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1 COURSE DESCRIPTION

1 Course Description

A course on the mechanical properties of soft materials, designed for first year
graduate students in Materials Science and related disciplines. Not recom-
mended for students who have already taken MatSCI 332. Topics include ma-
trix and tensor representations of stress and strain, including extensions to
large strains, contact mechanics, fracture mechanics, yield, deformation and
time dependent behavior. Applications of these concepts to polymeric materi-
als is emphasized.
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2 INTRODUCTION

Figure 2.1: An example of a ’soft’ material.

2 Introduction

Since the title of this book contains the term ’Soft Materials’, it makes sense to
define what we really mean by ’soft’. Here are two ways to think about it:

1. Soft Materials have Low Elastic Moduli.

By ’low’ we mean significantly lower than the moduli of crystalline met-
als and ceramics. The jellyfish shown in Fig. 2.1 is obviously ’soft’ in
this sense. Metals and ceramics typically have moduli in the range of
100 MPa (see Fig. 2.2). While the strength of metals can be adjusted by
a variety of mechanisms that affect the nature of dislocation motion in
these systems, the modulus is set by the nature of the interatomic poten-
tials and there nothing that can really be done to significantly affect the
modulus of a given material. Polymers are different, however, and have
a much broader range of elastic moduli. The stiffest of these (Kevlar™for
example) have elastic moduli in at least one direction that are compara-
ble to the modulus of steel.

2. Thermal Fluctuations Matter in Soft Materials.

At a molecular level, the relevant energy scale that determines a variety
of important properties is the thermal energy, kBT, where kB is Boltz-
mann’s constant and T is the absolute temperature. If different molec-
ular arrangements within a material differ in energy by an amount that
of the order of kBT or less, than these different arrangements will all be
experienced by the material. When the free energy of a material is dom-
inated by the entropy associated with the accessibility of these different
arrangements, it is possible to calculate the elastic properties of the ma-
terial from the molecular structure with considerable accuracy.

Exercise: How high above the earths surface must a single oxygen molecule
be lifted in order for its gravitational potential energy to be increased by kBT?

Solution: The gravitational potential energy is mgh, where m is the mass of
the object, g is the gravitational acceleration (9.8 m/s 2) and h is height. The

7



2 INTRODUCTION

Polymers

Metals

Ceramics

Elastomers Plastics

Figure 2.2: Range of Young’s moduli (Pa) for different materials classes.

mass of a single O2 molecule is obtained by dividing the molecular weight in
g/mole by Avogadro’s number:

m = 32
( g

mole

)( mole
6.02x1023

)
= 5.3x10−23 g = 5.3x10−26 kg

The conversion to kg illustrates the first point that we want to make with this
simple calculation: Don’t mix units and convert everything to SI units (m-
kg-s) to keep yourself sane and avoid unit errors. Boltmann’s constant, kB
needs to be in SI units as well:

kB = 1.38x10−23 J/K

Now we just need to equate kBT to mgh, using something reasonable for the
absolute temperature, T. I’ll use T=300 K to get the following:

h =
kBT
mg

=

(
1.38x10−23 J/K

)
(300 K)

(5.3x10−26 kg) (9.8 m/s2)
= 8000 m = 8 km

The full oxygen partial pressure is given proportional to exp(−mgh/kBT), so
this value of h is the altitude where the oxygen pressure is a factor of e (2.7)
less than the value at sea level.

8



3 STRESS AND STRAIN

y
x

Figure 3.1: 2-dimensional stress tensor

3 Stress and Strain

The mechanical properties of a material are defined in terms of the strain re-
sponse of material after a certain stress is applied. In order to properly under-
stand mechanical properties, we have to have a good understanding of stress
and strain, so that’s where we begin.

Some Notes on Notation: There are different ways to represent scalar
quantities, vectors and matrices. Here’s how we do it in this text:

• Scalar quantities are straight up symbols, like P1, σ12, etc.

• Vectors are indicated with an arrow over the symbol, like ~P.

• Unit vectors are indicated with a caret above the symbol, like n̂.

• Matrices are enclosed in square brackets, like [σ]

3.1 Tensor Representation of Stress

The stress applied to an object, which we denote as σij or [σ] is the force acting
over an area of an object, divided by the area over which this force is acting.
Note note that [σ] is a matrix with individual components, σij specified by the
indices i and j. These indices have the following significance:

• i: surface normal (i= x, y, z)

• j: direction of force (j=x, y, z)

To obtain the Engineering stress, [σeng], we use the undeformed areas of the
stress-free object to obtain the stress tensor, whereas the true stress (which is

9



3.1 Tensor Representation of Stress 3 STRESS AND STRAIN

what we generally mean when we write [σ]) we use the actual areas in the
as-stressed state.

The stress matrix is a tensor, which means that it obeys the coordinate trans-
formation laws describe below. In two dimensions it has the following form:

[σ] =

[
σxx σxy
σyx σyy

]
(3.1)

The stress tensor must be symmetric, with σxy = σyx. If this were not the
case, the torques on the volume element shown above in Figure 3.1 would
not balance, and the material would not be in static equilibrium. As a result
the two dimensional stress state is specified by three components of the stress
tensor:

• 2 normal stresses, σxx, σyy. These are referred to as ’normal’ stresses be-
cause the force acts perpendicular to the plane that it is referred to.

• A single shear stress, σxy.

In three dimensions we add a z axis to the existing x and y axes, so the stress
state is defined by a symmetric 3x3 tensor. The full stress tensor can be used to
define the stresses acting on any given plane. To simplify the notation a bit we
label the three orthogonal directions by numbers (1, 2 and 3) instead of letters
(x, y and z). The stress tensor gives the components of the force (P1, P2 and P3)
acting on a given plane. The plane is specified by the orientation of the unit
vector, n̂ that is perpendicular to the plane. This vector has components n1, n2
and n3 in the 1, 2 and 3 directions, respectively. It’s a ’unit’ vector because the
length of the vector is 1, i.e.

(
n2

1 + n2
2 + n2

3
)1/2

= 1. The relationship between
~P, σ and~n is as follows:

 P1
P2
P3

 = A

 σ11 σ12 σ13
σ12 σ22 σ23
σ13 σ23 σ33

 n1
n2
n3

 (3.2)

or in more compact matrix notation:

~P = A [σ] n̂ (3.3)

Here A is the total cross sectional area of the plane that we are interested in. (If
you need a refresher on matrix multiplication, the Wikipedia page on Matrix
Multiplication (https://en.wikipedia.org/wiki/Matrix_multiplication)
[1] is very helpful).

10

https://en.wikipedia.org/wiki/Matrix_multiplication


3 STRESS AND STRAIN 3.2 Tensor Transformation Law

 

3

2

1

Figure 3.2: 3 dimensional stress tensor

In graphical form the relationship is as shown in Figure 3.2. Like the 2-
dimensional stress tensor mentioned above, the 3-dimensional stress tensor
must also be symmetric in order for static equilibrium to be achieved. There
are therefore 6 independent components of the three-dimensional stress ten-
sor:

• 3 normal stresses, σ11, σ22 and σ33, describing stresses applied perpendic-
ular to the 1, 2 and 3 faces of the cubic volume element.

• 3 shear stresses: σ12, σ23 and σ13.

The three dimensional stress tensor is a 3x3 matrix with 9 elements (though
only 6 are independent), corresponding to the three stress components acting
on each of the three orthogonal faces of cube in the Cartesian coordinate sys-
tem used to define the stress components. The 1 face has n1=1, n2 = 0 and
n3 = 0. By setting ~n = (1, 0, 0) in Eq. 3.2, we get the following for the stresses
acting on the 1 face of the volume element:

P1/A = σ11
P2/A = σ12
P3/A = σ13

(3.4)

Equivalent expressions can be obtained for the stresses acting on the 2 and 3
faces, by setting~n = (0, 1, 0) and~n = (0, 0, 1), respectively.

3.2 Tensor Transformation Law

The stress experienced by a material does not depend on the coordinate sys-
tem used to define the stress state. The stress tensor will look very different if
we chose a different set of coordinate axes to describe it, however, and it is im-
portant to understand how changing the coordinate system changes the stress
tensor. We begin in this section by describing the procedure for obtaining the

11



3.2 Tensor Transformation Law 3 STRESS AND STRAIN

1

3

2

22

11

12

12

3'=3

1

1'

22'
22
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12
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11
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'

Figure 3.3: Rotation of coordinate system. The coordinate system is rotated byθ
about the 3 axis, transforming the 1 axis to1′ and the 2 axis to2′.

stress tensor that emerges from a given change in the coordinate system. We
then describe the method for obtaining a specific set of coordinate axis which
gives a diagonalized tensor where only normal stresses are present (Section
3.3).

3.2.1 Specification of the Transformation Matrix

In general, we consider the case where our 3 axes (which we refer to simply as
axes 1, 2 and 3) are moved about the origin to define a new set of coordinate
axes that we refer to as 1′, 2′ and 3′. As an example, consider the simple coun-
terclockwise rotation around the 3 axis by an angle φ, shown schematically in
Figure 3.3. In general, the relative orientation of the transformed (rotated) and
untransformed coordinate axes are given by a set of 9 angles between the 3
untransformed axes and the three transformed axes. In our notation we spec-
ify these angles as θij, where i specifies the transformed axes (1′, 2′ or 3′) and j
specifies the untransformed axis (1, 2 or 3). In our simple example, the angle
between the 1 and 1′ axes is φ, so θ11 = φ. The angle between the 2 and 2′ axes
is also φ, so θ22 = φ. The 3 axis remains unchanged in our rotation example,
so θ33 = 0. The 3/3′ axis remains perpendicular to the 1,1′ , 2,2′ axes, so we
have θ31 = θ32 = θ13 = θ23 = 90◦. Finally, we see that the angle between the 1′

and the 2 axis is 90− φ (θ12 = 90− φ) and the angle between the 2′ and 1 axis
is 90 + φ (θ21 = 90 + φ). The full [θ] matrix in this case is as follows:

[θ] =

 φ 90− φ 90
90 + φ φ 90

90 90 0

 (3.5)

Note that the [θ] matrix is NOT symmetric (θij 6= θji), so you always need to
make sure the first index, i, (denoting the row in the [θ] matrix) corresponds to
the transformed axes, and the second index, j (denoting the column in the [θ]
matrix) corresponds to the original, untransformed axes.

12



3 STRESS AND STRAIN 3.2 Tensor Transformation Law

3.2.2 Expressions for the Stress Components

Once we specify all the different components of [θ], we can use the follow-
ing general expression to obtain the stresses in the new (primed) coordinate
system as a function of the stresses in the original coordinate system:

σ′ij= ∑
k,l

cos θjk cos θilσkl (3.6)

For each component of the stress tensor, we have to sum 9 individual terms
(all combinations of k and l from 1 to 3). For example, σ′12 is given as follows:

σ′12 = cos θ21 cos θ11σ11 + cos θ21 cos θ12σ12 + cos θ21 cos θ13σ13+
cos θ22 cos θ11σ21 + cos θ22 cos θ12σ22 + cos θ22 cos θ13σ23+
cos θ23 cos θ11σ31 + cos θ23 cos θ12σ32 + cos θ23 cos θ13σ33

(3.7)

The calculation is breathtakingly tedious if we do it all by hand, so it makes
sense to automate this and do the calculation via computer, in our case with
Python. In this example we’ll start with a simple stress state corresponding to
uniaxial extension in the 1 direction, with the following untransformed stress
tensor:

[σ] =

 5x106 0 0
0 0 0
0 0 0

 (3.8)

Suppose we want to obtain the stress tensor in the transformed coordinate
system obtained from a 45◦ counterclockwise rotation around the z axis. The
rotation matrix is given by Eq. 3.5, with φ = 45◦. The following Python code
solves for the full transformed tensor, with σij given by Eq. 3.8 and

[
θij
]

given
by Eq. 3.5 with φ = 45◦:

1 #!/ usr/bin/env python3
2 # -*- coding: utf -8 -*-
3

4 import numpy as np
5

6 sig=np.zeros((3, 3)) #% create stress tensor and set to zero
7 sig[0, 0] = 5e6; # this is the only nonzero component
8

9 sigp=np.zeros((3, 3)) # initalize rotated streses to zero
10

11 phi = 45
12

13 theta = [[phi ,90-phi ,90], [90+phi ,phi ,90], [90 ,90 ,0]]

13



3.2 Tensor Transformation Law 3 STRESS AND STRAIN

Figure 3.4: Output generated by rotate45.py.

14 theta = np.deg2rad(theta) # trig functions need angles in
radians

15 for i in [0, 1, 2]:
16 for j in [0, 1, 2]:
17 for k in [0, 1, 2]:
18 for l in [0, 1, 2]:
19 sigp[i,j]=sigp[i,j]+np.cos(theta[i,k])*np.cos(

theta[j,l])*sig[k,l]
20

21 print(sigp) # display the transformed tensor components

We use Python because it is free, powerful, and quite easy to learn especially
if you have experience with a similarly-structured programming environment
like MATLAB. Various Python code examples are included in this text, and are
presented as examples of how to do some useful things in Python.

The output generated by the Python code is shown in Figure 3.4, and corre-
sponds to the following result:

[
σ′
]
=

 2.5x106 −2.5x106 0
−2.5x106 2.5x106 0

0 0 0

 (3.9)

Note the following:

• The normal stresses in the 1 and 2 directions are equal to one another.

• The transformed shear stress in the 1-2 plane is half the original tensile
stress.

• The sum of the normal stresses (the sum of the diagonal components of
the stress tensor) is unchanged by the coordinate transformation

3.2.3 An Easier Way: Transformation by Direct Matrix Multiplication

A much easier way to do the transformation is to use a little bit of matrix math.
The approach we use is described in a very nice web page put together by Bob

14
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McGinty[2]: A transformation matrix, Qij, is obtained by taking the cosines
of all of these angles describing the relationship between the transformed and
untransformed coordinate axes:

[Q] = cos [θ] (3.10)

For the simple case of rotation about the z axis, the angles are given by Eq. 3.5,
so that [Q] is given as:

[Q] =

 cos φ cos (90− φ) cos 90
cos (90 + φ) cos φ cos 90

cos 90 cos 90 cos 0

 =

 cos φ sin φ 0
− sin φ cos φ 0

0 0 1


(3.11)

The transformed stress is now obtained by the following simple matrix multi-
plication:

[
σ′
]
= [Q] [σ] [Q]T (3.12)

where the[Q]T is the transpose of[Q]:

QT (i, j) = Q(j, i) (3.13)

For the rotation by φ around the z axis, [Q]T is given by the following:

[Q]T =

 cos φ − sin φ 0
sin φ cos φ 0

0 0 1

 (3.14)

Equation 3.12 is much easier to deal with than Eq. 3.7. The Python code to take
a uniaxial stress state and rotate the coordinate system by 45◦ about the 3 axis
looks like this if we base it on Eq. 3.12:

1 import numpy as np
2

3 # create stress tensor with all zero elements
4 sig = np.zeros ((3,3))
5

6 # set first one elment to be nonzero (one of the normal stresses)
7 sig [0][0] = 5e6
8

9 #set the rotation angle
10 phi = 45
11

12 # define the rotation matrix in degrees
13 theta = np.array ([[phi ,90+phi ,90],[90-phi ,phi ,90] ,[90 ,90 ,0]])

15
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Figure 3.5: Principal Stresses

14

15 # now put all the direction cosines in Q
16 Q = np.cos(np.radians(theta))
17

18 # claculate the transpose of Q
19 QT = np.transpose(Q)
20

21 # now multiply everything together
22 # note that we use the @ sign to multiply matrices in python
23 sigp = np.round(Q@sig@QT)
24

25 # print the result
26 print(sigp)

Running this script gives the output shown in Figure 3.4, i.e. we obtain exactly
the same result we obtained by using Eq. 3.7.

