Lab 1: Materials Selection

1. What is CES/CMS?
 - Cambridge Engineering/Materials Selector
 - Database/Software comes from Cambridge University, UK.

2. Why CMS?
 - Allows off-the-shelf selection of materials (not a software to design new material(s)).
 - There are more than 50,000 materials available to the engineers
 - Q1: "...how one is to find one’s way through the enormous catalog, narrowing it down to a single, sensible choice?"
 - Q2: "Can one devise a rational procedure for material selection?"
 - Requires minimal knowledge of Materials Science i.e., it can also be used by non-materials scientists/engineers and other professionals.

3. Objectives of Today’s Lab. Exercise
 - Demonstration of performance-property link.
4. Quantification of Performance and the Performance Index

In the context of mechanical design, the performance of a component is governed by three factors: the functional requirement (e.g., the need to carry load, transfer heat, withstand shock etc.), the geometry, and the material properties. Then, the performance of component can be expressed by the following relationship:

\[p = f(F, G, M) \]

where:
- \(F \) = specified functional requirements,
- \(G \) = geometric parameters,
- \(M \) = material properties,

and \(p \) is the aspect of the performance to be optimized. The three sets of parameters are assumed to be separable, so the above equation can be written as:

\[p = f_1(F), f_2(G), f_3(M) \]

where \(f_1(F), f_2(G), f_3(M) \) are functions. Since the functions are separable, the optimum material can be chosen without solving the entire design problem. Thus, \(f_3(M) \) is called the "performance index". The optimum material is the same regardless of the geometry and functional requirements.

5. Classification of Materials (after M. F. Ashby):
6. Classification of Properties in CMS

- **Continuous**: General, Mechanical, Thermal, Electrical, Shape Factor
- **Discrete**: Environment
- **Logical**: Forming, Joining, Surface Treatment, Available Forms
- **Identifier**: Metal, Ceramic, Natural, Polymer, Composite

7. Databases in CMS

- Generic (will be used for lab and homework)
- Light Alloys Database (purchased)
- Polymers Database (purchased)
- Copper Alloys Database (not purchased)
- Conductors Database (not purchased)
- Metal Matrix Composites Database (not purchased)
- Ferrous Alloys Database (not purchased)
- Foams Database (not purchased)

8. Materials Data and Design Process (after M. F. Ashby)
9. Why Log-Log Plots?

- When property cross-plots are done, it is found that data for a given class of materials cluster together; they can be enclosed in a single 'balloon'. The wide range of properties for a given class of material is the manifestation of processing-structure-property links.

- Balloons can be constructed for different kinds of materials representing different properties. Thus, property cross-plot balloons can be displayed in a convenient and accessible way (ease of visualization!).

10. How does it work?

- Application of set theory and relational algebra

11. System Architecture:
Case Study: Materials for Flywheels (Adapted from CES Background Reading and Tutorial)

Background: The applications of flywheels to store energy range from children’s toys, to old steam engines to the power storage and regenerative braking systems for vehicles.

Advanced flywheel designs have achieved energy densities in the range of 100-250 kJ/kg. Although these energy densities are much less than those in gasoline (44,000 kJ/kg) a sudden release due to failure can be disastrous. Thus, the disk must be surrounded by a burst-shield.

Using CES, we will determine the materials best suited for these advanced flywheel designs. Our selection will be based on maximizing the strength, while minimizing the weight and cost, and maximizing the fracture toughness.
An efficient flywheel stores as much energy per unit weight as possible without failing. The amount of kinetic energy the flywheel can store is limited by its strength. The energy U stored in the flywheel is:

$$ U = \frac{J\omega^2}{2} $$

where J is the polar moment of inertia for the disk:

$$ J = \frac{\pi}{4} \rho R^4 t^2 $$

The mass of the disk, m, is:

$$ m = \pi \rho R^2 t $$

The quantity to be maximized is the energy per unit mass, which we obtain from the combination of the previous 3 equations:

$$ \frac{U}{m} = \frac{R^2 \omega^2}{4} $$

Spinning the flywheel not only increases the stored energy, but also increases the centrifugal stress. The maximum principal stress in a spinning disk of uniform thickness is
where ν is Poisson’s ratio, equal to about 1/3 for most solids.

The stress must not exceed the failure stress, σ_f, with an appropriate safety factor, S. These restrictions place an upper bound on the angular velocity, ω, and the disk radius, R. Now (U/m) can be rewritten in terms of the failure stress.

Assuming Poisson’s ratio to be constant, the performance index (M) is given as

$$M =$$

Thus, the best materials for a flywheel are those with high strength and low density. Additionally, we would like to determine which materials provide the most strength per dollar. Good fracture toughness is also important.

We can now use CES to determine which materials meet these requirements.

Start CES EduPack 2019

Lab 2: Thermocalc
Northwestern University
Materials Science and Engineering
MatSci 390: Materials Design (Spring 2019)
Laboratory#2: Calculation of Phase Diagrams and Driving Force Using Thermo-Calc 2017b GUI

I. ThermoCalc Overview
a. What is Thermo-Calc?
 • Software/Database package for thermodynamic calculations
 • Originated from Royal Institute of Technology, Stockholm (www.thermocalc.com)

b. What Thermo-Calc does?
 • Stable and meta-stable heterogeneous phase equilibria
 • Amounts of phases and their compositions
 • Thermochemical data such as enthalpies, heat capacity and activities
 • Transformation temperatures, such as liquidus and solidus
 • Driving force for phase transformations
 • Phase diagrams (binary, ternary and multi-component)
 • Solidification applying the Scheil-Gulliver model
 • Thermodynamic properties of chemical reactions
 • Consider constrained equilibrium, such as effect of stress, interfacial energy etc.

c. Applications
 • Materials processing
 • Materials design

II. Objectives
 • How to use Thermo-Calc 2017b (Graphical Mode)
 • How to interpret the results of a single equilibrium calculation
 • Calculation of multi-component systems
 • Calculation of driving force for precipitation

III. Thermo-Calc is Modular
 The organization of Thermo-Calc modules is schematically shown below:

 System
 / / / /
 TDB Tabulation Poly_3 GES Parrot User
 (Thermodynamic Databases) (Thermochemical Data/Reactions) (Equilibrium Calculations) (Gibbs Energy Models and Parameters) (Software Applications)
 POST Edit Exp.
 (Graphics) (Input of Experimental Data)

IV. Definitions Relevant to Thermo-Calc
 System: A region (defined in terms of composition, temperature and pressure) of interest that can be closed or open to the exchange of matter, heat and work to its surroundings. In ThermoCalc all equilibrium calculations are performed with the assumption that the system is closed.
Phases: A region in the system that is homogeneous (uniform) and physically distinct and has the same structure and property everywhere.

Equilibrium State: A stable state against internal fluctuations in a number of variables.

Gibbs Phase Rule: States the number of degrees of freedom in a system is equal to the number of components in the system minus the number of stable phases plus 2 (temperature and pressure).

Components: The smallest possible division of matter required to describe a given phase.

Constituents: Determine the composition dependence of the properties of the phase and can reflect additional internal degrees of freedom.

Species: The collection of all constituents for the phases in a given system and can be elements, molecular aggregates, charged or neutral.

V. Thermo-Calc 2017b Graphical User Interface

TC2017b has a Graphical User Interface as well as an optional Console Mode. The software allows for calculations of multicomponent phase diagrams and property diagrams through the use of menus, buttons, and entering a few values e.g. compositions. In this lab, only Graphical Mode will be used. TC2017b-GUI uses the same thermodynamic databases as previous versions of Thermo-Calc and Console Mode.

