TOPICS 15.4 XAFS spectra of mono and diatomic gases

Figure 15.21

15.4.10 The modeling process (crystallography)

Figure 15.22: Au(FCC) , space group Fm3̄m

Pathways generated from crystal structure
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15 SPECIAL TOPICS 15.4 XAFS spectra of mono and diatomic gases

Figure 15.23: Pathways

You can also generate own pathways based on pre-existing knowledge. Each path-
way has its own set of variables which must be considered.

15.4.11 The EXAFS equation: how do we treat this in creating a
model?

Recall: χ(k) =
NS2

0f(k)

kR2 e−2k2σ2
sin[2kR + δ(k)]

⋄ Parameters we can determine through theoretical modeling

⋄ Parameters calculated using fitting program, a function of the material

⋄ Parameters which are related to the measurement

15.4.12 Variables defined for each pathway

1. N is related to the average coordination number

2. R is defined in fitting as ∆R, or the deviation from the interatomic distance
defined in the pathway creation

3. σ2 is the mean squared disorder, a convolution of the Debye-Waller factor
(thermal disorder) and the radial disorder

15.4.13 Evaluating best-fit model (Statistics)

χ2 =
Nidp

ϵNdata

max∑
min

[Re(χd(ri)− χt(ri))
2 + lm(χd(ri)− χt(ri))

2] (15.3)

χ2
v = χ2

v ; v = Nidp −Nvar ; ϵ = measurement uncertainty

R =

∑maz
i=min[Re(χd(ri)− χt(ri))

2 + lm(χd(ri)− χt(ri))
2]∑max

i=min[Re(χd(ri))2 + lm(χd(ri))2]
(15.4)
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15 SPECIAL TOPICS 15.4 XAFS spectra of mono and diatomic gases

A “good” model minimizes the χ2 factor and R factor with physically reasonable
parameters. There are many “well-fitting” models but only one “correct” model.

15.4.14 Some Examples: Materials Science problems solved by EXAFS

EXAFS is particularly useful in systems which involve amorphous phases or dopant
atoms, such as amorphous thin films, heavy atoms in glass or polymeric materials,
nanoparticles, phase-change materials, as well as systems where element-specific
structural details are not available by other methods

1. EXAFS discovers amorphous phases

Moreau, Ha et. al, 2013. Chem. Mater. 25 (12), 2394.

Moreau, Ha et. al. Nano Letters, 2012, 12, 4530
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Figure 15.24: Amorphous phases

Figure 15.25

2. EXAFS as a means to study nanoscale transformation

Ha, Moreau et. al. J. Mater. Chem, 2011, 21, 11498.
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Figure 15.26: Nanoscale transformation

Figure 15.27

Figure 15.28

3. EXAFS elucidates nanoparticle growth mechanisms
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Figure 15.29: caption

Figure 15.30

From EXAFS results (top) we can determine the coordination number of an
average Au atom and Ag atom within the nanorods as a function of reaction
time (still time course). We expect that the coordination number will be
12 when the atoms are in the bulk and less than 12 when atoms are on the
surface. From the plot we see that although the CN for Au is approximately
12 in all cases, the CN for Ag increases over time until it reaches 12 by ˜30
minutes. This reveals that Ag is initially on the nanoparticle surface and over
time as deposition of Ag slows, very little to no Ag is on the nanoparticle
surface.

Combining EXAFS, XRF and TEM results (bottom) we can relate the growth
rate of the length and width of the nanorods (as determined from TEM) to
the fraction of Ag vs. Au on the nanoparticle surface (determined from XRF
and EXAFS data). We see that the length growth rate of the nanorods is
directly correlated with surface Ag. Early on in the reaction (higher fraction
Ag vs. Au on the surface), Ag on preferential facets causes the length growth
rate to exceed the width and anisotropy is induced. As the reaction progresses
and less Ag is on the surface, the length and width growth rates equilibrate
and the aspect ratio of the nanorods is maintained.

4. Probing nanoscale surface structure
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Figure 15.31: Au EXAFS

Figure 15.32: caption

2nm particle structure cannot be determined with bulk pathways alone.
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Figure 15.33: caption

Figure 15.34: What an individual Au atom encounters as a function of distance
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