3.3 Principal Stresses

Any stress state (true stress) can be written in terms of three principal stresses
σ

p
1 , σ

p
2 and σ

p
3 , applied in three perpendicular directions as illustrated in Fig-

ure 3.5. Note that we still need 6 independent parameters to specify a stress
state: the 3 principal stresses, in addition to three parameters that specify the
orientation of the principal axes. The stress tensor depends on our definition
of the axes, but it is always possible to chose the axes so that all of the shear
components of the stress tensor vanish, so that the stress tensor looks like the
following:

[σ] =

 σ
p
1 0 0
0 σ

p
2 0

0 0 σ
p
3

 (3.15)

In order to gain some insight into the points mentioned above, it is useful
to consider a range of rotation angles, and not just a singe rotation angle of
45◦. One way to do this is to use the symbolic math capability of Python (or

16
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your other favorite software) to obtain the full stress tensor as a function of the
rotation angle. We’ll use the principal axes to define our untransformed state,
and transform to a new set of axes by rotating counterclockwise by an angle φ
around the 3 axis. We want to calculate

[σ′] from Eqs.3.11 and 3.12 as we did before, but we leave φ as an independent
variable. We use the following python script to do this:

1 # mohr_circle.py
2 # Mohr's circle derivation
3 from sympy import symbols , Matrix , cos , pi, simplify , preview
4

5 # specify the principal stressesS
6 sig1p , sig2p , sig3p = symbols (['sigma_1^p', 'sigma_2^p', 'sigma_3

^p'])
7 sig = Matrix ([[sig1p , 0, 0], [0, sig2p , 0], [0, 0, sig3p ]])
8

9 # now specify the rotation angle
10 phi = symbols('phi')
11

12 # specify the theta matrix
13 theta=Matrix ([[phi ,pi/2-phi ,pi/2], [pi/2+phi ,phi ,pi/2],[pi/2,pi

/2 ,0]])
14

15 # take the cosine of all the elements in the matrix to get Q
16 Q=theta.applyfunc(cos)
17

18 # get the transpose of the matrix
19 QT=Q.transpose ()
20

21 # now do the matrix multiplication to get the transformed matrix
22 sigp=Q*sig*QT
23

24 # now simplify and show the output
25 exp1 = simplify(sigp)
26 preview(exp1 , filename='../ figures/sympy_mohr_exp1.svg')
27

28 # define the center (C) and radius (R) of the circle
29 R, C = symbols (['R', 'C'])
30

31 # now we rewrite in terms of center and radius and simplify again
32 sigp = sigp.subs ([(sig1p , C+R), (sig2p , C-R)])
33 exp2 = simplify(sigp)
34

35 # now save the exp1 and exp2 as image files
36 preview(exp1 , viewer = 'file', filename = '../ figures/

sympy_mohr_exp1.png')
37 preview(exp2 , viewer = 'file', filename = '../ figures/

sympy_mohr_exp2.png')

This results in the following expression for [σ′] (exp1, generated in line 26 of
mohr_circle.py).

17



3.3 Principal Stresses 3 STRESS AND STRAIN

This is not yet a very illuminating result, but it is the basis for the Mohr circle
construction, which provides a very useful way to visualize two dimensional
stress states. This construction is described in more detail in the following
Section.

3.3.1 Mohr’s Circle Construction

The Mohr circle is a graphical construction that can be used to describe a
two dimensional stress state. A two dimensional stress state is specified by
two principal stresses, σ

p
1 and σ

p
2 , and by the orientation of the principal

axes. The Mohr circle is drawn with a radius, R, of σ
p
1 − σ

p
2 , centered at

C =
(

σ
p
1 + σ

p
2

)
/2 on the horizontal axis. We can use these values of R and

C as the independent variables in the expression for σ′ that we obtained from
our python script. This substitution is made in lines 30-34 of mohr_circle.py,
and leads to the following expression for [σ′] (exp2 from line 34):

Python has taken us almost as far as we need to go, but it doesn’t seem to be
smart enough to use the following two trigonometric identities:

1− 2 sin2 φ = cos (2φ)
1− 2 cos2 φ = − cos (2φ)

(3.16)

Substituting these into the expression for [σ′] gives our final result:

[
σ′
]
=

 C + R cos (2φ) −R sin (2φ) 0
−R sin (2φ) C− R cos (2φ) 0

0 0 φ
p
3

 (3.17)

In the Mohr circle construction normal stresses (σN) are plotted on the x axis
and the shear component of the stress tensor (τ) is plotted on the y axis. For
a two dimensional stress state in the 1-2 plane the circle is defined by two
points: (σ11, σ12) and (σ22, − σ12). In our current example the stress state in
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Figure 3.6: Mohr’s circle construction.

the untransformed axes is represented by the open symbols in Figure 3.6, i.e.
by the points

(
σ

p
1 , 0

)
and

(
σ

p
1 , 0

)
. In the transformed axes the stress state is

represented by the solid circles in Figure 3.6. From Eq. 3.17 it is evident that
the relationship between the two different representations of the stress state is
obtained by a rotation along circle by 2φ. Whether this rotation is clockwise
or counterclockwise depends on the sign convention in the definition of the
shear stress. We’re not going to worry about it here, but you can refer to the
Mohr’s Circle Wikipedia article[3] for the details (see the Section on the sign
convention).

The Mohr circle construction can only be applied for a two dimensional mean-
ing that there are no shear stresses with a component in the direction of the
rotation axis. There can be a normal stress in the third direction, as in our ex-
ample above, because this normal stress is simply superposed on the 2d stress
state. In general, there are three principal stresses, σ

p
1 , σ

p
2 and σ

p
3 , and we can

draw the Mohr circle construction with any combination of these 3 stresses. We
end up with 3 different circles, as shown in Figure 3.7. Note that the conven-
tion is that σ

p
1 is the largest principal stress and that σ

p
3 is the smallest principal

stress, i.e. σ
p
1 > σ

p
2 > σ

p
3 . An important result is that the largest shear stress,

τmax, is given by the difference between the largest principal stress and the
smallest one:

τmax =
1
2

(
σ

p
1 − σ

p
3

)
(3.18)

This maximum shear stress is an important quantity, because it determines
when a material will deform plastically (much more on this later). In order
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Figure 3.7: Three-dimensional Mohr’s Circle.

to determine this maximum shear stress, we need to first Figure out what the
principal stresses are. In some cases this is easy. In a uniaxial tensile test, one of
the principals stresses is the applied stress, and the other two principal stresses
are equal to zero.

The individual Mohr’s circles in Figure 3.7 correspond to rotations in the
around the individual principal axes. Circle C1 corresponds to rotation around
the direction in which σ

p
1 is directed, C2 corresponds to rotation around the

direction in which σ
p
2 is directed, and C3 corresponds to rotation around the

direction in which σ
p
3 is directed. A consequence of this is that is always possi-

ble to use the Mohr’s circle construction to determine the principal stresses if
there is only one non-zero shear stress.

Exercise: Determine the maximum shear stress for the following stress
state:

[σ] =

 3 0 2
0 3 0
2 0 5

 MPa (3.19)

Solution: We can handle this one without using a computer. There is only
one non-zero shear stress (σ13), so we can determine the principals stresses in
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the following manner:

1. One of the three principal stresses is the normal stress in the direction
that does not involve either of the directions in the nonzero shear stress.
Since the non-zero shear stress in our example is σ13, one of the princi-
pal stresses is σ22=3 MPa.

2. Now we draw a Mohr circle construction using the two normal stresses
and the non-zero shear stress, in this case σ11, σ33 and σ13. Mohr’s circle
is centered at the the average of these two normal stresses, in our case
at C = (σ11 + σ33) /2 = 4 MPa.

3. Determine the radius of the circle, R, is given as:

R =
√
(σ33 − σc)

2 + σ2
13 =

√
(5− 4)2 + σ2

13 = 2.24 MPa

4. The principal stresses are given by the intersections of the circle with
the horizontal axis:

σp = C± R = 6.24 MPa, 1.76 MPa

The third principal stress is 3 MPa, as we already determined.

5. The maximum shear stress is half the difference between the largest
principal stress (6.64 MPa) and the smallest one (1.76), or 2.24 MPa.

3.3.2 Critical Resolved Shear Stress for Uniaxial Tension

As an example of the Mohr circle construction we can consider the calcula-
tion of the resolved shear stress on a sample in a state of uniaxial tension. The
Mohr’s circle representation of the stress state is shown in Figure 3.8. The re-
solved shear stress, τrss, for sample in uniaxial tension is given by the following
expression:
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τrss = σ
p
1 cos φ cos λ (3.20)

where σ
p
1 is the applied tensile stress, φ is the angle between the tensile axis

and a vector normal to the plane of interest, and λ is the angle between the
tensile axis and the direction of the shear stress. This shear stress has to be in
the plane itself, so for a 2-dimensional sample λ+ φ = 90◦. This means we can
rewrite Eq. 3.20 in the following way:

τrss = σ
p
1 cos φ cos (90◦ − φ) (3.21)

We can use the identities cos (90− φ) = sin φ and sin (2φ) = 2 sin φ cos φ to
obtain the following:

τrss =
σ

p
1
2

sin (2φ) (3.22)

We can get the same thing from the Mohr’s circle construction to redefine the
axes by a rotation of φ. The shear stress is simply the radius of the circle (φp

1 /2
in this case) multiplied by sin (2φ). Mohr’s circle also gives us the normal
stresses:

σ11 =
σ

p
1
2 +

σ
p
1
2 cos (2φ)

σ22 =
σ

p
1
2 −

σ
p
1
2 cos (2φ)

(3.23)

The untransformed 2-dimensional stress tensor looks like this:

[σ] =

[
σ

p
1 0
0 0

]
(3.24)

The transformed stress tensor (after rotation by φ to give the resolved shear
stress) looks like this:

[
σ′
]
=

 σ
p
1
2 +

σ
p
1
2 cos (2φ)

σ
p
1
2 sin (2φ)

σ
p
1
2 sin (2φ)

σ
p
1
2 −

σ
p
1
2 cos (2φ)

 (3.25)
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3 STRESS AND STRAIN 3.3 Principal Stresses

Figure 3.8: Mohr’s circle construction and calculation of the resolved shear stress
for a 2-dimensional sample in uniaxial extension.

3.3.3 Principal Stress Calculation

Principal stresses can easily by calculated for any stress state just by obtain-
ing the eigenvalues of the stress tensor. In addition, the orientation of the
principal axes (the coordinate system for which there are no off-diagonal
components in the stress tensor). If you need a refresher on what eigenval-
ues and eigenvectors actually are, take a look at the appropriate Wikipedia
page (http://en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors). We’ll
use Python to do this, using the ’eig’ command .

To illustrate, we’ll start with the stress state specified by Eq. 3.9. which we got
by starting with a simple uniaxial extension in the 1 direction, and rotating the
coordinate system by 45◦ about the 3 axis. The MATLAB script to do this is
very simple and is as follows:

1 #!/usr/bin/env python3
2 # -*- coding: utf -8 -*-
3

4 import numpy as np
5

6 # write down the stress tensor that we need to diagonalize
7 sig=1e6*np.array ([[2.5 ,2.5 ,0] ,[2.5 ,2.5 ,0] ,[0 ,0 ,0]])
8

9 # get the eigen values and eigen vectors
10 [principalstresses , directions ]=np.linalg.eig(sig)
11

12 # the columns in 'directions ' correspond to the dot product of
the

13 # principal axes with the orignal coordinate system
14 # The rotation angles are obtained by calculating the inverse

cosines
15 theta=np.arccos(directions)*180/( np.pi)
16

17 # print the results (or just look at them in the variable
explorer in Spyder)

18 print ('theta =\n', theta)
19 print ('principal stresses =\n', principalstresses)
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Figure 3.9: Output generated by principal_stress_calc.py.

Here’s the output generated by this script:

3 principal axes returned as column vectors. In this case there is a single nor-
mal stress, acting in a direction midway between the original x and y axes. The
original uniaxial stress state is recovered in this example, as it should be. To
summarize:

• Principal Stresses: Eigenvalues of the stress tensor

• Principal Stress directions: Eigenvectors of the stress tensor

3.3.4 Stress Invariants

Some quantities are invariant to choice of axes. The most important one is the
hydrostatic pressure, p, given by summing the diagonal components of the
stress tensor and dividing by 3:

p = −1
3
(σ11 + σ22 + σ33) = −

1
3

(
σ

p
1 + σ

p
2 + σ

p
3

)
(3.26)

The negative sign appears because a positive pressure is compressive, but pos-
itive stresses are tensile. The hydrostatic pressure is closely related to a quan-
tity referred to as the ’first stress invariant’, I1:

I1 = σ11 + σ22 + σ33 (3.27)

The second and third stress invariants,I2 and I3, are also independent of the
way the axes are defined:

I2 = σ11σ22 + σ22σ33 + σ33σ11 − σ2
12 − σ2

13 − σ2
23 (3.28)

I3 = σ11σ22σ33 − σ11σ2
23 − σ22σ2

13 − σ33σ2
12 + 2σ12σ13σ23 (3.29)
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It’s not obvious at first that each of these quantities are invariant to the choice
of coordinate axes. As a check, we can start with a general tensor, rotate the
coordinate system through a full 180 degrees, and plot the value of an invariant
as a function of a the rotation angle, φ. The following python code does this
for I2:

1 import numpy as np
2 import matplotlib.pyplot as plt
3

4 # create a function that multiplies the transforms a stress
5 # tensor sig by a rotation of phi about the Z axis ,
6 # and returns the vaalue of I2
7

8 def I2_calc(phi):
9 sig = np.array ([[3, 5, 4], [5, 2, 9], [4, 9, 6]])

10 theta = np.array ([[phi ,90+phi ,90],[90-phi ,phi ,90] ,[90 ,90 ,0]])
11 Q = np.cos(np.radians(theta))
12 QT = np.transpose(Q)
13 sigp = Q@sig@QT
14 I2 = (sigp [0][0]* sigp [1][1]+ sigp [1][1]* sigp [2][2]+ sigp [2][2]*

sigp [0][0] -
15 sigp [0][1]**2 - sigp [1][2]**2 -sigp [0][2]**2)
16 return I2
17

18 # vectorize the function so we can input an array of phi values
19 vI2 = np.vectorize(I2_calc)
20

21 # now calculate I2 over a range of phi values
22 phi = np.linspace(0, 180, 100)
23 I2vals = vI2(phi)
24

25 # now make the plot
26 plt.close('all')
27 fig , ax = plt.subplots (1,1, figsize =(3 ,3), constrained_layout=

True)
28 ax.plot(phi , I2vals , '-')
29 ax.set_xlabel(r'$\phi (deg.)$')
30 ax.set_ylabel(r'$I_2$ ')
31

32 # save the plot
33 fig.savefig('../ figures/I2plot.svg')

This results in the very boring plot shown in Figure 3.10, indicating that I2
really is invariant to the definition of the coordinate axes.

3.4 Strain

There are 3 related definitions of the strain:

1. Engineering strain

2. Tensor strain
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Figure 3.10: Plot of I2 as a function of the axis rotation angle for a generic 3d stress
state, calculatged from I2_invariant_check.py.

3. Generalized strain (large deformations, also referred to as ’finite strain’)

Each of these definitions of strain describe the way different points an object
move relative to one another when the material is deformed. Consider two
points P1 and P2, separated initially by the increments x1,x2 and x3 along the
1, 2 and 3 directions. After the deformation is applied, these points move by
the following amounts, as illustrated in Figure 3.11:

• P1 moves by an amount ~u = (u1, u2, u3)

• P2 moves by ~u + d~u = (u1 + du1, u2 + du2, u3 + du3)

3.4.1 Small Strains

Strain describes how much farther point to moved in three different directions,
as a function of how far P2 was from P1 initially. For small strains we can ignore
higher order terms in a Taylor expansion for du, dv and dw and maintain only
the first, partial derivative terms as follows:

du1 = ∂u1
∂x1

dx + ∂u1
∂x2

dy + ∂u1
∂x3

dz
du2 = ∂u2

∂x1
dx + ∂u2

∂x2
dy + ∂u2

∂x3
dz

du3 = ∂u3
∂x1

dx + ∂u3
∂x2

dy + ∂u3
∂x3

dz
(3.30)

The three normal components of the strain correspond to the change in the
displacement in a given direction corresponds to a change in initial separation
between the points of interest in the same direction:

26



3 STRESS AND STRAIN 3.4 Strain

 Before Deformation

After Deformation

Figure 3.11: Location of two points,P1 andP2, before and after an applied defor-
mation.

e11 = ∂u1
∂x1

e22 = ∂u2
∂x2

e33 = ∂u3
∂x3

(3.31)

The engineering shear strains are defined as follows:

e23 = ∂u3
∂x2

+ ∂u2
∂x3

e13 = ∂u1
∂x3

+ ∂u3
∂x1

e12 = ∂u1
∂x2

+ ∂u2
∂x1

(3.32)

Note: shear strains are often represented by the lower case Greek gamma to
distinguish them from normal strains:

γ12 ≡ e12; γ23 ≡ e23; γ13 = e13 (3.33)

3.4.2 Tensor Shear Strains

Engineering strains relate two vectors to one another (~x and ~u), just as a tensor
does, but the transformation law between different coordinate systems is not
obeyed for the engineering strains. For this reason the engineering strains
are NOT tensor strains. Fortunately, all we need to do to change engineering
strains to tensor strains is to divide the shear components by 2. In our notation
we use e to indicate engineering strain and ε to indicate tensor strains. The
tensor normal strains are exactly the same as the engineering normal strains:
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ε11 = e11
ε22 = e22
εzz = ezz

(3.34)

Engineering shear strains (eyz, exz, ezy) are divided by two to give tensor shear
strains:

ε23 = e23/2
ε13 = e13/2
ε12 = e12/2

(3.35)

Note that the tensor strains must be used in coordinate transformations (axis
rotation, calculation of principal strains, ep

1 , ep
2 , ep

3 ).