The GUI Interface

The figure below is an example of the default GUI layout for Graphical Mode.

Project: Create, manipulate and navigate between the activities that make up a project.

Configuration: Shows the settings that can be configured for the currently selected activity.

Results: Shows the results of a calculation, either plotted as a diagram or displayed in table format.

Scheduler: Displays information about jobs, such as calculations, that are being performed or are scheduled to be performed. You can cancel scheduled jobs and if a job has failed, then you can view information about the error.

Event log: By default, this window is closed but it displays during calculation processes. You can always open it to view progress of calculations and to troubleshoot.

VI. Basic Steps in ThermoCalc 2017b (Graphical Mode) Calculations

Step 1 Create a Project: Select the desired application module in the main window
Step 2 System Definer: Define the database and system
Step 3 Equilibrium Calculator: Define the conditions for the initial equilibrium
Step 4 Perform: Calculate the equilibrium and extrapolate it by stepping/mapping in 1 or 2 directions
Step 5. Plot/Table Renderer: Define the axes to plot

VII. Important Concepts in Thermo-Calc

a. The Concept of Status
 Entered: The phase, component, or species can freely participate in the energy minimization procedure.
 Dormant: The phase is allowed to participate in the energy minimization but not allowed to have any mass (i.e. driving force).
 Fixed: The phase is forced to be present in a given quantity
 Suspended: The phase, component, or species is ignored.

b. The Conditions of Equilibrium
 • The system must be constrained by intensive or extensive state variables in order to reduce the degrees of freedom in the system to zero.
 • The degrees of freedom in the system are equal to the number of components plus 2 (temperature and pressure).
 • Any phase that is forced to be present by a FIXED status reduces the degrees of freedom by 1.
 • Typically the size of the overall system must be constrained by setting the number of moles in the system equal to 1.
 • Functions of state variables can also be used as conditions, but must be posed such that the function equals 0.

c. State Variables
 Intensive:
 \[T = \text{Temperature in K} \]
 \[P = \text{Pressure in Pascal} \]
 \[\text{ACR(component)} = \text{Activity} \]
 \[\text{MUR(component)} = \text{Chemical potential} \]

 Extensive:
 \[S, S(\text{phase}) = \text{Entropy of the system or phase} \]
 \[V, V(\text{phase}) = \text{Volume of the system or phase} \]
 \[G, G(\text{phase}) = \text{Gibbs energy of the system or phase} \]
 \[H, H(\text{phase}) = \text{Enthalpy of the of the system or phase} \]
 \[A, A(\text{phase}) = \text{Helmholtz energy of the system or phase} \]
 \[DGM(\text{phase}) = \text{Driving force per mole of the phase}/RT \]
 \[N(\text{comp}), N(\text{phase, comp}) = \text{Number of moles of the component in the system or phase} \]
 \[B(\text{comp}), B(\text{phase, comp}) = \text{Mass of the component in the system or phase} \]
 \[N = \text{Total number of moles in the system} \]
 \[B = \text{Total mass in the system}. \]

 All extensive variables can be normalized to the moles in the system by appending an M to the descriptor. The same is true for the mass with W and the volume with V. As a convenience X and W can be used to denote mole fraction and mass fraction respectively.
VIII. Types of Calculations in POLY3 Module

I. Single Equilibrium (Single Point Calculation): Nothing is varied
II. Step Calculation (Property Diagram): One state variable is varied
III. Map Calculation (Phase Diagram): Two state variables are varied

IX. EXAMPLES:

EXAMPLE 1: Single Point Calculation of Fe-0.02C (wt%) at T=800°C
You can use the Single Point Calculation to determine phase fraction and composition. Its results should match what you could calculate from Lever Rule.

Step 1: Open TC2017b and enter GUI mode. Select ‘Single Point Equilibrium’

Step 2: System Definer 1 - Pick Database and Elements in System
Step 3: System Definer 1 - Identify Phases and Phase Constitution in System

In the Configuration Window, pick ‘TCFE9’ from the Database Dropdown menu. Add ‘Fe’ and ‘C’ to the system by clicking on them. Choose Mass Percent and Type 0.02 for C.

Click [Phases and Phase Constitution] Tab. Uncheck all phases except: BCC_A2, CEMENTITE, FCC_A1, GRAPHITE. Only the checked phases are “Entered” and are allowed in the calculation. Unchecked phases are “Suspended.”

Click on the [Equilibrium Calculator 1] in “Project” or the arrow in “Configuration” to proceed to set the conditions of the equilibrium calculation.

Step 4: Equilibrium Definer 1-Set Temperature and Composition. Then Perform calculation. The calculation would take a few seconds.
Step 5: Table Renderer Results and Save as a Text, HTML or XLS file

EXAMPLE 2: Step Calculation for a Dilute Al-Mn-Ge-Si Alloy

In the Configuration Window, set:
Temperature (Celsius) = 800.0
Composition (C) = 0.02
Make sure the composition unit says “Mass Percent”

Right-Click on [Table Renderer] or [Equilibrium Calculator] and then Left-Click [Perform Now] or “Perform Tree”

Highlight and Right-Click the Table Renderer Results. Click ‘Save As’
You can Save the result as a .TXT, .XLS, or .HTML file

You can return to any previous part of the calculation by clicking on the appropriate section of the Project Tree.

The Stable Phases are listed with Mole, Mass and Volume Fractions and Compositions
Property Diagram starts a “Step” calculation. This involves “Stepping” through a single variable after initiating a point equilibrium. Step Calculations can result in graphs or tables of the calculated properties. For example, to determine the optimum temperature for processing for a given alloy we can use one of the compositions as variable for STEPping.

In this example, we will use an Al-0.7Mn-0.5Si-0.3Ge (wt%) alloy. We want to find out what is its solution treatment temperature (i.e., the temperature at which all solutes are dissolved in Al). We also want to know what the equilibrium phase(s) are at various aging temperatures.

Step 1: Open TC2017b and enter GUI mode. Select ‘Property Diagram’
Step 2: Change the database, add the correct elements, go to the Phases tab.

Change the Database in the dropdown menu to “TCAL2”. Add the elements Al, Si, Mn Ge and their content.

Step 3: Choose Phases

Click “Check/Uncheck All” to remove all phases. Check the following phases:
- Al11Mn4_HT
- Al12Mn
- Al4Mn_R
- Al6Mn
- Al8Mn5
- DIAMOND_A4
- FCC_L12
- LIQUID
Step 4: Set Conditions (Temperature and Composition). Then Perform calculation.

Set These Conditions:
- Temperature: 700.00K
- Pressure: 100000.0 Pa
- System Size: 1 Mole
- Comp. Mn: 0.7 wt%
- Comp. Ge: 0.3 wt%
- Comp. Si: 0.5 wt%

Under “Axis Definitions” (This defines the step calculation):
- Quantity: Temperature; Min = 500; Max = 1000
- Step Division = 10; Type = “Linear-max step size”
- Method = “Normal”

Step 5: Plot Renderer Results and Save the Diagram or Data Table

This is commonly called a Step Diagram. It shows equilibrium phase fractions of phases present in the system at a given temperature. It is best to plot phase fraction in Log base 10.

A table with the data calculated can be created using “Table Renderer”.

Change your plotting conditions when the job is complete.
- Y-Axis: Make Axis Type “Logarithmic 10”. Adjust Limits to Min: 0.001, Max: 1.0, Step: 1

To execute these changes, use Perform button or Perform Now from the Project tree.
EXAMPLE 3: Map Calculation for a Fe-C Metastable Phase Diagram

Mapping Calculations allow variation of two variables. These enable the calculation of phase diagrams (varying Temperature and Composition). For this example, we’ll calculate a metastable equilibrium diagram of Fe-C.

Right-Click “Equilibrium Calculator” in the Project Tree. Right-Click “Create New Successor>Table Renderer”.
Right-Click “Perform” to generate the corresponding table.
You can copy all data or save all as a text, xls, or html file.
Step 1: Open TC2017b and enter GUI mode. Select ‘Phase Diagram’
Binary Calculator or Ternary Calculator are quick templates for Binary and Ternary Diagrams but feature less customizability.

Step 2: Choose the Correct Database and add Elements

In the Configuration Window, pick ‘TCFE9’ from the Database Dropdown menu. Add ‘Fe’ and ‘C’ to the system by clicking on them.
Step 3: Add Phases and Make Graphite Dormant

Uncheck all phases and then check to add: BCC_A2, CEMENTITE, GRAPHITE, FCC_A1, LIQUID.

Change GRAPHITE to “DORMANT” with the dropdown menu.

Step 4: Set Mapping Conditions, Then Perform calculation

Composition Unit: Mass Percent
Temperature: 1000 K
Pressure: 100000 Pa
System Size: 1 Mole
Comp. C: 1.0

Set these conditions under Axis Definitions:
Mass Percent C:
Min=0.0; Max=10; Step division=1000;
Type=Linear min No. of steps
Temperature:
Min=700; Max=1900; Step division=10;
Type=Linear max Step Size

Step 5: Change Axis Limits. Insert Labels
Step 6: Labeling Phase fields.
This is a metastable equilibrium diagram due to Graphite. The only ‘accurate’ section is that of less than 10 wt% C.

EXAMPLE 4: Calculate an Isothermal Section of Fe-Ni-Cr system at 600°C
An isothermal section of the ternary system provides us the composition-phase roadmap at a particular temperature. This information is very useful in selecting alloy compositions, knowing the equilibrium phases present, their amounts and compositions for a given alloy composition etc. The phase equilibria of Fe-Ni-Cr system is the basis for designing various types of stainless steels. For example, if one wants to design an austenitic stainless steel, the alloy composition should be in the FCC phase field. Or, if one wants to design a duplex stainless steel, the alloy composition should be in the BCC+FCC phase field. Calculation of an isothermal section at 600ºC is a demonstration of such alloy selection process.

Step 1: Open TC2017b and enter GUI mode. Select ‘Phase Diagram’

Step 2: Choose the Correct Database and add Elements
Step 3: Add Phases

In the Configuration Window, pick ‘TCFE9’ from the Database Dropdown menu. Add ‘Fe’, ‘Ni’ and ‘Cr’ to the system by clicking on them.

Only Check LIQUID, FCC_A1, BCC_A2, and SIGMA phases in the calculation as “Entered”

Step 4: Set Conditions, Then Perform calculation
Step 5: Finish the plot as a Triangular Diagram.

Step 6: Create a new Branch of the Project

Adjust Calculation Conditions
Comp. Unit=Mass Percent
Temp.= 600 C
Pressure=100000 Pa
System Size= 1 mole
Comp Ni=10
Comp Cr=10

Adjust Limits on Axis Definitions:
Quantity: Mass Percent Cr; Min=0; Max=100; Step Division=10.0;
Type=Linear Max Step Size
Quantity: Mass Percent Ni; Min=0; Max=100; Step Division=10.0;
Type=Linear Max Step Size.

This is an Isothermal Section of a Ternary diagram. Next, a Vertical Section of this system will be calculated using the Project Tree.

Set Plot to “Show Triangular” and “Perform” to show Ternary Phase Diagram.
Step 7: Set Conditions and Perform Equilibrium Calculations

Go to the Project Window: Right-Click on “System Definer”, “Create New Successor>Equilibrium Calculator” This creates a branched calculation using the same initial system, elements and phases.

Change Mass Percent Cr and Temp. Vary Mass percent of Cr from 10 to 30 by 100 steps Vary Temperature in C from 300 to 1200 by steps of 10 Perform only this tree

Step 8: Create a new Plot Renderer
Step 9: Create a new Plot Renderer, Set Plot Axis and Perform

Go to the Project Window:
Right-Click on “Equilibrium Calculator”, “Create New Successor>Plot Renderer”

The new plot appears in Plot Renderer 2. Set your axis limits to:
Cr: Min=10.0, Max=30.0, Step=2.0
Temp(C): Min=300, Max=1200, Step=100
Calculation of Driving Forces

Figure: Schematic phase diagram of a binary system A-B. An alloy of composition $X_{B,\beta}^0$ was solution treated at a temperature T_s and quenched and subsequently aged at a temperature T_a.

Graphical Illustration of Driving Force for Nucleation

Step I: A line is drawn tangent to Gibbs energy-composition curve of the matrix phase β at the bulk composition of the alloy ($X_{B,\beta}^0$). This line will be automatically tangent to the capillarity-increased Gibbs energy-composition curve of the critical nucleus, α'.

Step II: A line is drawn tangent to Gibbs energy-composition curve of the precipitate phase α so that the ratio of the distance between the intercepts on both sides of the Gibbs energy-composition diagram is equal to $\frac{V_{A,\alpha}}{V_{B,\alpha}}$, the ratio of the partial molar volume of A to that of the solute B in the α phase.

$\Delta G^E = \text{nucleation driving force with nucleus composition same as that of equilibrium composition}$

$\Delta G^N = \text{nucleation driving force in the presence of capillarity}$

$\Delta G^M = \text{maximum nucleation driving force (in the absence of capillarity)}$.

19
Figure: Graphical construction for the composition of the critical nucleus of a phase, X_B^α, formed at a temperature T_A from β phase matrix having composition X_B^β. P^* is the pressure in the nucleus due to capillarity.

Driving Force for Nucleation

I. Why Driving Force?
- The microstructure of most engineering materials are derived by controlling the kinetics of first-order phase transformation.
- The driving force is an important scaling parameter in understanding and controlling the kinetics of phase transformations in general.
- Classical Nucleation Theory: The time-dependent nucleation rate J^* is

$$J^* = N_\beta^* Z \exp \left(\frac{-\Delta G^*}{kT} \right) \exp \left(-\frac{t}{\tau} \right)$$

N is the density of viable nucleation sites, β^* is the frequency factor, Z is the Zeldovich nonequilibrium factor, ΔG^* is the activation energy for formation of the nucleus, τ is the incubation time, t is the isothermal reaction time. For spherical nuclei:

$$\Delta G^* = \frac{16\pi \sigma^3}{3 (\Delta G^M)^2} \quad \text{and} \quad r^* = -\frac{2\sigma}{\Delta G^M}.$$

II. Calculation of Driving Force for Nucleation (neglecting capillarity)
- Binary Alloy:

$$\Delta G^M = (\mu_{A,\alpha}^M X_{A,\alpha}^M + \mu_{B,\alpha}^M X_{B,\alpha}^M) - (\mu_{A,\beta}^M X_{A,\alpha}^M + \mu_{B,\beta}^M X_{B,\alpha}^M)$$

(per mole of α formed) (per mole of α removed)

$$= (\mu_{A,\alpha}^M - \mu_{A,\beta}^M) X_{A,\alpha}^M + (\mu_{B,\alpha}^M - \mu_{B,\beta}^M) X_{B,\alpha}^M$$

- Multicomponent Alloy:

$$\Delta G^M = (\mu_{\alpha}^M - \mu_{\beta}^M) X_{\alpha}^M$$

where $\mu = (\mu_1, \mu_2, ..., \mu_n)$ and $X = (X_1, X_2, ..., X_n)$ are vectors.