3.4.3 Generalized Strain

We can also define the strain by considering a cube of side ` that is deformed
into a parallelepiped with dimensions of (along principal strain axes). After
deformation, the cube has dimensions of λ1`, λ2`, λ3`. Alternatively, a sphere
of radius r0 is deformed into and ellipsoid with principal axes of λ1r0, λ2r0 and
λ3r0, as shown in Figure 3.12. The quantities λ1,λ2,λ3 are extension ratios, and
are related to the principal strains as follows:

λ1 = 1 + eP
1

λ2 = 1 + eP
2

λ3 = 1 + eP
3

(3.36)

The true strains, et
1, are obtained as by taking the natural log of the relevant

extension ratio. For example, for a uniaxial tensile test, the true strain in the
tensile direction (assumed to be the 1 direction here) is:

et
1 = ln (λ1) (3.37)

This expression for the true strain can be obtained by recognizing that the
incremental strain is always given by the fractional increase in length d`/`,
where ` is the current length of the material as it is being deformed. If the ini-
tial length is `0 and the final, deformed length is ` f , then the total true strain,
etrue

1 is obtained by integrating the incremental strains accumulated through-
out the entire deformation history:

et
1 =

∫ ` f

`0

d`
`

= ln `|` f
`0

= ln
(
` f

`0

)
= ln λ1 (3.38)
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Before deformation After deformation

Figure 3.12: Unit sphere deformed into a strain ellipsoid with dimensions
ofλ1, λ2, λ3.

The extension ratios provide a useful description of the strain for both small
and large values of the strain. A material with isotropic mechanical proper-
ties has the same coordinate axes for the principal stresses and the principal
strains.

A more detailed description of generalized strain, with a lot of relevant ma-
trix math, is provided in the Wikipedia article on finite strain theory (https:
//en.wikipedia.org/wiki/Finite_strain_theory). If you come across con-
cepts like the Cauchy-Green deformation tensor or the Finger deformation ten-
sor, this article provides a useful introduction (but prepared for a lot of matrix
math). These concepts appear in a range of useful description of mechanical
response, including many in the biomedical field (muscle actuation, deforma-
tion of skin, etc).

3.5 Deformation Modes

Now that we’ve formally defined stress and strain we can give some specific
examples where these definitions are used, and begin to define some elastic
constants. We’ll begin with the two most fundamental deformation states:
simple shear and hydrostatic compression. These are complementary strain
states - for an isotropic material simple shear changes the shape but not the
volume, and hydrostatic compression changes the volume but not the shape.
We’ll eventually show that for an isotropic material there are only two inde-
pendent elastic constants, so if we know how an isotropic material behaves in
response to these two stress states, we have a complete understanding of the
elastic properties of the material.

3.5.1 Simple Shear

Simple shear is a two dimensional strain state, which means that one of the
principal strains is zero (or one of the principal extension ratios is 1).
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Figure 3.13: Schematic representation of simple shear.

The stress tensor looks like this:

[σ] =

 0 σ12 0
σ12 0 0
0 0 0

 (3.39)

From the definition of the engineering shear strain (Eq. 3.32) we have:

e12 =
u
d

(3.40)

We need to divide the engineering shear strains by 2 to get the tensor strains,
so we get the following:

[ε] =

 0 e12/2 0
e12/2 0 0

0 0 0

 (3.41)

We’re generally going to use engineering strains and not tensor strains, so we
generally don’t need to worry about the factor of two. The exception is when
we want to use a coordinate transformation to find the principal strains. To
do this we use a procedure exactly analogous to the procedure described in
Section 3.3, but we need to make sure we are using the tensor strains when we
do the calculation.

The shear modulus is simply the ratio of the shear stress to the shear strain.

G (shear modulus) =
σ12

e12
(3.42)

Note that the volume of the material is not changed, but it’s shape has. In very
general terms we can view the shear modulus of a material as a measure of its
resistance to a change in shape under conditions where the volume remains
constant.

30



3 STRESS AND STRAIN 3.5 Deformation Modes

normal
strains

Figure 3.14: Mohr’s circle construction for SMALL strains.

3.5.2 Simple Shear and the Mohr’s Circle Construction for Strains

Mohr’s cirlcle for strain looks just like Mohr’s circle for stress, provided that
we use the appropriate tensor components. That means that we need to plot
e12/2 on the vertical axis and the normal strains on the vertical axis, as shown
in Figure 3.14 (where we have used the common notation for the simple shear
geometry, with exy = γ). One thing that we notice from this plot is that γ is
simply given by the difference between the two principal strains:

γ = ep
1 − ep

2 = λ1 − λ2 (3.43)

For simple shear this relationship is valid, even for large strains, even though
there are other aspects of the Mohr’s circle construction that no longer work
at large strains. The primary difficulty is that the frame of reference for the
strained and unstrained case are not the same. In general, strains rotate the
frame of reference by an amount that we don’t want to worry about for the
purposes of this course. For small strains typically obtained in metals or ce-
ramics (with strain amplitudes of a few percent or less) we don’t need to worry
about this rotation, but it can become important for polymeric systems that un-
dergo very large strains prior to failure. However, if all we want a measure of
the shear strain in the material, we can still use Eq. 3.43, regardless of how
large the principal strains (and corresponding extension ratios) actually are.

I

3.5.3 Torsion

An important geometry for characterizing the shear properties of soft materi-
als is the torsional geometry shown in Figure 3.15. In this material a cylindri-
cal or disk-shaped material is twisted about an axis of symmetry. The material
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d

d

(a) (b)

Figure 3.15: Fiber torsion.

could be a long, thin fiber (Figure 3.15a) or a flat disk sandwiched between two
plates (Figure 3.15b). We obtain the shear modulus by looking at the torsional
stiffness of material, i.e., the Torque, T, required to rotate the top and bottom
of the fiber by an angle θ0.

We define a cylindrical system with a z axis along the fiber axis. The other axes
in this coordinate system are the distance r from this axis of symmetry, and the
angle θ around the z axis. The shear strain in the θ − z plane depends only on
r, and is given by:

eθz = r
dθ

dz
= r

θ0

`
(3.44)

The corresponding shear stress is obtained by multiplying by the shear mod-
ulus, G:

σθz = Grθ0/` (3.45)

We integrate the shear stress to give the torque, T:

T =
∫ d/2

0
rσθz2πrdr =

πGθ0d4

32`
(3.46)

This geometry is commonly used in an oscillatory mode, where θ is oscillated
at a specified frequency. In this case the torque response is obtained by using
the dynamic shear modulus, G∗ (defined in the section on viscoelasticity) in
place of G.
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Figure 3.16: Hydrostatic Compression.

3.5.4 Hydrostatic Compression

The bulk compressive modulus, Kb, of a material describes its resistance to a
change in density. Formally, it is defined in terms of the dependence of the
volume of the material on the hydrostatic pressure, p:

Kb = −V
dp
dV

(3.47)

The hydrostatic stress state corresponds to the stress state where there are no
shear stresses, and each of the normal stresses are equal. Compressive stresses
are defined as negative, whereas a compressive pressure is positive, so the
stress state for hydrostatic compression looks like this:

σ =

 −p 0 0
0 −p 0
0 0 −p

 (3.48)

where p is the hydrostatic pressure.

3.5.5 Uniaxial Extension

Uniaxial extension corresponds to the application of a normal stress along one
direction, which we define here as the 3 direction so that the stress tensor looks
like this:

σ =

 0 0 0
0 0 0
0 0 σ33

 (3.49)

We can measure two separate strains from this experiment: the longitudinal
strain in the same direction that we apply the stress, and the transverse strain,
e22, measured in the direction perpendicular to the applied stress (we’ll assume
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1

2

3

Figure 3.17: Uniaxial tensile deformation.

that the sample is isotropic in the 1-2 plane, so e11 = e22. The strains are given
by the fractional changes in the length and width of the sample:

e33 =
∆`
`0

(3.50)

e22 =
∆w
w

(3.51)

From these strains we can define Young’s modulus, E, and Poisson’s ratio, ν:

E = σ33/e33 (3.52)

ν = −e22/e33 (3.53)

3.5.6 Longitudinal Compression

A final deformation state that we will consider is longitudinal compression.
In this state all of the compression is in one direction, which we will specify
as the 3 direction. The strains in the other two direction are constrained to be
zero, so the strain state is as follows:

e =

 0 0 0
0 0 0
0 0 e33


Note that the strain state is similar to that of uniaxial extension or compression
(Figure 3.17), but in the current case we have a single nonzero strain instead
of a single non-zero stress. Finite values of σ11 and σ22 must exist in order for
sample in order for this strain state to be maintained, but we’re not going to
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Figure 3.18: Longitudinal Compression

Table 3.1: Representative elastic moduli for different materials.

Material G (Pa) Kb (Pa)
Air 0 1.0x105

Water 0 2.2x109

Jello ≈ 104 2.2x109

Plastic ≈ 109 ≈2x109

Steel 8x1010 1.6x1011

worry about those for now. Instead, we’ll use the following relationship for the
longitudinal elastic modulus, E` which is the ratio of σ33 to e33 for this strain
state. Note that this deformation state changes both the shape and volume of
the material, so E` involves both G and Kb:

E` =
σ33

e33
= Kb +

4
3

G (3.54)

3.6 Representative Moduli

A few typical values for G and K are listed in Table on this page. Liquids do
not have a shear modulus, but they do have a bulk modulus.

3.7 Case Study: Speed of Sound

The speed of sound, or sound velocity, Vsound, is actually a mechanical prop-
erty. It is related to a modulus, M, in the following way:

Vsound =

√
M
ρ

(3.55)

Here ρ is the density of the material. The modulus that we need to use depends
on the type of sound wave that is propagating. The two most common are a
shear wave and a longitudinal compressional wave:
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• Longitudinal compressional wave: M = E`

• Shear wave: M = G

In a liquid or gas (like air), G = 0 and shear waves cannot propagate. In this
case there is a single sound velocity obtained by setting M = Kb. For an ideal
gas:

P =
n
V

RT (3.56)

If the compression is applied slowly enough so that the temperature of the gas
can equilibrate, we have:

Kb = −V
dP
dV

=
n
V

RT = P (3.57)

So we expect that for a gas, the compressive modulus just equal to the pres-
sure. The situation is a bit more complicated for gas, since we need to use
the adiabatic modulus, which is about 40% higher than the pressure itself.
(For a detailed explanation, see the Wikipedia article on the speed of sound
(http://en.wikipedia.org/wiki/Speed_of_sound)[4]. The brief explanation
is that for sound propagation, the derivative in Eq. 3.57 needs to be evaluated
at constant entropy and not constant temperature, because the sound oscilla-
tion is so fast that the heat does not have time to escape). With ρ=1.2 kg/m3

and K = 1.4x105 Pa, we end up with a sound velocity of 344 m/s.
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4 MATRIX REPRESENTATION

Table 4.1: Definition of the matrix components of stress and strain.

Engineering stress Matrix Stress Engineering Strain Matrix Strain
σ11 σ1 e11 e1
σ22 σ2 e22 e2
σ33 σ3 e33 e3
σ23 σ4 e23 e4
σ13 σ5 e13 e5
σ12 σ6 e12 e6

4 Matrix representation of Stress and Strain

As usual, we begin by replacing the directions (x, y, and z) with numbers:
x → 1, y → 2, z → 3. Once we do this we have 6 stress components, and six
strain components. We then number these components from 1-6, so that 1, 2
and 3 are the normal components and 4, 5 and 6 are the shear components. We
do this for both stress and strain as shown in Table 4.1.

A series of elastic constants relate the stresses to the strains. We can do calcu-
lations in either of the following two ways:

1. Start with a column vector consisting of the 6 elements of an applied
stress, and use the compliance matrix to calculate the strains.

2. Start with a column vector consisting of the 6 elements of an applied
strain, and use the stiffness matrix to calculate the stresses.

In each case we use a6× 6 matrix to relate two 6-element column vectors to
one another. The procedure in each case is outlined below.

4.1 Compliance matrix


e1
e2
e3
e4
e5
e6

 =


s11 s12 s13 s14 s15 s16
s21 s22 s23 s24 s25 s26
s31 s32 s33 s34 s35 s36
s41 s42 s43 s44 s45 s46
s51 s52 s53 s54 s55 s56
s61 s62 s63 s64 s65 s66




σ1
σ2
σ3
σ4
σ5
σ6

 (4.1)

The matrix must be symmetric, with sij = sji, so there are a maximum of 21
independent compliance coefficients:
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4.2 Stiffness Matrix 4 MATRIX REPRESENTATION

Figure 4.1: Schematic representation of an extruded sheet.


e1
e2
e3
e4
e5
e6

 =


s11 s12 s13 s14 s15 s16
s12 s22 s23 s24 s25 s26
s13 s23 s33 s34 s35 s36
s14 s24 s34 s44 s45 s46
s15 s25 s35 s45 s55 s56
s16 s26 s36 s46 s56 s66




σ1
σ2
σ3
σ4
σ5
σ6

 (4.2)

Note that the compliance coefficients have the units of an inverse stress (Pa−1).

4.2 Stiffness Matrix

The stiffness matrix (c) is the inverse of compliance matrix (note the somewhat
confusing notation in that the compliance matrix is s and the stiffness is c,
backwards from what you might expect). The stiffness coefficients have units
of stress. 

σ1
σ2
σ3
σ4
σ5
σ6

 =


c11 c12 c13 c14 c15 c16
c12 c22 c23 c24 c25 c26
c13 c23 c33 c34 c35 c36
c14 c24 c34 c44 c45 c46
c15 c25 c35 c45 c55 c56
c16 c26 c36 c46 c56 c66




e1
e2
e3
e4
e5
e6

 (4.3)

4.3 Symmetry requirements on the compliance (or stiffness)
matrix.

4.3.1 Orthorhombic symmetry

Extruded polymer sheets, like the one shown schematically in Figure 4.1 have
orthorhombic symmetry, with different elastic properties in the extrusion,
thickness and width directions. These materials have orthorhombic symme-
try.

38



4 MATRIX REPRESENTATION 4.3 Symmetry Requirements

For materials with orthorhombic symmetry, the principal axes of stress and
strain are identical, and all compliance components relating a shear strain (e4,
e5 or e6) to normal stresses (σ1,σ2 orσ3) or to another shear stress must be zero.
The stiffness matrix is as shown in Eq. 4.4 below, and there are 9 independent
elastic constants. These 9 elastic constants can be identified as follows:

• E1 = 1/s11, E2 = 1/s22 and E3 = 1/s33, Young’s moduli for extension in
the 1, 2 and 3 directions, respectively.

• G1 = 1/s44, G2 = 1/s55 and G3 = 1/s66, Shear moduli for shear in the
planes perpendicular to the 1, 2 and 3 directions, respectively.