Graphical Illustration of Driving Force for Transformation

Diffusional Transformation:

When an alloy of composition $(X_{A,\beta}^\beta)$ transforms to α and β phases having equilibrium compositions $X_{A,\alpha}^\alpha$ and $X_{B,\beta}^\beta$, respectively, the Gibbs energy of the system will have decreased by an amount ΔG_{fr}, as graphically shown below. This is called the *driving force for transformation* which is very different from *driving force for nucleation*. This is due to the fact that the formation of first nuclei does not change of initial composition of β ($X_{B,\beta}^\beta$).
Driving Forces for Nucleation and Transformation

I. Diffusional Transformation:

- $\Delta G^M = f(X_{B,\beta}, T, t)$ and $\Delta G^{Tr} = f(X_{B,\beta}, T, t)$, but $\Delta G^M \neq \Delta G^{Tr}$

 where ΔG^M is the maximum driving force for nucleation, ΔG^{Tr} is the driving force for transformation, $X_{B,\beta}$ is the instantaneous composition of the matrix, T is temperature, and t is the isothermal time.

- Time dependency:

 All nuclei do not form and reach critical size at the same time. Due to various reasons some nuclei reach critical size earlier than others. The nuclei which reach critical size at time t_1 will subsequently undergo growth or coarsening (classical vs Langer-Schwartz). As a result the degree of supersaturation in the matrix will be reduced. It is also possible that the precipitation process is not complete at time $t_2 (> t_1)$, and nucleation might still be occurring. In that case the driving force for nucleation at time t_2 will be less than that at time t_1.

- At Equilibrium:

 When $X_{B,\beta} = X_{B,\beta}^E$, $\Delta G^M = \Delta G^{Tr} = 0$
II. Partitionless Transformation (massive, martensite, congruent solidification/melting etc.):
\[\Delta G^M = \Delta G^{Tr} = f(X_{B,\beta}^0, T) \]

III. Sign Convention for Driving Force for Nucleation
- If \(-\Delta G^M\) is +ve, the phase is stable and it has the tendency to precipitate
- If \(-\Delta G^M\) is –ve, the phase is not stable

In ThermoCalc the driving force for nucleation is expressed as a dimensionless quantity.
\[\Delta G^{TC} = \frac{\Delta G^M}{RT} \]
Thus, \(\Delta G^M \) (J/mol) = \(\Delta G^{TC} \) R T

where \(\Delta G^{TC} \) is the driving force for nucleation in ThermoCalc, T is the temperature in K, and R is universal gas constant.

EXAMPLE 5: Composition-Variant Transformation

Consider a Fe-1.5wt%C alloy quenched (rapidly enough to suppress any transformation during cooling) form high temperature to room temperature. The supersaturated alloy will be subjected to aging in the temperature range of 300 to 800 K. Let us assume that any of the three phases, Cementite, Diamond and Graphite can precipitate. We want to know how the driving forces for precipitation of these phases vary with temperature.
Step 1: Open TC2017b and enter GUI mode. Select ‘Property Diagram’

![Image of Property Diagram]

Click [Property Diagram] to begin the calculation.

Step 2: Change the database, add the correct elements, go to the Phases tab.

![Image of Phases tab]

Change the Database in the dropdown menu to “TCFe9”. Add the elements Fe, C and their content.
Step 3: Choose Phases

Only Check FCC_A1, CEMENTITE, DIAMOND_A4, GRAPHITE phases.

Make the Cementite, Diamond_A4, and Graphite Phases “Dormant” for a driving force calculation.

Step 4: Set Conditions (Temperature and Composition).

In the Conditions tab, set Temperature = 500 K, w(C)=1.5 wt%

Min(T)=300 K, Max(T)=800 K, step=10, Linear max step size, Normal
Step 5: Enter Driving Force Functions
In ThermoCalc, the driving force is expressed as a dimensionless quantity, \(\text{dgm}(\text{phase}) \). To calculate the driving force in J/mol, we have to multiply this quantity with \(R \) and \(T \), where \(R \) is the universal gas constant and \(T \) is the temperature in K.

In the Functions tab, enter the following as a Function:
- Function 1 = \(8.314 \times T \times \text{DGM(CEMENTITE)} \)
- Function 2 = \(8.314 \times T \times \text{DGM(DIAMOND)} \)
- Function 3 = \(8.314 \times T \times \text{DGM(GRAPHITE)} \)

Step 6: Define the diagram axis variables
Set Y axis as Function and Function 1.
Click on green “+” to generate 2 new sets of diagram.
Set the Y axis as Function and Function 2 and Function 3, respectively.
Click Perform to perform the calculations.
Step 7: Adjust the Y axis scale

Which phase has the highest driving force for precipitation?
In general, what is the effect of temperature on the driving force for precipitation?

EXAMPLE 6: Composition-Invariant Transformation

There are many examples of phase transformations where the compositions of the parent and product phase are exactly the same. These are called composition-invariant transformations. Examples include massive transformation, martensitic transformation, congruent ordering, congruent melting (or solidification) etc. Then, the driving force for such a transformation (ΔGm) is given by the difference in molar Gibbs energy i.e., ΔGm = ΔGm(product) - ΔGm(parent). Let us consider a Fe-10Ni-0.5C wt% alloy being cooled continuously from 727 to 27°C. This alloy may undergo a martensitic transformation. For the sake of simplicity, we will approximate martensite as the BCC phase given in ThermoCalc.
Step 1: Open TC2017b and enter GUI mode. Select ‘Property Diagram’

![Image of a software interface with 'Property Diagram' highlighted]

Click [Property Diagram] to begin the calculation

Step 2: Change the database, add the correct elements, go to the Phases tab.

![Image of a software interface with dropdown menu set to 'TCFE9']

Change the Database in the dropdown menu to ‘TCFE9’
Add the elements Fe, Ni, C and their content
Step 3: Choose Phases

Change the Database in the dropdown menu to "TCFe9"
Add the elements Fe, Ni, C and their content
Check BCC_A2 and FCC_A1 phase in the calculation as "Entered"

Step 4: Set Conditions (Temperature and Composition).

In the Conditions tab, set Temperature = 1000 K, w(Ni)=10 wt%, w(C)=0.5 wt%
Min(T)=300 K, Max(T)=1000 K, step size=50 K, Linear max step size, “Separate Phases”
Step 5: Enter Driving Force Functions

In the **Functions** tab, enter the following as a Function:

Function 1 = GM(BCC) - GM(FCC)

Then **“Perform”**

Step 6: Adjust Y axis variable & scale

Set Y axis as **Function and Function 1**.

Click **Perform** to perform the calculations.
Step 7: Make a New Plot with Gibbs Energy of all phases

What is the T_o temperature of the alloy, where T_o is the temperature where $G_m(\text{bcc}) - G_m(\text{fcc}) = 0$, using the plot of Driving Force versus Temperature? Does this correspond to the plot of Gibbs energy versus temperature?

Assuming that the martensitic transformation starts at a Driving Force of -1000 J/mol, what is the M_s temperature of the above alloy?
Labs 3, 4: Materials Design
The process of materials design involves a large amount of calculations using different models in order to study trade-offs and to perform optimization of design strategies. It is a tedious and time-consuming task to manually operate all models without an easy to use operational environment. This lab will introduce an improved interface for accessing Thermo-Calc. This new interface should greatly simplify all calculations that you will need to do. Currently, the interface will calculate basic thermodynamic quantities, martensite start temperature, solution temperature, carbide driving force, carbide coarsening rate, solidification segregation and more.