• s12, s13 and s23, which relate stresses in one direction to strains in the
perpendicular direction.

e1
e2
e3
e4
e5
e6

 =


s11 s12 s13 0 0 0
s12 s22 s23 0 0 0
s13 s23 s33 0 0 0
0 0 0 s44 0 0
0 0 0 0 s55 0
0 0 0 0 0 s66




σ1
σ2
σ3
σ4
σ5
σ6

 (4.4)

4.3.2 Fiber Symmetry

For a material with fiber symmetry, one of the axes is unique (in this case the
3 axis) and the material is isotropic in the orthogonal plane. Since the 1 and
2 axes are identical, there are now 5 independent elastic constants s33, s13, s44,
s11, s12:

e1
e2
e3
e4
e5
e6

 =


s11 s12 s13 0 0 0
s12 s11 s13 0 0 0
s13 s13 s33 0 0 0
0 0 0 s44 0 0
0 0 0 0 s44 0
0 0 0 0 0 2 (s11 − s12)




σ1
σ2
σ3
σ4
σ5
σ6

 (4.5)

Examples of materials with fiber symmetry include the following:

1. Many liquid crystalline polymers (e.g. Kevlar).

2. Materials after cold drawing (plastic deformation to high strains, carried
out below the glass transition temperature or melting temperature of the
material.)

To better understand the significance of the 5 elastic constants for fiber symme-
try, it is useful to consider the types of experiment we would need to conduct
to measure each of them for a cylindrical fiber. The necessary experiments are
described below.
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Figure 4.2: Fiber extension.

d

Figure 4.3: Fiber torsion.

Fiber extension along 3 direction: measurement of s33 and s13 We obtain
s33 and s13 by performing a tensile test along the fiber axis (the 3 direction)
as shown in Figure 4.2. The strain in the 3 direction is given by the fractional
change in the length of the fiber after application of the load, and the strains
in the 1 and 2 directions are given by the fractional changes in the diameter of
the fiber:

e3 = ∆`/`; e1 = e2 = ∆d/d (4.6)

We then obtain s33 and s13 from Eq. 4.5, recalling that σ3 is the only non-zero
stress component in this situation:

s33 = e33/σ3
s13 = e1/σ3

(4.7)

Fiber Torsion: Measurement of s44 We obtain the shear modulus by looking
at the torsional stiffness of the fiber, i.e., the torque, T, required to rotate the
top and bottom of the fiber by an angle θ0, as illustrated in Figure 4.3

We define a cylindrical system with a z axis along the fiber axis. The other axes
in this coordinate system are the distance r from this axis of symmetry, and the
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angle θ around the z axis. The shear strain in theθ− z plane depends only onr,
and is given by :

eθz = r
dθ

dz
= r

θ0

`
(4.8)

The corresponding shear stress is obtained by multiplying by the shear mod-
ulus, G characterizing deformation in the 1-2 and 2-3 planes:

σθz = Grθ0/` (4.9)

We integrate the shear stress to give the torque, T:

T =
∫ d/2

0
rσθz2πrdr =

πGθ0d4

32`
(4.10)

So once we know the torsional stiffness of the fiber (the relationship between
the applied T and θ0) we know the shear modulus, G. This shear modulus is
simply the inverse ofs44:

G =
1

s44
(4.11)

4.3.3 Fiber compression in 1-2 plane: determination of s11 and s12

The last two elastic constants for a material with fiber symmetry can be deter-
mined from an experiment where the fiber is confined between two surfaces
and compressed as shown in Figure 4.4. The elastic constants can be deter-
mined by measuring the width of the contact region between the fiber and the
confining surface. If the confining surfaces are much stiffer than the fiber itself,
than this contact width, 2b, is determined by the elastic deformation of the ma-
terial in the 1-2 plane. If there is no friction between the fiber and the confining
surfaces the fiber is allowed to extend in the 3 direction as it is compressed and
the contact width is given by the following expression:

b2 =
2Fd0s11

`
(4.12)

where P is the force applied to the fiber, d0 is its undeformed diameter and ` is
its length.

A practical situation that is often observed is that friction between the fiber
and confining surfaces keeps the fiber length from increasing, so the strain in
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P

2b

d

P

Figure 4.4: Transverse deformation of a fiber.

the three direction must be zero. If we express the stress state in terms of the
principle stresses in 1 and 2 directions, we have the following from Eq. 4.5:

e3 = s13

(
σ

p
1 + σ

p
2

)
+ s33σ3 (4.13)

Setting e3 to zero in this equation gives the following for σ3:

σ3 =
−s13

s33

(
σ

p
1 + σ

p
2

)
(4.14)

A consequence of this stress is that the frictionless expression for b gets modi-
fied to the following:

b2 =
2Fd0

`

(
s11 −

s2
13

s33

)
(4.15)

The remaining constant, s12, is determined from a measurement of d/d0, the
ratio of the fiber width at the midplane to the original width of the fiber. This
relationship is complicated, and involves several of the different elastic con-
stants.

d
d0

= f (P, s11, s13, s33, s12) (4.16)

4.3.4 Cubic Symmetry

For a material with cubic symmetry the 1,2 and 3 axes are all identical to one
another, and we end up with 3 independent elastic constants:
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
e1
e2
e3
e4
e5
e6

 =


s11 s12 s12 0 0 0
s12 s11 s12 0 0 0
s12 s12 s11 0 0 0
0 0 0 s44 0 0
0 0 0 0 s44 0
0 0 0 0 0 s44




σ1
σ2
σ3
σ4
σ5
σ6

 (4.17)

4.3.5 Isotropic systems

For an isotropic material all axes are equivalent, and the properties are
invariant to any rotation of the coordinate axes. In this case there are two
independent elastic constants, and the compliance matrix looks like this:


e1
e2
e3
e4
e5
e6

 =


s11 s12 s12 0 0 0
s12 s11 s12 0 0 0
s12 s12 s11 0 0 0
0 0 0 2 (s11 − s12) 0 0
0 0 0 0 2 (s11 − s12) 0
0 0 0 0 0 2 (s11 − s12)




σ1
σ2
σ3
σ4
σ5
σ6


(4.18)

The requirement that the material properties be invariant with respect to
any rotation of the coordinate axes results in the requirement that s44 =
2 (s11 − s12), so there are two independent elastic constants. The shear modu-
lus, G, Young’s modulus E and Poisson’s ratio, ν are given as follows:

G = 1/2 (s11 − s12) ; E = 1/s11; ν = −s12/s11 (4.19)

Bulk Modulus for an Isotropic Material The bulk modulus, Kb, of a mate-
rial describes it’s resistance to a change in volume (or density) when we apply
a hydrostatic pressure, p. It is defined in the following way:

Kb = −V
dP
dV

(4.20)

The stress state in this case is as follows:

σ =

 −p 0 0
0 −p 0
0 0 −p

 (4.21)
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From the compliance matrix (Eq. 4.18) we get e1 = e2 = e3 = −p (s11 + 2s12).
The change in volume, ∆V can be written in terms of the three principal exten-
sion ratios,λ1,λ2 andλ3:

∆V
V0

=
V
V0
− 1 = λ1λ2λ3 − 1 = (1 + e1) (1 + e2) (1 + e3)− 1 ≈ e1 + e2 + e3

(4.22)

Now we use the fact that for small x, (1 + x)3 ≈ 1 + 3x, so we have:

∆V
V0

= e1 + e2 + e3 = −3p (s11 + 2s12) (4.23)

Recognizing that the derivative dP/dV in the definition of Kb can be written as
the limit of p/∆V for very small p allows us to obtain the expression we want
for Kb:

Kb = lim
p→0

−p
∆V/V0

=
1

3 (s11 + 2s12)
(4.24)

Relationship between the Isotropic Elastic Constants: Because there are
only two independent elastic constants for an isotropic system E and ν can
be expressed in terms of some combination of Kb and G. For E the relevant
relationship is as follows.

E =
9G

3 + G/Kb
= 2G (1 + ν) (4.25)

We can also equate the two expressions for G in Eq. 4.25 to get the following
expression forν:

ν =
3− 2G/Kb
6 + 2G/Kb

(4.26)

Note that if Kb � G, E ≈ 3G and ν ≈ 0.5.

4.3.6 Relationship between Stiffness Matrix and Compliance Matrix

The stiffness matrix is the inverse of the compliance matrix. The relationships
between the individual coefficients is quite complicated, unless there is a lot
of symmetry. It’s not too bad for the isotropic case, in which case we can use
symbolic python to do the inversion. Here’s the code:
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1 from sympy import symbols , Matrix , preview
2 # specify two independent elements of s for an isotropic material
3 s11 , s12 = symbols (['s_11', 's_12'])
4

5 # define the matrix
6 s = Matrix ([[s11 , s12 , s12 , 0,0,0],
7 [s12 ,s11 ,s12 ,0,0,0],
8 [s12 ,s12 ,s11 ,0,0,0],
9 [0,0,0,2*(s11 -s12) ,0,0],

10 [0,0,0,0,2*(s11 -s12) ,0],
11 [0,0,0,0,0,2*(s11 -s12)]])
12

13 # now invert the matrix
14 c=s.inv()
15 preview(c, viewer = 'file', filename = '../ figures/sympy_c.png')

This gives the output shown here:

Note that the stiffness matrix has the same symmetry as the compliance matrix,
as it must:


σ1
σ2
σ3
σ4
σ5
σ6

 =


c11 c12 c12 0 0 0
c12 c11 c12 0 0 0
c12 c12 c11 0 0 0
0 0 0 G 0 0
0 0 0 0 G 0
0 0 0 0 0 G




e1
e2
e3
e4
e5
e6

 (4.27)

Comparison of Eq. 4.27 to the output from symbolic_cmatrix.py gives the fol-
lowing:

G =
1

2(s11 − s12)
; c11 =

s11 + s12

s2
11 + s11s12 − 2s2

12
; c12 =

−s12

s2
11 + s11s12 − 2s2

12
(4.28)
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5 AMORPHOUS POLYMERS

Figure 5.1: A diagram of an amorphous polymer.

Figure 5.2: The end-to-end vector, ~R, for a polymer molecule.

5 Structure of Amorphous Polymers

Materials science is the study and application of the relationships between the
properties of a material, the structure required to obtain these properties, and
the processing methods which can be used to obtain these properties. Our
discussion of polymer synthesis was motivated primarily by a need to un-
derstand processing methods for polymer materials. We also introduced the
structure of different polymers at the atomic level, corresponding to the ar-
rangements of individual atoms in the polymeric repeat units. Our discus-
sion now moves to the structure of polymers on a molecular scale. We begin
with amorphous polymers, and follow with a discussion of semicrystalline
polymers. Ultimately, we will find that our understanding of many of the im-
portant properties of polymers can be related to these structural features by
simple, yet remarkably accurate theories. In particular, the theory of rubber
elasticity relates the elastic properties of an elastomer to the molecular struc-
ture described here.

The squiggly lines in Figure 5.1 represent the backbones of individual
molecules in an amorphous polymer. (One molecule is highlighted in red)
Our goal is to relate the properties of an amorphous polymer to the distri-
bution of shapes of these molecules. Ultimately, we will show that many of
the mechanical properties of amorphous polymers at temperatures above the
glass transition are related to this distribution of polymer shapes.
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5 AMORPHOUS POLYMERS 5.1 End-to-end Vector

Figure 5.3: Random walk animation

5.1 End-to-end Vector for Polymer Molecules

The shape of this particular molecule can only be completely specified by de-
scribing the path taken by the molecule from one end to the other. Fortu-
nately, the most important quantity is much simpler. This quantity end-to-end
vector, ~R which is simply the vector spanning the two ends of a given poly-
mer molecule. This vector will in general be different for different polymer
molecules in a sample, but the distribution of vectors can be accurately pre-
dicted. The shapes of amorphous polymer molecules are random, and random
walk statistics can be used to describe the distributions of end-to-end vectors
that are obtained.

5.2 Random Walk in One Dimension

We can understand much of what we need to understand by considering the
simplest case of a random walk in 1 dimension. In this case our ’walker’ takes
Nx steps, each of which is a randomly chosen move to either the left or right.
At the end of these Nxsteps we write down how many steps removed from the
starting point our walker is. We refer to this number as i. For example, if the
walker ends up 4 steps to the right of where he ended up, then i = 4. Where
our walker ended up after one particular trip is not very important though. We
need to have him take lots of trips, and collect statistics to see where he ended
up after taking a large number of trips. We’ll let him take a total of M trips, and
write down the number of times, n, that the walker has ended up i steps from
where we started. If the walk is really random, then the relationship between
n and i will be approximated by Eq. 5.1

n(i) = 2M
(

1
2πNx

)1/2
exp

(
−i2

2Nx

)
(5.1)
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5.3 Average of a Function 5 AMORPHOUS POLYMERS

We can check that the summation is appropriately normalized. In other words,
is the following expression valid?

∑
i

ni = M (5.2)

The summation here is over all possible values of i . Note that for a random
walk with an even number of steps, only even values of i are possible. Simi-
larly, for a walk with an odd number of steps, only odd values of i are possible.
We can get the summation we want by summing over all integer values of i
and then dividing by two:

∑
i

n(i) =
M√

2πNx

∞

∑
i=−∞

exp
(
−i2

2Nx

)
≈ M√

2πNx

∞∫
−∞

exp
(
−i2

2Nx

)
di (5.3)

Functions of the form f (x) ∝ exp− (x/A)2 (where A is a constant) are called
Gaussian functions, and generally describe random processes. The following
integrals of a Gaussian function will be very useful for us:

∞∫
−∞

exp− (x/A)2 dx = A
√

π (a)

∞∫
−∞

x exp− (x/A)2 dx = 0 (b)

∞∫
−∞

x2 exp− (x/A)2 dx = A3√π/2 (c)

(5.4)

In our case, A =
√

2Nx, so ∑
i

n (i) = M and our expression for the Gaussian

distribution of random walks is indeed normalized.

5.3 Average of a Function

The entire distribution represented by the Gaussian function will be useful
to us, but it is still useful to have some averages. We encountered averages
already in our discussion of the number and weight average distribution. In
general, if Px(x) is the probability that a discrete variable has a value of x,
than the average value of x (referred to as 〈x〉) is obtained from the following
expression:

〈x〉 = ∑
x

xPx (x) (5.5)
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5 AMORPHOUS POLYMERS 5.3 Average of a Function

where the sum is over all possible values of x. Similarly, the average of x2 is
given by: 〈

x2
〉
= ∑

x
x2Px (x) dx (5.6)

The procedure can be generalized to calculate the average of any function of
x:

〈 f (x)〉 = ∑
x

f (x) Px (x) (5.7)

Exercise: Suppose I put the following 10 numbers into a drawer: 1, 4, 8,
12, 19, 25, 28, 33, 37, 45. I randomly pick a number from the drawer and then
return it. What is the average value of all the numbers that I pick if I continue
with this exercise?

Solution: We just use Eq. 5.5. Since there are 10 numbers and I am equally
likely to be picked, they each have a value of 0.1 for Pr. So in this case we
have:

= 0.1 (1 + 4 + 8 + 12 + 19 + 25 + 28 + 33 + 37 + 45) = 21.2

In this case the answer is just the average of all the numbers, which is about
as simple it gets.

In general for a function of i, where i is only able to take on discrete values, we
have:

< f (i) >= ∑
i

f (i)Pr(i)

What if we have a function of a continuous variable, x? In this case, we must
replace P(i), with Pr (x) dx, where Pr(x)dx is the probability that the contin-
uous variable has a value between x and x + dx. We must also replace the
summation with the appropriate integral to obtain the following result:

〈 f (x)〉 =
∫

f (x) Pr (x) dx (5.8)
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5.4 Averages for Random Walks 5 AMORPHOUS POLYMERS

Exercise: Suppose I put the following 10 numbers into a drawer: 1, 4, 8,
12, 19, 25, 28, 33, 37, 45. I randomly pick a number from the drawer and then
return it. What is the average value of all the numbers that I pick if I continue
with this exercise?