To Login
1. Run x-win32 in the background from Start>Programs
 Right click on the header bar and choose reset.
 (Icon “X” in the connection-bar at the bottom right corner of screen shows that x-win32 is running)
2. Run PuTTY from Start>Programs>PuTTY>PuTTY
 To connect to Wiglaf:
 Type in the following host name
 wiglaf.ms.northwestern.edu
 Enable X11 Tunneling in PuTTY:
 Go to Category → SSH>X11 in the tree on the left
 Check the box Enable X11 forwarding
 Click Open
 Click Yes to the PuTTY Security Alert
 Type your User Name when prompted with ‘login as’ and then press Enter
 Type your Password when prompted and press Enter
3. To access the interface, type in made & at the prompt in the SSH Window.
 Once MADE is open, drag the left side of the panel (vertical line) to the middle of the window to view the “Composition/Model Input” window.

Using MADE:
Inputs:
Models
Under the input tab, MADE has three major panels. On the top right hand side is the Model Manager Panel. The model manager panel contains a set of facilities to manage model executables. The user can select the model of interest by highlighting the program and then double clicking with the left mouse button. When a model is selected, the name of the program appears within the “[]” of the panel title, and the model input parameters are shown in the Composition/Model Input Panel. The “Info” button in the “Model Actions” button is used to display detailed information of the highlighted model.

Composition/Model Input
The left hand side panel is the window for the compositions and model inputs. You may choose to step through one or two composition ranges in the interface. To do this, click on the box next to the number. This will highlight the box in red. A second composition box will appear which will represent the high value of the composition range. If you want to customize the elements or add new elements into your calculation, click on the “Input Actions” button and then click “Change Element List”. Then enter a list containing all elements of interest such as “Al Mg Cu Si”, where the first element is the base element.

TDBs
The TDB Manager Panel allows the user to select the appropriate database for the model. For multi-component steel systems you should use the “ssol+m2c” database for all of your calculations EXCEPT Ms (Martensite Start Temperature) calculations. For Ms calculations, use the “mart5” database.
Models and Examples

1. Basic Model
The Basic model is a general-purpose program to retrieve thermodynamic/mobility quantities after the equilibrium calculation for a closed system (fixed mass). It needs temperature as an additional model input beside material composition. Basic relies on the extra input to configure the calculation. It requires at least one extra input name. The first extra input name (ENT PH) has to be a list of interested phase name(s) that go into (enter) the equilibrium calculation. The optional 2nd extra input name (Dor PH) represents a name list of dormant phases. The optional 3rd entry (P3 MADE) is used to put in special POLY3 commands before every equilibrium calculation. As this entry is one line in a whole, the user has to use “$” to combine different lines of commands into one line.

Example 1: Calculation of driving force for precipitation as a function of temperature using the Basic Model (Same as Example 5 in the Thermo-Calc Lab)

Problem Definition:
Consider an Fe-1.5wt%C alloy quenched (rapidly enough to suppress any transformation during cooling) from high temperature to room temperature. The supersaturated alloy will be subjected to aging in the temperature range of 300 to 800 K. Let us assume that any of the three phases: cementite, diamond, and graphite, can precipitate. We want to know how the driving forces for precipitation of these phases vary with temperature.

Steps:
1. In Model Manager select the Basic model
2. In TDB Manager select the ssol+m2c database
3. In the Composition Panel set wt% C=1.5 (note: you may have to change the selected element list to Fe C). Check the box next to T and input the temperature range from 27 to 527 C.
4. Click on the Compute tab. Set grid for T equal to 15 (these are the number of calculations it will carry out within the range)
5. Click on Compute button
6. It will now ask for additional inputs. Enter FCC as the entered phase (line 1). Enter cem dia gra as the dormant phases (line 2). We want the program to output the driving force for precipitation as J/mol. To do that enter the following command in line 3 of the Extra Input box:

\[
\text{en-sym function df1} = 8.314 \times T \times \text{dgm(cem)}; \text{en-sym function df2} = 8.314 \times T \times \text{dgm(dia)}; \text{en-sym function df3} = 8.314 \times T \times \text{dgm(gra)}; $\]

7. Click on OK
8. It will now ask for additional outputs. By default the outputs are G, H and S. Specify df1, df2 and df3 in lines 1, 2 and 3 as additional outputs. Click on OK.
9. The program will run calculations. If everything goes ok it should say “15 out of 15 calculations are successful”
10. Click on Create Plot Tab: Plot title and Plot subtitles are shown at the top. You can modify them if you wish.
11. The quantities to be plotted are shown in the lower panel. When you click on the Plot button, MADE launches the PlotMTV program (which is a separate program from MADE) to view the results. Within the PlotMTV program, the user can zoom in/out, toggle log scale, print to selected printer (“Print” button) or save as a PostScript file (“Print to File” button: by default it saves it as cmd.ps in your home folder). Open another terminal and type “gs cmd.ps” to see the plot. The generated PlotMTV plot may contain multiple pages. The number of pages is exactly the number of model outputs plus the user specified extra output. In the PlotMTV window, the arrow buttons at the bottom left corner are designed to flip up or down through the pages. You can flip down to see how the driving forces for precipitation for Cementite, Diamond and Graphite vary with temperature.

Additional Processing:
12. To view all three driving force curves on the same plot we need to merge the plots together. To do that we need to save the results. Click on the Save Result button on the MADE interface. Give the file a name and save (note: the file name cannot contain spaces). Click on Yes when it asks “Add Saved Data for Merging Plots”.
13. Click on the Merge Plots tab. There are two options for merging the plots: Combine and Overlay. The Combine option allows us to combine the curves according to an equation such as “df1-(df2+df3)”. The Overlay option simply plots all the curves on the same window. For the current example we need the Overlay option. Select Overlay from the drop down menu at the top.
14. Remove any lists in the functions or items list. Select the three functions: df1, df2, and df3 that you want to graph together. Double click df1, df2, and df3 in the available results list (bottom left). Click on the Plot button
15. It will now plot all the functions on the same window.

Note: To learn more about PlotMTV and its options, please refer to the manual in the Design Studio or Tech D145.
2. bccfcc-ms and bccfcc-t0 Models

The bccfcc-Ms model calculates the Martensite start temperature i.e. the temperature at which austenite (fcc) starts transforming to martensite (bcc) upon cooling. The bccfcc-T0 model calculates the T0 temperature i.e. the temperature at which the bcc phase and the fcc phase have the same free energy.

Example 2: Calculation of Martensite Start Temperature (Ms) of Fe-9Cr-15Co-1.5Ni-xMo-yV-0.24C Alloys

Problem Definition:
Calculation of M_s temperature is a very crucial step in designing ultra-high strength, secondary hardening martensitic steels. Such calculation allows us to select the alloy(s) whose M_s temperature is sufficiently high so that upon quenching (from solution treatment temperature) to room temperature a fully (≥ 95%) martensitic microstructure is obtained. If the M_s temperature is not high enough, then we may get incomplete transformation at room temperature and the alloy is to be quenched to sub-ambient temperature(s). Typically, in the alloy design procedure we select alloy(s) having M_s temperature between 200 to 300°C.

Clear your result of last example first: go to Merge Plots and Results Action and select Clear.

Steps:
1. In Model Manager select the bccfcc-ms model
2. In TDB Manager select the mart5 database
3. In the Composition Panel change the element list to: Fe C Cr Co Ni Mo V
4. In the Composition Panel set wt% C=0.24, wt% Cr=9, wt% Co=15, wt% Ni=1.5, wt% Mo=0.5 and wt% V=0.5
5. In all calculations leave “G’el Cor(J/mole)” as 0.
6. Click on the Compute tab. Notice that there is no grid bar this time. That is because we are doing calculation at a single point
7. Click on Compute button
8. The program will run the calculations. If everything goes ok it should say “Successful Calculation”
9. The output is the calculated M_s temperature (in Celsius) and the error associated with the M_s.