Solution: Calculate the average value of x2, assuming that x is equally
likely to take on all values between 1 and 10, and that no values outside
this range are possible. We know that Pr has some constant value between 1
and 10. In order for our procedure to work, we need to make sure that the
probability distribution is normalized, with

∫ xmax
xmin

Pr(x)dx = 1. In our case
this gives Pr = 1/9 and we get:

〈
x2
〉
=

1
9

∫ 10

1
x2dx =

1
27

x3
⌈9

1
=

103 − 1
27

=
999
27

= 37

5.4 Averages for Random Walks

If the length of each step taken by the random walker is a, then the distance be-
tween the beginning and the end of the walk is simply i times this step length:

Rx = ia

We can substitute Rx/a for i and dRx/a for di in Eq. 5.3 to get an expression
for the total number of walks M. We’ll generalize a bit further and replace
the limits of −∞ and ∞ for i to limits of Rmin and Rmax for Rx. We obtain
the following for M (Rmin, Rmax), the total number of walks with values of Rx
between Rmin and Rmax:

M (Rmin, Rmax) = M
Rmax∫
Rmin

PxdRx (5.9)

with the probability density function, Px given as follows:

Px =
1√

2πNxa2
exp

(
−R2

x
2Nxa2

)
(5.10)
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5 AMORPHOUS POLYMERS 5.5 3D Random Walks

To calculate the average values of Rx and R2
x, referred to as 〈Rx〉 and

〈
R2

x
〉
,

respectively, we use Eq. 5.8 to calculate the averages:

〈Rx〉 =
∞∫
−∞

RxPxdRx =
1√

2πNxa2

∞∫
−∞

Rx exp
(
− R2

x
2Nxa2

)
= 0 (5.11)

〈
R2

x

〉
=

∞∫
−∞

R2
xPxdRx =

1√
2πNxa2

∞∫
−∞

R2
x exp

(
− R2

x
2Nxa2

)
= Nxa2 (5.12)

We know intuitively that Eq. 5.11 must be true because the Gaussian distri-
bution function is symmetric: positive and negative values of Rx with equal
magnitudes are equally likely. This means that any contribution to 〈Rx〉 will
be exactly offset by a contribution with the opposite sign. For this reason, the
root mean square end-to-end distance,

√
〈R2

x〉 =
√

Nxa , is typically used to
describe the spatial extent of a random walk.

5.5 Random Walks in 3 Dimensions

Now we can extend some of these results to describe the shapes of real poly-
mer molecules. We begin with a discussion of two dimensional random walks.
The simplest extension is to give our random walker 4 choices for his move-
ments. In addition to moving to the left and right, he can now move up and
down, as illustrated in Figure 5.4a. If we move the constraint that there are
only 2 directions in which the walker can move, we get the example shown
in Figure 5.4b. These trajectories are now beginning to look like the shapes of
actual polymer molecules, which is why this whole exercise is relevant.

Much of our understanding of amorphous polymers is based on our treatment
of individual molecules as random walks in three dimensions. We assume that
we can treat a polymer of degree of polymerization N as a random walk of N
steps, each with an effective length of a, which we refer to as the Statistical
segment length. The statistical segment length does not correspond to a real
polymer dimension that we can get directly by looking at the structure of the
polymer molecule. We need more detailed models of chain dimensions for
that. For now, you just need to know that it is a length that gives the right
overall molecular size. To simplify our treatment and make the connection
back to the statistics that we already developed for one-dimensional random
walks, we make the following simplifying assumptions:
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Figure 5.4: 2-D Random Walk of 1000 steps on a square lattice (a) and with random
bond angles (b). The end-to-end vector, ~R, is shown in each case.

• We will get the overall statistics right by assuming a simple lattice model
(as in Figure 5.4), where the a chain is able to movie in any of the x, y or
z directions.

• Of the N steps made by the chain, N/3 of them move in each of the x, y
and z directions.

The value of Rx that we studied in the one dimensional random walk case is
just the x component of the end-to-end vector, which also has y and z compo-
nents:

~R = Rx x̂ + Ryŷ + Rz ẑ (5.13)

where x̂, ŷ and ẑ are unit vectors in the x, y and z directions, respectively. The
probability, Pxyz that a given random walk of N steps in three dimensions has
an end-to end vector of with x, y and z components of Rx, Ry and Rz is given
by multiplying the probabilities for the individual components:

Pxyz = PxPyPz = R3
0

(
3

2π

)3/2
exp

(
−3R2

2R2
0

)
(5.14)

Here we have assumed that Py and Pz have the same form as Px from Eq. 5.10,
with y or z substituting for x as appropriate. We have also used the following
relationships:
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5 AMORPHOUS POLYMERS 5.5 3D Random Walks

R2 = R2
x + R2

y + R2
z , (5.15)

Nx = Ny = Nz = N/3, (5.16)

along with the following definition of R0:

R0 =
√

Na (5.17)

Recall that Pxyz(Rx, Ry, Rz)dRxdRydRz is the probability that x component of
the end-to-end vector is between Rx and Rx + dx, the y component is between
Ry and Ry + dy, and the z component is between Rz and Rz + dz. We can also
define a probability density PR,where PRdR is the probability that the magni-
tude of the end-to-end vector lies between R and R + dR. Because the proba-
bility only depends on R for an isotropic system (as must be the case for a truly
random walk), we can substitute 4πR2dR for dRxdRydRz to obtain:

PR = 4πR2Pxyz =
4.15R2

R3
0

exp

(
−3R2

2R2
0

)
(5.18)

Note that R2
0 is the average of R2, obtained from the following version of Eq.

5.8:

〈
R2
〉
=

∞∫
0

R2PRdR =
4.15
R3

0

∞∫
0

R4 exp

(
−3R2

2R2
0

)
= R2

0 (5.19)

Note that the distribution is normalized:
∞∫
0

PrdR̄ = 1.

Exercise: What fraction of molecules in an amorphous polymer have end
to end vectors that are within 10% of R0?

Solution: We define a new variable, R̄, such that R̄ = R/R0. With this
definition of R̄, rewrite Eq. 5.18 in the following way:

PR̄ = 4.15R̄2 exp
(
−1.5R̄2

)
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Figure 5.5: Probability density.

Note that this expression for PR̄ is normalized, with
∫ ∞

0 PR̄dR̄ = 1. We need
to integrate the probability density from R̄=0.9 to R̄ = 1.1:

Ptot
r = 4.15

1.1∫
0.9

R̄2 exp(−1.5R̄2)dR̄

This corresponds to the shaded area in the following figure:

Numerical integration of the equation above gives Ptot
r = 0.18, which corre-

sponds to the red shaded area. This is the total fraction of molecules with R
between 0.9 R0 and 1.1 R0.
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6 RUBBER ELASTICITY

Figure 6.1: Molecular deformation occurring at different force and length
scales (from From Osterhelt et al.: http://www.iop.org/EJ/abstract/1367-
2630/1/1/006/).

6 Rubber Elasticity

Crosslinked rubbers are unique in that thermodynamic arguments can be used
to predict their elastic moduli with remarkable accuracy. Our starting point
will be a description of the free energy of an elastomer as a function of its
deformation. This free energy is dominated by entropic contributions arising
from restrictions on the number of different conformations (or shapes) that
polymer strands are able to adopt. The detailed descriptions of polymer chain
statistics given earlier were developed so that we would be in a position to
describe the mechanical properties of rubbery materials. The description of
rubber elasticity given here is proof that statistics and thermodynamics are
actually useful!!

6.1 Molecular Deformation

Different types of molecular deformations, and the characteristic lengths and
forces, are illustrated in Figure 6.1. In rubber elasticity we are interested in de-
formations due to changes in the overall shapes of the molecules, with typical
molecular forces in the range of 10 pN and deformations in the range of 10 nm.
In this force regime we don’t need to worry about the specific chemistry of the
polymer backbone. All that matters is the distance between the two ends of the
molecule. Figure 6.2 shows the situation in this regime of ’entropic elasticity’
in more detail.

The origins of entropic elasticity can be understood in terms of the probability
density, Pxyz, that describes the relative probability that the end-to-end vector
has a specific set of x, y and z components. This probability depends on the
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6.1 Molecular Deformation 6 RUBBER ELASTICITY

Figure 6.2: Illustration of force, Pd, that must be applied to a single molecule to
maintain and end-to-end separation of R.

magnitude of the end-to-end vector normalized by R0, the root-mean-squared
value of the end-to-end vector . For our purposes here we’ll see that we don’t
actually need the normalization for Pxyz - we just need to understand how it

depends on ~|R|. For simplicity we refer to
∣∣∣~R∣∣∣ simply as R in our discussion,

with Pxyz given as follows:

Pxyz ∝ exp

(
−3R2

2R2
0

)
(6.1)

The value of Pxyz is proportional to the number of molecular configurations,
Ω, that are consistent with this particular value of R, so we can write:

Ω
(
~R
)
= C exp

(
−3R2

2R2
0

)
(6.2)

where C is some constant that we don’t know.

The entropy is obtained from the number of possible molecular shapes:

Sd

(
~R
)
= kB ln Ω

(
~R
)
= kB ln C− 3kBR2

2Na2 (6.3)

The free energy is assumed to be entirely dominated by this entropic contribu-
tion:

Fd

(
~R
)
= −TSd

(
~R
)
= −kBT ln C +

3kBTR2

2Na2 (6.4)
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Before Deformation After Deformation

F FF0 Fdef

Figure 6.3: Contrasting free energies before and after deformation

In reality, there is a small enthalpic contribution to the stretching free energy
as well, because stretching the chain increases the relative proportion of higher
energy gauche bonds, but we’re not going to worry about that correction here.
Because we are only every interested in changes in the free energy, constant
terms that don’t depend on R are going to drop out when we compare free
energies, so the detailed value of this constant is not going to matter.

This expression for the elastic free energy of an individual molecule in terms
of its end-to-end distance is remarkably simple. It is one of the most important
and widely used results in polymer science. In the following section, we will
see how it is used to obtain estimates for the elastic modulus of a crosslinked
elastomer.

6.2 Free energy of a stretched rubber

When a rubber is stretched, the free energy increases. In general the free energy
increase has enthalpic and entropic contributions ( Fd = Hd − TSd). The ba-
sic assumption of rubber elasticity theory is that the free energy increase due
to deformation is dominated by the decrease in the entropy. In other words
|T∆Sd| >> |∆Hd|. The second assumption we will make is that the defor-
mation at a microscopic level mimics the deformation at a macroscopic level.
In other words, relative changes in the spacings between crosslink points are
identical to relative changes in the overall sample demonstrations. This as-
sumption is referred to as the affine deformation assumption.

6.3 Free energy change due to deformation

What really matters when determining the mechanical properties of a material
is the change in free energy resulting from a deformation, which we express
in terms of the molecular extension ratios in the x, y and z directions. Prior to
deformation, we have ~R = Rx x̂ + Ryŷ + Rz ẑ, so that R2 = R2

x + R2
y + R2

z . The
undeformed free energy, F0, is given by using this expression for R2 in Eq. 6.4:
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6.3 Free energy change due to deformation 6 RUBBER ELASTICITY

F0 = −kBT ln C +
3kBT
2Na2

{
R2

x + R2
y + R2

z

}
(6.5)

For an isotropic system the orientation of the coordinate axis do not matter.
Here assume that x, y and z axes correspond to principal axes, with principal
axis 1 directed along x̂, principal axis 2 directed along ŷ and principal axis
3 directed along ẑ. After deformation, the values of Rx, Ry and Rz are each
multiplied by the approate extension ratio ( ~R = λ1Rx x̂ + λ2Ryŷ + λ3Rz ẑ), so
that R2 = λ2

1R2
x + λ2

2R2
y + λ2

3R2
z . The deformed free energy, Fde f is:

Fde f = −kBT ln C +
3kBT
2Na2

{
λ2

1R2
x + λ2

2R2
y + λ2

3R2
z

}
(6.6)

The free energy change due to deformation of the molecule is given as follows:

∆Fd = Fde f − F0 =
3kBT

{
(λ2

1 − 1)R2
x + (λ2

2 − 1)R2
y + (λ2

3 − 1)R2
z

}
2Na2 (6.7)

This result is for the deformation of a single polymer molecule, which for a
crosslinked elastomer corresponds to a segment that connects crosslink points.
There are a huge number of these segments in a macroscopic chunk of rubber.
To get the free energy change for the material as a whole, we need to replace R2

x
by nel

〈
R2

x
〉
, where nel is the total number of network strands and

〈
R2

x
〉

is the
average value of R2

x for these segments. We need to make similar substitutions
for R2

y and R2
z to obtain the following:

∆Fd =
3kBTnel

{
(λ2

1 − 1)
〈

R2
x
〉
+ (λ2

2 − 1)
〈

R2
y

〉
+ (λ2

3 − 1)
〈

R2
z
〉}

2Na2 (6.8)

Now we assume that the material was isotropic when it was crosslinked, so
that

〈
R2

x
〉
=
〈

R2
y

〉
=
〈

R2
z
〉
=
〈

R2〉 /3. With this assumption, and with R2
0 −

Na2, we obtain the following result:

∆Fd =
kBTnel

〈
R2〉 {λ2

1 + λ2
2 + λ2

3 − 3
}

2R2
0

(6.9)
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6 RUBBER ELASTICITY 6.4 Shear deformation of an elastomer

Note that
〈

R2〉 is the mean square end-to-end distance of the polymer strands
that span the crosslinks, and that R2

0 is the value of
〈

R2〉 when the poly-
mer strands obey random walk statistics. The relationship between these two
quantities depends on the conditions of the crosslinking reaction.

It is often useful to work in terms of intensive free energy changes (free energy
per unit volume). The free energy of deformation per unit volume ∆ fd is ob-
tained very simply from ∆Fd by dividing by V, the volume of a sample. We
retain the same expression as shown above, but with the strand concentration,
νel substituted for the number of strands, nel :

∆ fd =
∆Fd
V

=
kBTvsβ

{
λ2

1 + λ2
2 + λ2

3 − 3
}

2
(6.10)

where νel and β are defined as follows:

νel =
nel
V

; β =

〈
R2〉
R2

0
(6.11)

Like the intensive free energy, the strand concentration, vs is useful because it
does not depend on the overall size and shape of the elastomer. The assump-
tions used to develop the free energy expression given above correspond to
the simplest model of rubber elasticity, which is often referred to as the Neo-
hookean model. In our discussion of the specific cases of shear and uniaxial
deformation that we discuss below, we make the additional assumption that
the material is incompressible, in which case the product of the three principal
extension ratios is one:

λ1λ2λ3 = 1 (6.12)

6.4 Shear deformation of an elastomer

For pure shear we need to relate the shear strain, γ, to the extension ratios,
λ1, λ2 and λ3. Pure shear is a two dimensional stress state, with λ3 = 1 so the
Neohookean strain energy function (Eq. 6.10) reduces to the following:

∆ fd =
kBTvsβ

{
λ2

1 + λ2
2 − 2

}
2

=
kBTvsβ(λ1 − λ2)

2

2
=

kBTvsβγ2

2
(6.13)

The shear stress is obtained by differentiation of the strain energy function
with respect to γ (Eq. ??):
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σ12 =
d

dγ
(∆ fd) = Gγ (6.14)

where G is the shear modulus, given as follows:

G = kBTvsβ (6.15)

Note that the shear stress is proportional to the shear strain, even for large
values of the strain.

6.5 Uniaxial deformation of an elastomer

For uniaxial extension or compression the deformation is applied along one
axis, which we define as the z axis. We assume that our material is isotropic,
so that the extensions in the 1 and 2 directions are identical to one another, i.e.
λ1 = λ2. In addition, the material is assumed to be incompressible, so λ1λ2λ3

= 1. We therefore have λ1 = λ2 = λ−1/2
3 . We can therefore write the free

energy of a deformed elastomer as a function of the single extension ratio, λ3:

∆ fd =
G
2

{
λ2

3 +
2

λ3
− 3
}

(6.16)

The engineering stress is obtained by differentiating with respect to λz (Eq. ??):

σeng =
d

∂dλ
(∆ fd) = G

{
λ3 −

1
λ2

3

}
(6.17)

Young’s modulus (E) is defined as the derivative of the stress with respect to
strain, evaluated at low strain ( λz = 1):

E ≡
∂σeng

∂λz
|λz=1 = G

{
1 +

2
λ3

3

}∣∣∣∣∣
λ3=1

= 3G = 3vsβkBT, (6.18)
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The concentration of network strands ( vs) is the inverse of the volume per
strand. This can be calculated from the molecular weight and density. Defin-
ing Ms as the number average molecular weight of a network strand (molecu-
lar weight between crosslinks) gives:

vs

(
strands
volume

)
=

ρ (mass/volume)
Ms (mass/mole)

· Nav (strands/mole) (6.19)

where Nav is Avogadro’s number ( 6.02x1023). With R = kBNav =
8.314 J/mole ·K the expression

E =
3ρβRT

Ms

Finally, note that 1 J/m 3 = 1 Pa. Stresses and elastic moduli have units of
force/area or energy/volume.

Exercise: Calculate the expected value of Young’s modulus for a
crosslinked polyisoprene that has a number average molecular between
crosslinks of 4000 g/mole. The density of polyisoprene is 0.9 g/cm 3. As-
sume that the polymer was crosslinked under equilibrium conditions in the
melt state.

Solution: Because the polymer was crosslinked under equilibrium condi-
tions, the network strands obey random walk statistics, with β = 1. To keep
everything in SI units, we need the density in units of kg/m 3 (1 g/ cm3 =
1000 kg/ m3), and Ms in kg/mol. In our example, ρ = 900 kg/ m3 and Ms = 4
kg/mol. We’ll also assume that we are interested in the elastic modulus near
room temperature (T ≈ 300 K).

E =
3(900 kg/m3)(8.314 J

mol·K )(300K)

4kg/mol
= 1.6x106 J/m3 = 1.6x106 Pa.
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7 FINITE (LARGE) STRAIN

Figure 7.1: Location of two points,P1 and P2, before and after an applied deforma-
tion.

7 Finite (Large) Strain

As we know from the previous section on rubber elasticity, with soft materi-
als we are often interested in large strains, where it is not always sufficient to
expand the displacement in a Taylor series and keep only the first derivative
term, as was done in Section 3. In cases like this we need a more generalizable
formulation. The description here is based largely on the Wikipedia article on
finite strain theory[5] that was mentioned briefly in the previous section. We
need to introduce some additional notation, and define various matrix quan-
tities that simplify things considerably. Our starting point is to redraw Figure
3.11, in a way that allows to more explicit account for the fact strains that we
encounter are going to be quite large. We begin with the following two impor-
tant changes:

• Since we are generally interested in how the separation between two dif-
ferent points (P1 and P2 in Figure 3.11), changes, we will point the coor-
dinate axis at P1 and label point 2 simply as P.
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(a) (b) (c)

(d) (e) (f)

Figure 8.1: Illustration of viscoelastic behavior. Images of a viscoelastic mate-
rial behaving elastically as it bounces from a surface (a-c) and the same material
spreading over a surface at long times (d-f).

8 Linear Viscoelasticity

8.1 Intro to Time-Dependent Behavior

Many of the concepts of rubber elasticity still apply under certain situations
to materials that are not actually crosslinked. Consider, for example, the be-
havior of Silly-Putty. Silly-putty is based on silicones that are uncrosslinked.
Nevertheless, this material still bounces like an ordinary crosslinked rubber
ball. This is because over very short times it behaves elastically. The deforma-
tion energy stored in the material as it comes into contact with the surface and
deforms is available to propel the material back into the air as the deformation
relaxes and this strain energy is converted to kinetic energy. If we let the sam-
ple sit on a surface for a long period of time, however, it eventually flows and
behaves as a liquid.

Before we discuss the way that the properties of viscoelastic materials are char-
acterized, it is useful to discuss the limiting behaviors of purely elastic solids
and perfectly viscous liquids. We illustrate this by showing how different ma-
terials respond to a shear strain, γ that begins to increase at some constant rate
to some final value, and is then fixed at this final value as illustrated in the top
panel of Figure 8.3. The response for solids, liquids and viscoelastic materials
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Figure 8.2: Terminal velocity of a sphere descending in a viscous fluid.

is as described below.

Solids: In this case the stress is proportional to the strain, and the rate at
which the strain is applied does not matter. As a result the time dependence
of the stress looks just like the time dependence of the strain. The slopes of the
time-dependent stress and strain curves (the top two curves in Figure 8.3) are
related to one another by the shear modulus of the material.

Liquids: In liquids the stress is proportional to the rate at which the strain
is applied, and is independent of the current strain. Liquids do not store any
strain energy, and as soon as the strain stops changing, the stress drops back to
zero. The stress for the time dependent strain shown in Figure 8.3 is constant
while the stress is increasing and is zero otherwise. The stress is given by the
shear viscosity, η, as follows:

σxy = η
dγ

dt
= ηγ̇ (8.1)

As a simple illustration of the significance of the viscosity, we can calculate
the time it takes for a small sphere of metal to drop to the bottom of pool of
water. Suppose we use an iron particle with a radius of 1µm. The situation
is as shown in Figure 8.2. The gravitational force, F, causing the ball to sink
is proportional to the volume of the sphere, and the difference in densities
between the solid and liquid:

F = g
4
3

πR3 (ρs − ρ`) (8.2)

Here ρs is the density of the solid sphere, ρ` is the density of the surrounding
liquid, R is the radius of the sphere and g is the gravitational acceleration (9.8
m/s2). This force is balanced by the viscous force exerted by the water on the
sphere as the sphere moves the liquid with a velocity, v. For a viscous liquid
this force is proportional to the velocity. It is also proportional to the viscosity
of the liquid and to the radius of the sphere. The specific relationship is as
follows:
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Figure 8.3: Interactive contrast of elastic, viscous, and viscoelastic response.

F = 6πVηR (8.3)

At steady state, the velocity reaches a value that is obtained by equating the
forces in Eqs.8.2 and8.3. In this way we obtain:

V =
2
9

gR2

η
(ρs − ρ`) (8.4)

Iron has a density of 7.87 g/cm3 (7870 kg/m3) and water has a density of 1000
kg/m3 and a viscosity of 10−3 Pa-sec. From this we get a velocity of 16 µm/s.

Viscoelastic Materials: Viscoelastic materials have characteristics of both
solids and liquids. The shear stress depends on both the shear stress and the
strain rate, and is not a simple function of either one. The shear stress actu-
ally depends on the details of the previous strain history, as described in more
detail below.

While the shear geometry is most commonly used to characterize liquid-like
materials, solid-like materials are more commonly investigated in a uniaxial
tensile geometry, as illustrated in Figure 8.4. Viscoelastic solids will have a
value for Young’s moduls, E, that depends on the time scale of the measure-
ment. Imagine a tensile experiment where a strain of e0 is instantaneously
applied to the sample. In a viscoelastic material, the resulting stress will decay
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1

2

3

Relaxation Experiment

Dynamic Mechanical
Experiment

Figure 8.4: Tensile geometry for defining the tensile relaxation modulus, E (t), and
the frequency- dependent complex tensile modulus, E∗.

with time while we maintain the strain at this fixed value. The time depen-
dence of the resulting tensile stress, σ, enables us to define a time-dependent
relaxation modulus, E (t):

E (t) =
σ (t)

e0
(8.5)

We are often interested in the application of an oscillatory strain to a material.
Examples include the propagation of sound waves, where wave propagation
is determined by the response of the material at the relevant frequency of the
acoustic wave that is propagating through the material. In an oscillatory ex-
periment, referred to as a dynamic mechanical experiment in Figure 8.4, the
applied shear strain is an oscillatory function with an angular frequency, ω,
and an amplitude, e0:

e (t) = e0 sin (ωt) (8.6)

Note that the strain rate, de
dt , is also an oscillatory function, with the same an-

gular frequency, but shifted with respect to the strain by 90°:
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Figure 8.5: Time dependent stress and strain in a dynamic mechanical experiment.

de
dt

= e0ω cos (ωt) = γ0ω sin (ωt + π/2) (8.7)

The resulting stress is also an oscillatory function with an angular frequency
of ω, and is described by its amplitude and by the phase shift of the relative to
the applied strain:

σ (t) = σ0 sin (ωt + φ) (8.8)

Now we can define a complex modulus with real and imaginary components
as follows:

E∗ = E′ + iE′′ = |E∗| eiφ (8.9)

There are a couple different ways to think about the complex modulus,E∗. As
a complex number we can express it either in terms of its real and imaginary
components (E′ andE′′, respectively), or in terms of its magnitude,|E∗| and
phase, φ. The magnitude of the complex modulus is simply the stress ampli-
tude normalized by the strain amplitude:

|E∗| = σ0/e0 (8.10)

The phase angle, φ, describes the lag between the stress and strain in the sam-
ple. Examples forφ = 90◦ (the maximum value, characteristic of a liquid) and
φ = 45◦ are shown in Figure 8.5.
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In order to understand the significance of the real and imaginary components
of E∗ we begin with the Euler formula for the exponential of an imaginary
number:

eiφ = cos φ + i sin φ, (8.11)

where i is the imaginary unit (i.e. i =
√
−1). Use of this expression in Eq. 8.9,

we see that the storage modulus, E′ gives the stress that is in phase with the
strain (the solid-like part), and is given by the following expression:

E′ = |E∗| cos φ (8.12)

Similarly, the loss modulus, E′′, gives the response of the material that is in
phase with the strain rate (the liquid-like part):

E′′ = |E∗| sin φ (8.13)

We can combine Eqs. 8.12 and 8.13 to get the following expression for tan φ,
commonly referred to simply as the loss tangent:

tan φ =
E′′

E′
(8.14)

The loss tangent gives the ratio of the energy dissipated in one cycle of an
oscillation to the maximum stored elastic energy during this cycle. We can
define the complex shear modulus, G∗ in a similar way, with G′,G′′, φ and
|G∗| related to one another in a way that corresponds to the relationship of
the components of E∗. Because the shear geometry is more amenable to the
testing of both liquids and solids, we’ll use this geometry to illustrate other
time dependent quantities in out discussion below.

8.2 Shear Relaxation Modulus

In a shear geometry (Fig. 8.6) we can also conduct relaxation experiments or
oscillatory experiments. The shear relaxation modulus is defined as the ratio
of the resulting time dependent stress to this initial strain:

G (t) ≡
σxy (t)

γ0
(8.15)

As with E (t) ,the shear modulus is independent of γ0, provided that γ0 is suf-
ficiently small. This low strain regime defines the regime of linear viscoelastic-
ity. In the remainder of this section we confine ourselves to this linear regime,
assuming a shear geometry so that the relevant time and frequency-dependent
property is the shear modulus, G.
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Relaxation Experiment

Dynamic Mechanical
Experiment

Figure 8.6: Shear geometry for defining the shear relaxation modulus, G (t) and
the frequency- dependent complex shear modulus G∗.

8.3 Boltzmann Superposition Principle

In the linear viscoelastic regime the effects of strains applied at different times
are additive, a concept known as the Boltzmann superposition principle. A
simple example is illustrated in Figure 8.7, where the following step strains
are applied to the sample:

• A strain of ∆γ1 applied at time t1

• A strain of ∆γ2 applied at time t2

• A strain of ∆γ3 applied at time t3

The stress contribution from these different strains is obtained by multiplying
by the shear relaxation modulus, evaluated at the time that has passed since
the strain was applied. If strain was applied at t1, for example, the stress at
some later time, t, is obtained by multiplying by G (t− t1). Adding up the
contributions from the three different step strains in our example leads to the
following:

σxy = ∆γ1G(t− t1) + ∆γ2G(t− t2) + ∆γ3G(t− t3) (8.16)

This expression can easily be extended to include an arbitrary number of step
strains:
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Figure 8.7: Material response to a series of step strains.

σxy = ∑
i

∆γiG(t− ti) (8.17)

By taking a sum of very small strain increments, we can generalize this expres-
sion to account for a continuously changing strain. We begin by writing ∆γi in
the following way:

∆γi =
dγ

dt
(ti)∆ti = γ̇(ti)∆ti (8.18)

This substitution leads to the following expression for the stress:

σxy = ∑
i

γ̇(ti)G(t− ti)∆ti (8.19)

We can write this in integral form by taking ∆ti → 0 and replacing the sum-
mation by an integral over all times less than the current time:

σxy(t) =
t∫
−∞

γ̇(ti)G(t− ti)dti (8.20)

This expression gives the current stress that remains as a result of all of the
strains introduced at different times in the past. It is often convenient to change
variables so that s = t − ti, dti = −ds. Note that s = ∞ when ti = −∞, and
s = 0 when ti = t. The integral can therefore be rewritten as follows:
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σxy(t) =
∞∫
0

γ̇(t− s)G(s)ds (8.21)

Note that because s represents time, G(s) and G(t) represent the same time-
dependent relaxation modulus. We are just using different variables ( s and t)
to represent time.

The simplest application of Eq. is ’steady shear’, where a constant strain rate
is applied. Because γ̇ is independent of time in this case, it can be brought
outside the integral, giving the following:

σxy = γ̇

∞∫
0

G(t)dt (8.22)

The following expression is obtained for the viscosity:

η0 =
σxy

γ̇
=

∞∫
0

G(t)dt (8.23)

We refer to this viscosity as the zero shear viscosity, because it assumes that
the material is in the linear viscoelastic regime, where the applied stress is low
enough so that the stress is proportional to the magnitude of the applied strain.
The subscript ’0’ is a reminder to us that the zero shear viscosity corresponds
to a limiting value of the viscosity that is obtained at a very low strain rate.

8.4 Idealized Relaxation Curves

One thing to keep in mind when looking at the viscoelastic properties of ma-
terials is that processes occur over a very large range of time scales. To capture
all of these time scales we typically plot the time on a logarithmic scale. The
same is true for the frequency-domain experiments discussed below. The re-
laxation modulus can often vary of several orders of magnitude, so that we
also plot the relaxation modulus itself on a logarithmic scale.

Three different idealized forms of the relaxation modulus are shown in Figure
8.8. The simplest behavior corresponds to a Maxwell model, where a single
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relaxation time, τg, describes the decay in the modulus from the glassy value
of Gg:

G (t) = Gg exp
(
−t/τg

)
(8.24)

This relaxation time could, for example, describe the decay in the modulus
from a glassy value of ≈ 109 Pa. This relaxation time can be viewed as a
’glass transition time’, and its existence is a clue that some equivalence be-
tween time and temperature must exist. The relaxation time characterizing
the glass transition depends very strongly on the temperature, but is indepen-
dent of the polymer molecular weight. If the polymer molecular weight is
very high, however, the polymers become entangled with one another, and
behave elastically for times that are too short for these entanglements (shown
schematically in Figure 8.9) to relax by molecular diffusion. In addition to τg,
there is a second transition time, τe, determined by the lifetime of these molec-
ular entanglements. Addition of this second relaxation results in the following
expression for the relaxation modulus:

G (t) = Gg exp
(
−t/τg

)
+ Ge exp (−t/τe) (8.25)

Here Ge is the plateau modulus (often referred to as G0
N in the literature).

Entanglements behave like crosslinks, but they have finite lifetimes as the
molecules diffuse and the entanglements are eliminated and reformed else-
where. The plateau modulus is given by the concentration of entanglements,
ve, or equivalently, by the number average molecular weight between entan-
glements, Me (referred to as the entanglement molecular weight):

Ge = vekBT =
ρRT
Me

(8.26)

The actual relaxation behavior of polymeric materials is complex, and can gen-
erally not be described in detail by including only one or two relaxation times.
The actual relaxation behavior can always be described with sufficient accu-
racy by a generalized Maxwell model, where we include a large number of
individual exponential relaxation processes:

G(t) =
Nr

∑
i=1

Gi exp(−t/τi) (8.27)

Inclusion of a sufficiently large number of relaxation processes (large Nr) en-
ables very complicated relaxation behavior to be modeled accurately.
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Figure 8.8: Characteristic relaxation curves.

Figure 8.9: Schematic representation of a molecular entanglement.

8.5 Temperature Dependence

A characteristic of single-component polymeric materials is that the tempera-
ture dependence of all of the different relaxation times is the same. The concept
is illustrated in Figure 8.10, which shows the relaxation modulus at two differ-
ent temperatures for an idealized material with two different relaxation times.
The relaxation times scale with temperature according to the same tempera-
ture dependent shift factor, aT . The shift factor is equal to one at a reference
temperature, Tre f , and increases as the temperature is decreased. Because both
relaxation times are multiplied by the same factor, the curve is shifted linearly
along the logarithmic x axis.

Because all of the relaxation times are multiplied by aT when the temperature
is changed, data obtained at different temperatures superpose when plotted
as a function of t/aT . As a result the relaxation behavior over a large range of
times can be obtained by measuring the relaxation spectrum at different times,
and shifting the data to the reference temperature.