To calculate Ms with composition variation
10. We will now calculate the Ms with Mo and V variation. Click on the Input tab to go back
11. Check the box next to Mo and specify the range from 0 to 4 wt %
12. Check the box next to V and specify the range from 0 to 1 wt%
13. Click on the Compute tab.
 Set grids for Mo and V: total number of calculations =(Mo grid)*(V grid)
14. Click on Compute button
15. The program will run the calculations. If everything goes ok it should say that the calculations are successful
16. Click on the Create Plot Tab. The Plot title and Plot subtitles are shown at the top.
17. Click on Plot to view the Ms temperature as a function of composition. Notice that it is plotted in the form of a contour plot with Mo on one axis and V on the other. Each of the curves then corresponds to a unique Ms value.
18. MADE gives the option of specifying the iso-contour values. To do that, go back to the Create Plot interface on MADE. On the field next to Ms(C) specify the iso-contour values separated by a blank space e.g. 266 276 286. Click on Plot again to view the contour lines on the plot.
19. Click Save Result button on the MADE interface. Give the file a name and save. Click Yes when it asks “Add Saved Data for Merging Plots”.

Clear your result of last example first: go to Merge Plots and Results Action and select Clear.
Example 3:
Calculation of T0 Temperature of Fe-9Cr-15Co-1.5Ni-xMo-yV-0.24C Alloys

1. Go back to the Input tab and select bccfecc-t0 in the Model Manager Panel
2. In TBD Manager select the ssol+m2c database.
3. Repeat steps 3-15 from above example (Example 3-2). In this example the model calculates the T0 temperature instead of the Ms temperature.
4. Click on the Create Plot tab. The plot title and plot subtitles are shown at the top.
5. Click on Plot to view the T0 temperature as a function of composition. Each curve corresponds to a unique T0 value.
6. Click Save Result button on the MADE interface. Give the file name and save. Click Yes when it asks “Add Saved Data for Merging Plots”.
7. Click on the Merge Plots tab.
8. Click on the Show Options button.
9. Select Overlay in the drop-down menu.
10. On the bottom left of the screen, you should see an Available Results window which lists the calculations from the Ms and T0 calculations.
11. Double click on 1 Ms and [2](1) T0. You should see the functions that you picked in the Function or Items window.
12. Click on Lines under Contour Settings.
13. Click on Plot. You should see the Ms plot overlaid on the T0 plot.
14. Close the plot and return to the main MADE window.
15. Type \{278\} \{729\} in the Iso-Contour Values menu. This allows you to isolate the 278 C line in the Ms calculation and the 729 C line in the T0 calculation.
16. Click Plot. You should see the range of Mo and V compositions that satisfy both conditions: Ms=278 C and T0=729 C.

3. carb-dg and carb-np Models

The carb-dg model calculates the driving force for precipitation of the M2C, MC, M6C, M3C2, M7C3 and M23C6 carbides from a bcc matrix at a given temperature. The carb-np model calculates the equilibrium phase fractions of the carbides present at a given temperature.

Example 4: Calculation of Driving Force for Nucleation of Incoherent Carbides in Fe-9Cr-15Co-1.5Ni-xMo-yV-0.24C Alloys at 510°C. (Same as Example 2-6)

Problem Definition:
The calculation of driving force for nucleation is very important for precipitation hardening alloys. In secondary hardening steels, a substantial strength contribution comes from very fine dispersion of M2C carbide precipitates. To ensure very fine dispersion of precipitates, it is necessary to maximize the driving force for nucleation, because the size of the critical nucleus is inversely proportional to the driving force (see one of my earlier notes!). The purpose of this example is to demonstrate the calculation of driving force for nucleation of M2C carbide and other carbides in secondary hardening steels.

Steps:
1. In Model Manager select the carb-dg model
2. In TBD Manager select the ssol+m2e database
3. In the Composition Panel set wt% C=0.24, wt% Cr=9, wt% Co=15, wt% Ni=1.5 and wt% Mo from 0 to 4 and wt% V from 0 to 0.5. Set T=510°C (note: you may have to change the selected element list)
4. Notice that there are a few extra inputs. Specify the bcc input to be 0 (Fe). As we want Incoherent M2C, specify the M2C input as 0 (incoherent). Specify the M2C APR value as 1 and M2C beta value as 0.3
5. Click on the Compute tab. Set the grids for Mo and V
6. Click on Compute button
7. The program will ask for Extra Output Names. We don’t want any extra output so just click on OK
8. The program will run the calculations. If everything goes ok it should say that the calculations are successful
9. Click on the **Create Plot** Tab. The Plot title and Plot subtitles are shown at the top.
10. Click on **Plot** to view the Driving Forces for precipitation as a function of composition. Notice that it is plotted in the form of a contour plot with Mo on one axis and V on the other. Each of the curves then corresponds to a unique Driving Force Value. The first window is for the M2C Driving Force. Compare the values and the trend to your answer for Lab 2 Example 6. It should be similar.
11. Scroll down to view the Driving Force for precipitation for the other carbides. Overall, which carbide has the maximum driving force for precipitation?

Example 5: Calculation of Equilibrium Phase Fraction of Incoherent M2C in Fe-9Cr-15Co-1.5Ni-5Mo-0.5V-0.24C Alloy between 500-1000°C.

Problem Definition:
Using a similar composition as in the above example, we want to see how the M2C phase fraction varies with temperature

Steps:
1. In **Model Manager** select the **carb-np** model
2. In **TDB Manager** select the **ssol+m2c** database
3. In the **Composition Panel** set wt% C=0.24, wt% Cr=9, wt% Co=15, wt% Ni=1.5, wt% Mo=5, wt% V=0.5 and vary T from 500-1000°C (note: you may have to change the selected element list)
4. As we want Incoherent M2C, specify the M2C input as 0 (incoherent). Specify the M2C APR value as 1 and M2C beta value as 0.3
5. Click on the **Compute** tab. Set the grid for T
6. Click on **Compute** button
7. The program will ask for Extra Output Names. We don’t want any extra output so just click on OK
8. Click to the **Create Plot** tab and view the plots as before.
9. Notice that as we increase the tempering temperature, the BCC phase fraction increases and the M2C phase fraction decreases (as expected)

3. Coarsen Model
In precipitation hardening systems, it is not only desirable to have very fine precipitates to begin with (at nucleation) it is equally desirable to maintain fine size scale of the precipitates for long periods of time. After the completion of precipitation, the average size of the precipitates increases with time by the process called coarsening. Using the LSW theory K is defined as

$$F^3 - F_0^3 = \frac{4}{9} K(t - t_0)$$

$$K = \frac{2\sigma V^B}{RT} K'$$

where \(r \) and \(r_0 \) are the average particle size at time \(t \) and \(t_0, \) respectively, \(\sigma \) is the interfacial energy, \(V^B \) is the molar volume of the \(\beta \) phase, \(R \) is the universal gas constant and \(T \) is the temperature in K.

As an example, if \(M = (Cr, Mo) \) then \(K' \) can be expressed as:

$$\frac{1}{K} = \frac{1}{K_{Cr}} + \frac{1}{K_{Mo}}$$

$$\frac{1}{K_{M}} = \frac{D^\beta_M}{(k_M - k_{Fe})(k_M - 1)} X_M$$

5
where $\beta = \text{M}_2\text{C}$ carbide phase (HCP), $\alpha = \text{matrix (BCC) phase}$, X^β_M is the mole fraction of element M in the matrix phase, K_M is the partitioning coefficient of element M, and D^β_M is the diffusivity of element M in the matrix phase. The partitioning coefficient is defined by X^β_M/X^α_M, where X^β_M is the mole fraction of element M in the β phase as given by the tie-line.