The Vogel equation is an empirical equation that is often used to describe the
temperature dependence of the shift factor, aT :

log(aT) = A +
B

T − T∞
(8.28)
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Figure 8.10: Temperature dependence of a material with two relaxation times.

The factor A is determined from the requirement that aT = 1 at T = Tre f :

A = − B
Tre f − T∞

(8.29)

The relaxation times diverge to ∞ at T = T∞, which in free volume theory
is the temperature at which the free volume of the equilibrium liquid goes to
zero.

8.6 Relationship between Frequency-Dependent and Time-
Dependent Dynamic Moduli

Experimentally, a wide variation in time scales is accessed by oscillating or
vibrating the sample and measuring the frequency response of the material.
Consider, for example, an oscillatory shear strain:

γ = γ0 sin(ωt) (8.30)

The strain rate is also sinusoidal:

γ̇(t) =
dγ(t)

dt
= ωγ0 cos(ωt) = ωγ0 sin(ωt + π/2) (8.31)

Note that the strain and the strain rate are out of phase by π/2 (90 °). This
concept of a phase difference is very important in understanding the frequency
dependent dynamic moduli. In this case we use Boltzmann superposition to
obtain an expression for the stress:
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σxy(t) =
∞∫
0

γ̇(t− s)G(s)ds = −ωγ0

∞∫
0

cos {ω(t− s)}G(s)ds (8.32)

Now we make use of the following trigonometric identity:

cos(a− b) = sin(a) sin(b) + cos(a) cos(b) (8.33)

We can therefore write the time dependent stress in the following way.

σxy(t) = γ0ω

∞∫
0

G(s) sin(ωs)ds

 sin(ωt) + γ0ω

∞∫
0

G(s) cos(ωs)ds

 cos(ωt)

(8.34)

We define G′ (storage modulus) and G′′ (loss modulus) such that G′ describes
the component of the stress that is in phase with the strain (the elastic compo-
nent) and G′′ describes the component of the stress that is in phase with the
strain rate (the viscous component).

σxy(t)
γ0

= G′(ω) sin(ωt) + G′′(ω) cos(ωt) (8.35)

By comparing Equations 8.34 and 8.35, we obtain the following for G′ and G′′:

G′(ω) = ω
∞∫
0

G(t) sin(ωt)dt

G′′(ω) = ω
∞∫
0

G(t) cos(ωt)dt
(8.36)

In is useful to consider the behavior of G′ and G′′ in limiting cases where the
system is a perfectly elastic solid with no viscous character, and where the
material is a Newtonian liquid with no elastic character:

75



8.7 Torsional Resonator 8 VISCOELASTICITY

Perfectly Elastic System: In this case the shear modulus is independent of
both time and frequency. For γ (t) = γ0 sin (ωt) we have:

σxy(t) = Gγ(t) = Gγ0 sin(ωt) (8.37)

Comparing to Eq. 8.35 gives:

G′ = G
G′′ = 0 (8.38)

Perfectly Viscous System: We again have γ (t) = γ0 sin (ωt), but this time
the shear stress depends only on the strain rate:

σxy(t) = η
dγ(t)

dt
= ηωγ0 cos(ωt) (8.39)

Comparing to Eq. 8.35 gives:

G′ = 0
G′′ (ω) = ωη

(8.40)

The loss tangent, tan(φ), gives the ratio of dissipated and stored elastic energy
during a given cycle of deformation. This quantity is maximized when the
inverse of the frequency corresponds to a characteristic relaxation time of the
material. For a material with two characteristic relaxation times, τ1 and τ2, tan(
φ) will be maximized at ω = 2π/τ1 and ω = 2π/τ2.

8.7 Torsional Resonator

We can now consider the specific example of a torsional resonator, shown be-
low in Figure 8.11. The equation of motion for the spring as it is being twisted
is[6]:

T = Ktθ + I
d2θ

dt2 (8.41)

where θ is the rotation angle, T is the torque on the resonator, Kt is the torsional
stiffness and I is the moment of inertia of the system, which depends on the

76



8 VISCOELASTICITY 8.7 Torsional Resonator

Time

P

P

Inertial Mass

Fiber

Figure 8.11: Torsional resonator.

details of the inertial bar used in the experiment. For a cylindrical fiber Kt is
given by the following expression:

Kt ≡
T
θ
=

πGd4

32`
(8.42)

The resonant angular frequency of the oscillator, ωn is given by the following
expression:

ωn =

√
Kt

I
(8.43)

The solution to Eq. 8.41 for the case where T = 0 and we just let the fiber move
(by twisting to a certain angle and letting it go, for example) is as follows:

θ = θ0 cos (ωnt) (8.44)

This analysis assumes that the system is entirely elastic. What if the spring has
some viscoelastic character to it? We begin by using Euler’s formula (Eq. 8.11
) to rewrite Eq. 8.44 in the following way:

θ = θ0Real (exp (iωnt)) (8.45)

Now all we need to do is to replace the modulus, G, with the complex modu-
lus, G∗, and everything works out fine. Here’s what happens:

• The torsional stiffness, Kt gets transformed to a complex torsional stiff-
ness K∗t
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• The resonant frequency, ωn gets transformed to a complex resonant fre-
quency, ω∗n

• The imaginary part of the complex resonant frequency becomes an ex-
ponential damping function

To understand this last point, suppose writeω∗n in the following way:

ω∗n = ω′n + iω′′n (8.46)

Putting this back into Eq. 8.45 gives:

θ = θ0Real
(
exp

(
iω′nt

))
exp

(
−ω′′n t

)
(8.47)

Using the Euler formula (Eq. 8.11) to expandexp (iω′nt) and taking the real
part gives:

θ = θ0 cos
(
ω′nt

)
exp

(
−ω′′n t

)
(8.48)

So the imaginary part of the complex frequency describes the decay of oscilla-
tion with time.

8.8 Viscoelastic Models

Models of viscoelasticity can be represented visually by connecting solid-like
and liquid-like elements together. In materials science we’re used to the solid-
like elements. They are simply elastic springs where the force is proportional
to the extension of the spring. In terms of stress and strain, the stress, σ is
proportional to the strain, e. There is no time-dependence to the behavior of
an ideal spring. The stress is proportional to the strain, regardless of how fast
or slow the strain is applied. In many real materials the rate at which the strain
is applied matters as well, and this is where the dashpots come in. A dashpot
is a liquid-like element where the stress is proportional to the rate at which the
strain is changing, with the viscosity being the ratio between the stress and the
strain rate. Schematic representations of springs and dashpots are shown in
Figure 8.12. We assume a tensile geometry in our discussion of the viscoelastic
models, so the relevant modulus is E as opposed to G, although this same
formalism is generally applied to the shear moduli as well.
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Dashpot Spring
Viscous element Elastic element

Figure 8.12: Schematic representations of springs and dashpots used to represent
the time-dependent response of viscoelastic materials. Because the geometry here
is assumed to be an extensional geometry, we refer to the viscosity as ηext.

Figure 8.13: a) Maxwell model and b) the exponential stress relaxation function
that it represents. Note that for an exponential relaxation, τ is the time at which
the stress decays to 37% of its initial value.

8.8.1 Maxwell model

The simplest viscoelastic model that contains both liquid-like and solid-like
elements is the Maxwell model consisting of a linear dashpot with viscosity
η1 in series with a linear spring with a modulus, E2 (see Figure 8.13). Because
the elements are in series the stress is the same in each one of them. This stress
can be related to the strain e1 in the dashpot and the strain e2 in the spring
through the following expressions:

σ = η1
de1

dt
(8.49)

σ = E2e2 (8.50)

The total strain, e is e1 + e2, so the time derivative of the total strain is:

de
dt

=
de1

dt
+

de2

dt
=

σ

ηext
1

+
1

E2

dσ

dt
(8.51)
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In a stress relaxation experiment the strain instantaneous increased to an ini-
tial value of e0 and we follow the relaxation of the stress at this fixed strain.
Because the dashpot cannot respond instantaneously, all of the initial strain is
in the spring, i.e., e0 = e2 and the initial stress, σ0 is equal to E0e0. The solution
to Eq. 8.51 for this initial condition and for de/dt = 0 is:

σ (t) = Ee0 exp (−t/τ) (8.52)

with the relaxation time, τ, given by the following expression:

τ = ηext
0 /E0 (8.53)

We divide by e0 to obtain the relaxation modulus:

E (t) ≡ σ (t) /e0 = E0 exp (−t/τ) (8.54)

We can also obtain the solution for the stress in the case where we apply an
oscillatory strain. To get the response of a single Maxwell element in an oscil-
latory experiment we need to substitute Eq. 8.54 for E (t) into Eq. 8.36 for E′

and E′′ (replacing G∗ with E∗, since we are assuming a tensile geometry in this
example):

E′(ω) = ω
∞∫
0

exp
(
− t

τ

)
sin(ωt)dt

E′′(ω) = ω
∞∫
0

exp
(
− t

τ

)
cos(ωt)dt

(8.55)

We get a bit of help here because these equations now involve Laplace trans-
forms, which we can either look up or evaluate with a symbolic math solver (in
our case the sympy module of Python). The Laplace transform, L { f (t)} (s),
of a function, f (t) is defined in the following way:[7]

L { f (t)} (s) =
∫ ∞

0
f (t) exp (−st) dt (8.56)

By comparison to Eq. 8.55 we see that E′ involves the Laplace transform of the
sine function and E′′ involves the Laplace transform of the cosine function:

E′(ω) = ωL {sin (ωt)} (s)
E′(ω) = ωL {cos (ωt)} (s) (8.57)

with s = 1/τ. Use of symbolic Python (code at msec-
ore.northwestern.edu/331/python/maxwell_Estar.py) results in the fol-
lowing:
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E∗ (ω) = E′ (ω) + iE′′ (ω) =
E0ωτ

ωτ − i
(8.58)

The Python code generates E′ and E′′ directly, but the expression for E∗ con-
tains all the information we need. Once we have this value we can extract E′

and E′′ by multiplying the top and bottom of Eq. 8.58 by ωτ + i, remembering
that i2 = −1. Taking the real and imaginary components of E∗ then gives the
following for E′ and E′′:

E′ (ω) =
E (ωτ)2

1 + (ωτ)2 (8.59)

E′′ (ω) =
Eωτ

1 + (ωτ)2 (8.60)

These expressions are plotted in Figure 8.14, along with dE∗e and φ. Note the
following:

For ω = 1/τ (ωτ = 1):

• E′ = E′′

• φ = 45◦

• E′′ is equal to its maximum value

For ω � 1/τ (ωτ � 1, high frequency regime):

• E′ ≈ E0, E′′ � E0

• φ ≈ 0

For ω � 1/τ (ωτ � 1, low frequency regime):

• E′′ >> E′

• E′′ ≈ ωηext
0

• E′ ∝ ω2

• φ ≈ 90◦
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Figure 8.14: Frequency dependence of the rheological prop-
erties for the Maxwell model (plot generated with msec-
ore.northwestern.edu/331/python/maxwell_plot.py.

The fact that E′′ ≈ ωηext
0 is generally true for liquid-like materials, even if

the behavior at higher frequencies is more complicated. Provided that the vis-
coelastic phase angle approaches 90◦ at sufficiently low frequencies, we can
define η0 more generally as a zero extension rate viscosity in the following
way:

ηext
0 = lim

ω→0

E′′

ω
(8.61)

The ’ext’ superscript is a reminder to us that we are dealing with an exten-
sional geometry. An analogous equation can be used to define a zero shear
rate viscosity, which we refer to simply as η0:

η0 = lim
ω→0

G′′

ω
(8.62)

We also note that while the loss modulus, E′′, is maximized at an intermediate
frequency, the storage modulus, E′, and the magnitude of the complex mod-
ulus, dE∗e, both increase as a function of the frequency (or remain constant
with increasing frequency). This increase or constancy in E′ and dE∗e with in-
creasing frequency must always be true, because any general relaxation for a
material can be written as the summation of individual exponential relaxations
(the generalized Maxwell model described below).

8.8.2 Standard Linear Solid

For a single Maxwell element the relaxation modulus decays to zero at long
times (t � τ). In many real systems we are interested in describing the day
of the relaxation modulus from a large value at short times to a much smaller
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Figure 8.15: Standard linear solid.

value at larger times. The standard linear solid accounts for this by putting
an elastic element with a modulus of Er (the ’relaxed’ modulus) in parallel
with a single Maxwell element as shown in Figure 8.15. The extra spring adds
directly to stress response, so all we have to do is add Er to the expressions for
E (t) and E∗ (w) that were obtained from the Maxwell model:

E (t) = Er + E1 exp (−t/τ1) (8.63)

E∗ (ω) = Er +
E1ωτ1

ωτ1 − i
(8.64)

So we see that the standard linear solid describes the relaxation of the modulus
from an initial value of E1 + Er at very short times to a relaxed value of Er at
long times. The standard linear solid is the simplest model for describing the
transition of an amorphous, crosslinked polymer from glassy polymer behav-
ior to rubbery behavior with typical values of E1 and Er being 109 Pa and 106

Pa, respectively.

8.8.3 Generalized Maxwell Model

For real systems, the behaviors of E(t) and E∗ (ω) are usually much more com-
plicated than given by the predictions of the Maxwell model or standard lin-
ear solid. To describe the behavior for real materials, we can add an arbitrary
number of Maxwell elements in parallel, resulting in the generalized Maxwell
model shown in Figure 8.16. The stresses for each of the parallel elements are
additive, so E (t) and E∗ (w) are given by the following expressions:

E (t) = Er + ∑
j

Ej exp
(
−t/τj

)
(8.65)

E∗ (ω) = Er + ∑
j

Ejωτj

ωτj − i
(8.66)
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Figure 8.16: Generalized Maxwell model.

with τj = ηext
j /Ej. Any linearly viscoelastic material response can be described

by a generalized Maxwell model, provided that we include a sufficient number
of Maxwell elements.

8.8.4 Kelvin-Voigt Model

The Kelvin-Voigt model consists of a spring and dashpot in parallel, as shown
in Figure 8.17. In this case the stresses in two elements are additive and the
strains in the two elements are the same:

σ = ηext
1

de
dt

+ E1e (8.67)

The Kelvin-Voigt model is the simplest model for the description of a creep
experiment, where the stress jumps instantaneously from 0 to σ = σ0 and we
track the strain as a function of time. We have:

e (t) =
σ0

E1
(1− exp (t/τ)) ; τ = ηext

1 /E1 (8.68)

The dynamic modulus for the Kelvin-Voigt element is given by the following
expression:

E∗ = E0 + iωη0 (8.69)

So that E′ is simply equal to E, and E′′ is equal to ωη0.

8.8.5 Viscoelastic Models for Shear Deformation

It is easier to visualize springs and dashpots in an extensional geometry, which
is why we used this geometry to illustrate their use in describing the time-
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Figure 8.17: Kelvin-Voigt Model.

and frequency-dependent behavior of viscoelastic materials. The exact same
formalism can be used to describe the properties in a shear geometry as well.
We just need to replace E∗, E′ and E′′ with G∗, G′ and G′′. We also drop the
’ext’ superscript from the viscosities, since the viscosity is generally assumed
to refer to the shear viscosity. For an incompressible liquid, ηext = 3η, just as
E = 3G for a compressible solid (with Poisson’s ratio = 0.5).

8.9 Time-Temperature Superposition of Dynamic Mechanical
Data

For many materials we are interested in the dynamic mechanical properties
over a very wide range of frequencies, including those for which direct mea-
surements are not possible. Fortunately, in many cases we can use the concept
of time-temperature equivalence to obtain the response at a very wide range
of frequencies by measuring over a much more limited frequency range, but
over a range of temperatures. We can do this because for many materials all
of the relevant relaxation times have the same temperature dependence. Ma-
terials for which this is the case are said to be ’thermorheologically simple’,
meaning that the temperature-dependence of their linear viscoelastic proper-
ties is ’simple’.