The {	extit{coarsen}} model offers a general tool to calculate the normalized coarsening rate i.e. $K/(\sigma V m)$ using both Lee and Morrall and Purdy (MP) models. {	extit{Coarsen}} is general as it doesn’t specify the matrix and the precipitate phase names until run time. For a detailed explanation of the models used refer to the MADE manual Page 60.

Example 6: Calculation of Coarsening Rate Constant of M$_2$C Carbide in Fe-3Cr-14Co-15Ni-1.5W-xMo-yV-0.25C Alloys at 510°C

Problem Definition:
The purpose of this exercise is to demonstrate the calculation of coarsening rate constant of M$_2$C carbide phase in multi-component steels

Steps:
1. In Model Manager select the {	extit{coarsen}} model
2. In TDB Manager select the {	extit{ssol+m2c}} database
3. In the Composition Panel set wt\% C=0.25, wt\% Cr=3, wt\% Co=14, wt\% Ni=15, wt\% W=1.5, wt\% Mo from 1 to 5, wt\% V from 0 to 0.2 and T=510°C (note: you may have to change the selected element list)
4. Notice that there are a few extra inputs. The Form Ratio is the stage of formation at which we want to calculate the coarsening rate constant. The form ratio of 0.5 represents half completion, and the corresponding coarsening rate is usually a more representative quantity for the overall kinetics. Set the Form Ratio equal to 0.5. Set the D-off dia scale to be 1.
5. Click on the Compute tab. Set the grids for Mo and V
6. Click on Compute button
7. The program will ask for Extra Input Names. We want the matrix phase to be bcc and the precipitating phase to be M$_2$C. Specify bcc in line 1 and m2c in line 2 and click on OK
8. The program will ask for Extra Output Names. We don’t want any extra output so just click on OK
9. The program will run the calculations. If everything goes ok it should say that the calculations are successful
10. Click on the Create Plot Tab. The Plot title and Plot subtitles are shown at the top.
11. Click on Plot to view the Coarsening Rate Constants as a function of composition.

4. Other Models
- {	extit{carb-dg}}: Calculates the cementite driving force from bcc matrix
- {	extit{fe-dtsol}}: Calculates the liquidus line in Fe based system
- {	extit{fe-segreg}}: Calculates the compositional segregation during the solidification of multicomponent Fe based alloys in ingots.
- {	extit{fe-ts}}: Calculates the Solution temperature in multicomponent Fe alloys
- {	extit{liquidus}}: A general model which calculates the liquidus/single phase region in multicomponent alloys (doesn’t have to be Fe based)

Note: You are encouraged to familiarize yourself with the above models by using the compositions given in the exercises.

Important: In order to save your results in the form of a table you should click on the {	extit{Save Results}} button under the Create Plot tab. The program saves the results in a text file in a tabular form.

Note: To save plots in Black and White:
1. When you have a plot open click the “print to file” button
2. In the SSH Window type: `gs cmd.ps t` to open the saved plots in ghost viewer.
3. The files that were saved to file should appear on the screen. Copy plots and insert into homework.
Lab 3: DICTRA
In this lab you will learn how to simulate the diffusional processes in multicomponent systems using DICTRA (Diffusion Controlled TRAnsformation). DICTRA is a very convenient tool for solving multicomponent diffusion problems with systems having simple geometry, particularly for problems involving a moving boundary. DICTRA combines ThermoCalc with a procedure to solve the diffusion problem and a Newton-Raphson iteration technique to determine the migration rate of the interface and the equilibrium at phase interfaces.

Fick’s 2nd Law:

\[
\frac{\partial c_k}{\partial t} = \nabla \cdot (D_k \nabla c_k)
\]

- Reduce parameters by using mobility term
- Separates kinetic and thermodynamic terms
- Diffusion controlled transformations (DICTRA) solves Fick’s 2nd Law at each grid point.

For non steady state diffusion, Fick’s 2nd law is used where the change in composition of an element versus a change in time is given by the gradient of the flux (the flux is in parenthesis in the above figure). Because diffusivities are usually a function of composition it cannot be taken out to the front of this del operator. However, if we write the flux in terms of mobility, which is NOT a function of composition we can take that to the front of the del operator.

This also reduces the parameters stored in the database and separates the kinetic and thermodynamic terms.

The diffusion database holds the mobility terms and the chemical potential is extracted from the thermodynamic database.

DICTRA solves Ficks 2nd law at every grid point in the model using ThermoCalc to calculate the chemical potentials needed.
Example: γ to α transformation in a binary Fe – C alloy

This example deals with the kinetics of phase transformation from austenite ausenite (γ-fcc) to ferrite (α-bcc) in a binary Fe-C alloy upon cooling and isothermal holding. We will start the simulation at a high temperature at 1173 K (900°C) and we assume a gradual cooling down to 1050 K (777°C). When we reach 1050 K we keep the temperature constant and thus have an isothermal transformation. We will assume the ferrite (α-bcc) to be an inactive phase adjacent to the initial ausenite (γ-fcc), and the cooling rate is 10 K/minute (0.1667 K/sec) down to 1050 K (777°C) starting from 1173 K (900°C). The composition of the alloy is Fe – 0.15wt%C.
Step 1: Open TC2017b and select “Diffusion Simulation”

Step 2: Define the system

1. Select databases
 “SSOL2” as thermodynamic database
 “MOB1” as mobility database
 (By clicking green plus button, you can add another database)

2. Choose Fe and C as elements of the system
Step 3: Define calculation conditions

1. Click on “Diffusion Calculator 1”

2. Define region 1
 - Set width = 3 * 10^{-3} [mm]
 - Set number of grid-points = 50
 - Set grid type as “Geometric” with ratio = 1.05
 (Geometric grid provides more grid-points on the left-hand side region)
 - Set Phase = “FCC_A1”

3. Click on “Edit” button for composition profiles

Select “Phases and Phase Constitution” tab
Select phases below for both SSOL2 and MOB1 databases
- BCC_A2 (Entered)
- FCC_A1 (Entered)
4. Set composition of C in austenite as “Linear” from 0.15 to 0.15 [wt%]
 (Constant composition inside austenite region)

5. Click on “Apply” button

6. Assign ferrite phase on the left interface of austenite
 - Click on “Show left interface boundary” button
 - Select “BCC_A2” phase as a phase allowed to form
 - Set “Driving force” = 1*10^{-5}

 (From these procedures, ferrite is selected as inactive phase adjacent to left interface of austenite. Driving force for ferrite nucleation will be continuously monitored during calculation, and allowed to form when the driving force exceeds 1*10^{-5})
7. Define thermal profile
 Select “Non-isothermal”
 Click on “Edit thermal profile” button

8. Input thermal profile as shown left
 0 sec => 1173 K (900 C)
 728 sec => 1050 K (777 C)
 107 sec => 1050 K (777 C)

 (Cooling starts from 1173 K down to 1050 K, with the cooling rate of 10 K/minutes. Thus, cooling takes 738 sec. After the cooling, system will be kept at the constant temperature of 1050 K, until the total heat-treatment time reaches 107 seconds)

9. Click “OK”
Step 4: Define plot conditions

1. Click “Plot Renderer 1”

2. Choose X-axis as Distance
 - Axis variable: Distance, μ m, All regions
 - Axis type: Linear
 - Limits: Automatic scaling

3. Choose Y-axis as Composition of C
 - Axis variable: Composition, C, Mass percent
 - Axis type: Linear
 - Limits: 0.0 to 0.6, step 0.1
 (Unclick “Automatic scaling”)

4. Designate which time step you would like to plot
 - Input “1000 100000 1e7”
 (Please note you put space between numbers)
 (This gives you three different plots of
 time = 1,000 sec
 time = 100,000 sec
 time = 10,000,000 sec)

10. Click “Options”

11. Choose “potential” for finding tie-line at phase interface
Step 5: Execute calculation

From the figure above, you can see that as time goes, ferrite grows, and carbon becomes homogenized in austenite phase. Please note left-hand side is ferrite, and right-hand side is austenite.

※ After 1000 sec, ferrite has already nucleated but carbon concentration in austenite is mostly unchanged from the initial value of 0.15 wt%. Only the near-interface region is enriched with carbon in austenite

※ After 10^7 sec, ferrite has grown further, and carbon in austenite has nearly been homogenized

Step 6: Interpret the result

From the figure above, you can see that as time goes, ferrite grows, and carbon becomes homogenized in austenite phase. Please note left-hand side is ferrite, and right-hand side is austenite.
I. PrecipiCalc Overview
I.a. What is PrecipiCalc?
• Sophisticated software for calculating the precipitation kinetics of second phase transformations.
• Developed by Questek Innovations LLC.
• Platform: UNIX, MS Windows.

I.b. What PrecipiCalc does?
• Realistic and mechanistic modeling of nucleation, growth and coarsening without resorting to ad hoc treatments
• Relies on DICTRA (Diffusion Controlled TRAnsformation) to perform fundamental thermodynamics and mobility calculations

I.c. Applications
• Materials processing & Materials design

II. PrecipiCalc Architecture
• Layered Architecture Pattern.
• Five layers where each layer may provide services to all the layers above
 - Layer I: PrecipiCalc class, the top layer – calculating core particle size distribution evolution
 - Layer II: pcNucleation, pcTemperature, pcEnd – nucleation model, temperature profile and termination model
 - Layer III: pcGrowth – growth model based on multi-component thermodynamics and kinetics
 - Layer IV: pcLP, pcSurfEng – lattice parameter (molar volume) and surface energy
 - Layer V: pcStore class, the bottom layer – storage of particle size distribution and its associated quantities (e.g. volume fraction, mean size)

III. TC-PRISMA
The Precipitation module (TC-PRISMA) is an add-on module in Thermo-Calc which treats concurrent nucleation, growth/dissolution and coarsening under arbitrary heat treatment conditions in multi-component and multi-phase systems using Langer-Schwartz theory and the Kampmann-Wagner numerical approach. The Precipitation module (TC-PRISMA) extends the functionality available through Thermo-Calc and the Diffusion module (DICTRA) and can be used for calculations of:
• Concurrent nucleation, growth/dissolution and coarsening of precipitates
• Temporal evolution of particle size distribution
• Average particle radius and number density
• Volume fraction and composition of precipitate
• Nucleation rate and coarsening rate
• Isothermal transformation/Time-Temperature-Transformation (TTT) diagrams
• Continuous-Cooling-Transformation (CCT) diagrams
• Estimation of multi-component interfacial energy
Example 1. Isothermal Precipitation of Al\textsubscript{3}Sc in Al-0.18Sc (wt\%) binary alloy

This example simulates the kinetics of precipitation of Al\textsubscript{3}Sc from an FCC\textsubscript{A1} solution phase.

Step 1: Open TC2017b and enter GUI. Select ‘TC-PRISMA’

[Click [Precipitation Simulation Demo] to begin the calculation]

Step 2: Pick Database and Elements in System

[Change the database package in the dropdown menu to “Al based alloys”]

[Add the elements Al, Sc and their content]
Step 3: Identify Phases in System

Click “Check/Uncheck All” to remove all phases. Check the following phases in both databases:
- Al3Sc
- FCC_A1

Step 4: Set Simulation Conditions. Then Perform calculation. The calculation would take a few minutes.

Set These Conditions:
- **Composition**: Sc 0.18 wt%
- **Matrix Phase**: FCC_A1
- **Precipitation Phase**: Al3Sc
- **Nucleation Sites**: Bulk
- **Interfacial Energy**: Calculated

Under “Calculation Type”
- **Temperature**: 350 C
- **Simulation Time**: 1e7 s
Step 5: Plot Renderer Results

Change your plotting conditions
- Y-Axis: Mean Radius, Al3Sc, Axis Type "Logarithmic 10".
- X-Axis: Time in seconds, Axis Type "Logarithmic 10".

Perform To execute these changes

Other plot options
Example 2. Stable and Metastable Carbides in Fe-0.1C-12Cr (wt%) Steel - TTT Diagram

This example simulates the kinetics of precipitation of both stable and metastable carbides from ferrite phase. It demonstrates that metastable carbides may first emerge and then disappear, and the stable phase prevails.

Step 1: Open TC2017b and enter GUI. Select ‘TC-PRISMA’

![Image of TC2017b GUI]

Click [Precipitation Simulation Demo] to begin the calculation.

Step 2: Pick Database and Elements in System

![Image of database selection]

Change the database package in the dropdown menu to “Steel and Fe alloys”

Add the elements Fe, C, Cr and their content.
Step 3: Identify Phases in System

Click “Check/Uncheck All” to remove all phases. Check the following phases in both databases:

- BCC_A2
- Cementite
- M23C6
- M7C3

Step 4: Set Simulation Conditions for TTT diagram. Then Perform calculation. The calculation would take a few minutes.

Under “Calculation Type”

Temperature min 500°C, max 800°C, step 25°C

Simulation Time: 1e8 s

Volume Fraction: 0.0001

Set These Conditions:

Composition: C 0.1 wt%, Cr 12 wt%

Matrix Phase: BCC_A2

Precipitation Phase:
- Cementite, Grain Boundaries, User Defined 0.167 J/m²
- M23C6, Grain Boundaries, User Defined 0.252 J/m²
- M7C3, Grain Boundaries, User Defined 0.282 J/m²
Step 5: Plot Renderer Results

Example 3. Cooling Rate Diagram of γ-γ' Ni-10Al-10Cr (at%) superalloy – CCT diagram

In this example, a CCT diagram for a Ni-10Al-10Cr γ-γ' alloy is calculated and plotted with superimposition of the cooling rate values.

Step 1: Open TC2017b and enter GUI. Select ‘TC-PRISMA’

Click [Precipitation Simulation Demo] to begin the calculation.
Step 2: Pick Database and Elements in System

Change the database package in the dropdown menu to “Demo Ni based superalloys”
Add the elements Ni, Al, Cr and their content

Step 3: Identify Phases in System

Click “Check/Uncheck All” to remove all phases.
Check the following phases in both databases:
DIS_FCC_A1
FCC_L12#2
Step 4: Set Simulation Conditions for CCT diagram. Then Perform calculation. The calculation would take a few minutes.

Set These Conditions:
Composition: Al 10 at%, Ni 10 at%
Matrix Phase: DIS_FCC_A1
Precipitation Phase: FCC_L12#2
Nucleation Sites: Bulk
Interfacial Energy: 0.023 J/m²

Under “Calculation Type”
Temperature 500K – 1200K
Cooling Rate 0.01 0.1 1 10 100 K/s
Volume Fraction 1e-4

Step 5: Plot/Table Renderer Results
Click the 'Temperature' or 'FCC_L12#2'. The results can be shown in ascending or descending sort.