As an example of a thermorheologically simple material, we consider
here the behavior of poly(t-butyl acrylate) and amorphous polymer with
a glass transition temperature near 45 °C. In Figure 8.18 we plot the fre-
quency dependence of dG∗e and φ for 5 different temperatures. (The
Python code used to generate Figures 8.18 - 8.21 is available at msec-
ore.northwestern.edu/331/python/ptba_master_curve.py, with the raw data
available at msecore.northwestern.edu/331/data/ptbadata.xlsx.) The range
of angular frequencies extends from 0.1 s−1 to 100 s−1. If time temperature
equivalence holds, then changing the temperature will change all of the relax-
ation times by the same temperature-dependent multiplicative factor, aT . We
see from Eq. 8.66 that the response of the material is always determined by the
product of ω and a relaxation time. Since all of the relaxation times are pro-
portional to aT , we would expect the values of E∗ to overlap with one another
if we plot them as a function of ωaT . When the scale of the frequency axis is
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Figure 8.18: Frequency dependence of |G∗| and φ for a poly(t-butyl acrylate) poly-
mer at 4 different temperatures.

Figure 8.19: Frequency dependence of |G∗| and φ for a poly(t-butyl acrylate) poly-
mer at 4 different temperatures.

logarithmic, as is generally the case for these sorts of plots, changing the tem-
perature shifts the curves to right or left. Increasing the temperature decreases
the relaxation times, and shifts the curves to the left, whereas decreasing the
temperature shifts to the curves to the right. The actual shift factors are chosen
empirically by seeing what values get the data to actually superpose. When
the data from Figure 8.18 is shifted in this way we get the curves shown in
Figure 8.19, using the shift factors plotted in Figure 8.20. The reference tem-
perature was chosen as 140 °C.

The Vogel-Fulcher-Tamman equation is often used to describe the shift factors:

ln (aT) =
−B

Tre f − T∞
+

B
T − T∞

(8.70)
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Figure 8.20: Shift factors used to generate the temperature-shifted master curves
shown in Figure 8.19. The solid line is the VFT equation (Eq. 8.70), using a refer-
ence temperature, Tre f , of 140 °C and the values of B and T∞ shown on the plot.

Most polymers have B in the range of 2000K and T∞ around 50K below the
glass transition temperature. Master curves for the storage and loss moduli,
G′ and G′′,respectively, are shown in Figure 8.21.

Measurement of the Entanglement Molecular Weight

It was mentioned above that amorphous polymers with a sufficiently large
molecular weight are entangled, with these entanglements acting as tempo-
rary crosslinks in the material. These temporary crosslinks produce a ’plateau’
in G′ at intermediate frequencies, and a corresponding minimum in the phase
angle, φ, indicating that the behavior of the material has a substantial elastic
character in this frequency regime. The modulus in this region is called the
plateau modulus, G0

N . The specific value of G0
N is generally taken as the inflec-

tion point in G′, or as the value of G′ at the frequency at which φ is minimized.
Once G0

N is known, the entanglement molecular weight, Me can be determined
from the relevant expression from rubber elasticity theory:

G0
N =

ρRT
Me

(8.71)

Viscosity from Rheological Data

The zero shear viscosity, η0, at the temperature where aT = 1 is determined
from the low frequency data, in the regime where G′′ is proportional to ω and
where φ≈ 90◦ (Eq. 8.62). The full temperature dependence of η0 is then given
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Figure 8.21: Temperature-shifted master curves for dependence of |G∗| and φ for
a poly(t-butyl acrylate) polymer at 4 different temperatures.

by the measured temperature dependence a dependence of aT , since aT has
the same temperature dependence as the viscosity.
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9 THE GLASS TRANSITION

Without Free Volume With Free Volume

Figure 9.1: Conceptual representations of polymers with and without free volume.

9 The Glass Transition

The information presented so far about the structure of amorphous polymers
applies both to elastomers like natural rubber, in addition to engineering ther-
moplastics like polystyrene. The properties of rigid plastics and rubber are
obviously quite different, in spite of these similarities. The difference is that
below a certain temperature, molecular motion is no longer possible, and the
material becomes a relatively hard solid. This transition between “soft” and
“hard” behavior occurs at the glass transition temperature, Tg.

9.1 Free volume

A very useful way to think about the glass transition involves the concept of
unoccupied space, or ’free volume’ in a polymer. This concept is illustrated
conceptually in Figure 9.1. The red dots connected together by lines represent
polymer molecules. In this lattice model of polymers, the red dots are con-
strained to fit on a lattice. (The lattice is completely artificial, and does not
exist in reality). These dots represent the ’occupied volume’. Empty lattice
sites represent free volume. The lattice on the left has no free volume, so there
is no way for the molecules to move by the ’hopping’ of segments into a small
region of unoccupied space. The lattice on the right does have free volume,
however, so that molecular motion is relatively easy.

The conceptual free volume model of the glass transition makes the assump-
tion that volume thermal expansion coefficient, α is defined in the following
manner:

α =
1
V

dV
dT

(9.1)

Note that the linear thermal expansion coefficient, defined in terms of the lin-
ear dimensions of the sample rather than the volume, is equal to α/3. If the

89



9.1 Free volume 9 THE GLASS TRANSITION

fractional change in free volume is small ( ∆V/V � 1) then α describes the
linear relationship between the change in volume in the change in tempera-
ture:

∆V
V

= α∆T (9.2)

In the glassy phase ( T < Tg), the free volume is assumed to remain constant,
so that increases in the volume are governed entirely by increases in the occu-
pied volume:

∆Vocc

V
= α∆T (9.3)

In the liquid phase ( T > Tg), the free volume and occupied volumes both
increase with temperature, and we have:

∆V
V

=
∆Vf

V
+

∆Vocc

V
= α`∆T (9.4)

Combining9.3 and gives the following expression for the free volume in the
liquid state:

∆Vf

V
=
(
α` − αg

)
∆T (9.5)

Now we define a new temperature, T∞ which is the theoretical temperature at
which the free volume would go to zero, if the material were to continue to
follow the liquid behavior below Tg. It is illustrated schematically in Figure
9.2. To determine the fractional free volume at the glass transition, we use Eq.
9.5 with ∆T = Tg − T∞, recognizing that Vf /V = 0 at T = T∞:

Typically, T∞ is about 50K below the measured glass transition temperature,
and the fractional free volume at Tg is in the range of a couple percent.

The concept of free volume can be helpful in sorting out how the glass tran-
sition depends on the structure of the polymer, based on the following two
guidelines:
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Actual Volume

Occupied Volume

V

T

Figure 9.2: The glass transition and the free volume concept.

H H

R2R1

Figure 9.3: Structure of the repeat units for the materials listed in Table9.1.

1. Changes to the polymer structure that increase the free volume needed in
and r for the backbone of the polymer to move will increase Tg. Making
the backbone very still (by the incorporation of phenyl groups, as inPET
increase Tg. Also, bulky, ’fat’ substituents (like methyl or phenyl groups)
tend to increase Tg when added to the backbone.

2. Changes to the polymer structure that introduce extra free volume will
decrease Tg. This is the case for long, thin additions to the backbone,
such as alkyl chains (− (CH2)n−).

Without experience it’s difficult to know which of these effects is greater. If I
add something to the backbone for example, does it create more free volume
that it needs to move? The best way to get a handle on this is to take a look at
the glass transition temperatures of atactic polymers with the general chemi-
cal structure shown in Figure 9.3. The glass transition temperatures for these
different polymers are listed in Table 9.1.

Exercise: Polystyrene has a volume thermal expansion coefficient of 6×
10−4 K−1 for temperatures above Tg, and a thermal expansion coefficient of

91



9.2 Enthalpy and Heat Capacity 9 THE GLASS TRANSITION

R 1=H R 1=CH 3

R 2: H -125 -13
R 2: CH 3 -13 -75

R 2: 100 180
R 2: C

O

O 10 105
R 2: C

O

O -54 20

Table 9.1: Glass transition temperatures (in ◦C) for polymers with the general
structure shown in Figure 9.3 (From ref.[8]).

Glass Liquid

Enthalpy
per gram
of polymer

Temperature

Figure 9.4: A graph of enthalpy vs temperature

2× 10−4 K−1 for temperatures below Tg. Estimate the ratio of the free volume
to the total volume of sample in the glassy state. Assume that T∞ is 50K below
Tg.

Solution: Since the fractional free volume is assumed to be fixed below
Tg,we are looking for the for the fractional free volume at the glass transi-
tion, as given by Eq. 9.5. With α` = 6× 10−4 K−1, ag = 2× 10−4 K−1 and
Tg − T∞ = 50 K, we obtain:

Vf

V
=
(

4× 10−4 K−1
)
(50 K) = 0.02

This value of 0.02 is a typical value for the fractional free volume in a glassy
polymer.
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Heater

Sample

Heater

No Sample

Sample Cell Reference Cell

Figure 9.5: Simple schematic representation of a calorimeter.

9.2 Enthalpy and Heat Capacity

The heat capacity ( cp) of the liquid is larger than the heat capacity of the glass.
Note that the enthalpy itself is continuous at T = Tg. The glass transition is
therefore a second order transition - thermodynamic quantities like volume,
enthalpy and entropy are continuous at the transition but the derivatives of
these quantities with respect to temperature are discontinuous.

9.3 Differential Scanning Calorimetry (DSC)

Glass transition temperatures are most commonly measured by differential
scanning calorimetry. The technique can be used to measure the glass tran-
sition temperature of a polymer, in addition to the temperature at which a
polymer melts or crystallizes. The heat of fusion (heat required to melt a
semicrystalline polymer) can also be obtained. Heat flowing into the sample
is endothermic, and heat flowing out of the sample is exothermic. We have
plotted endothermic heat flow in the positive direction, and exothermic heat
flow in the negative direction. Unfortunately, there is no universally followed
sign convention for displaying DSC data. Sometimes endothermic heats are
plotted in the negative direction. In order to avoid confusion, the endother-
mic direction is commonly indicated on the DSC plot, as we have done in the
curve shown in Figure 9.6. Students are encouraged to look at the Macrogalle-
ria web sites on the glass transition[?] and differential scanning calorimetry[9]
for discussions at the appropriate level for this class.
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Figure 9.6: Graph of heat flow vs temperature.
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10 CONTACT MECHANICS

r
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rigid punch
 

Compliant Substrate

2a
undeformed

surface
 

Figure 10.1: Indentation if a soft surface with a rigid, flat-ended cylindrical punch
of radius a0.

10 Contact Mechanics

In a simple tensile test involving a sample with a uniform cross section, the
stresses and strains are both uniform throughout the entire sample. In almost
any real application where we care about mechanical properties, this is not the
case however. A simple example of this is the case where we press a rigid,
cylinder into s soft, compliant material as shown in Figure 10.1.

10.1 Sign conventions

Sign conventions have a tendency to lead to confusion. This issue is particu-
larly problematics in contact mechanics because compressive loads are consid-
ered to be positive, but a compressive stress is negative. Here’s a summary of
the sign conventions relevant to our treatment of contact mechanics:

• P (force): a positive force is compressive

• δ (displacement): a positive displacement is compressive

• σ (stress): a positive stress is tensile

• e (strain): a positive strain is tensile

In order not to get too hung up in issues related to the sign, we definePt and δt
as the tensile loads and displacements:

Pt = −P
δt = −δ

(10.1)
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2a

rigid substrate

rigid
cylinder

compliant
layerh

Figure 10.2: Flat punch contact geometry. For an elastic half space, h→ ∞.

10.2 Flat Punch Indentation

(Note: Many of issues presented here are discussed in more detail in a pub-
lished review article: see ref.[10]).

Consider a flat-ended cylindrical punch with a radius of a in contact with an-
other material of thickness, h, as shown schematically in Figure 10.2. The ma-
terial being indented by a punch rests on a rigid substrate. We are interested
in the compressive force, P, that accompanies a compressive displacement, δ,
applied to the indenter.

10.2.1 Flat Punch: Approximate Result for an elastic half space.

For an elastic half space (h→ ∞), the strain field under the indenter is nonuni-
form. The largest strains are confined to a region with characteristic dimen-
sions defined by the punch radius, a. We can get a very approximate expres-
sion for the relationship between the compressive load, P, and the compressive
displacement, δ from the following approximate concepts:

• The average strain in the highly deformed region of the sample must in-
crease linearly with δ. Because strain is dimensionless we need to divide
δ by some length scale in the problem to get a strain. For an elastic half
space with h = ∞ the only length scale in the problem is the punch ra-
dius, a. So the strain fields must depend on δ/a. We’ll take this one step
further and assume that δ/a is an average in a region of volume ≈ a3

under the punch:

eavg = −δ/a (10.2)

• The average contact stress, σavg under the punch can be quantitatively
defined by dividing the compressive load by the stress:

σavg = −P/πa2 (10.3)
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• An approximate relationship between P and δ is obtained by assuming
that the stress and strain are related through the elastic modulus, i.e.
σavg = Eeavg. Using the equations above for the compliance, C0:

C0 ≡
δ

P
≈ 1

πEa
(10.4)

10.2.2 Flat punch - Detailed Result

In a more general situation both of the contacting materials (the indenter and
the substrate) may deform to some extent, so the compliance depends on the
properties of both materials. If the materials have Young’s moduli of E1 and
E2 and Poisson’s ratios of ν1 and ν2, then the expression for C0 is:

C0 ≡
δ

P
=

δt

Pt
=

1
2Era

(10.5)

where Er is the following reduced modulus:

1
Er

=
1− ν2

1
E1

+
1− ν2

2
E2

(10.6)

Note that for a stiff indenter, (E2 � E1) we have Er = E1
1−ν2

1
. This is the plane

strain modulus that appears in a variety of situations, which we derive below.

10.2.3 Plane strain modulus.

The plane strain modulus, Er, describes the response of a material when it
cannot contract in one of the directions that is perpendicular to an applied
tensile stress. It’s easy to derive this by using the compliance matrix for an
amorphous material, which must look like this;


e1
e2
e3
e4
e5
e6

 =
1
E


1 −ν −ν 0 0 0
−ν 1 −ν 0 0 0
−ν −ν 1 0 0 0
0 0 0 2 (1 + ν) 0 0
0 0 0 0 2 (1 + ν) 0
0 0 0 0 0 2 (1 + ν)




σ1
σ2
σ3
σ4
σ5
σ6


(10.7)

In writing the compliance matrix this way, we have used the fact that Young’s
modulus is 1/s11 and the Poisson’s ratio is −s12/s11, so we have s11 = 1/E
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and s12 = −ν/E. Suppose we apply a stress in the 1 direction, and require that
the strain in the 2 direction is 0. This requires that a non-zero stress develop in
the 2 direction. If we assume that σ3 = 0, we have:

e2 =
−ν

E
σ1 +

σ2

E
(10.8)

If e2 is constrained to be zero, we have:

σ2 = νσ1 (10.9)

Now we can put this value back into Eq. 10.7 and solve fore1:

e1 =
1
E

(
σ1 − ν2σ1

)
(10.10)

The plane strain modulus relates σ1 to e1, which for the case assumed above
(e2 = 0) gives:

Er =
σ1

e1
=

E
1− ν2 (10.11)

10.3 Flat Punch Detachment and the Energy Release Rate

If adhesive forces cause the punch to stick to the substrate, we can use frac-
ture mechanics to understand the force required for detachment to occur. The
situation is as shown in Figure 10.3 for a flat-ended cylindrical punch with a
radius of a0. The surface profile of the substrate (assumed in this case to be an
elastic half space, i.e., h = ∞) is given by the following expression[11]:

uz = (2δt/π) arcsin (a/r) (10.12)

where δt is the applied tensile displacement and a is the actual radius of the
contact area between the punch and the substrate. In Figure 10.3 we compare
the shapes of the surface for the following two cases:

• a = a0: this is the initial contact condition, where the substrate is in
contact with the full surface of the indenter.

• a = a0/2: the contact radius has been reduced to half its initial value.
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Figure 10.3: Surface profile under a flat punch, from Eq. 10.12.

The decrease in a from a0 to a0/2 is accompanied by a decrease in the stored
elastic strain energy, and this strain energy is what drives the decrease in the
contact area. While it may not be immediately obvious from Figure 10.3, the
detachment problem is actually a fracture mechanics problem. This is because
the edge of the contact can be viewed as a crack, which grows as the con-
tact area shrinks. In the following section we describe a generalized energy
based approach to for quantifying the driving force for the contact area to de-
crease before applying this approach to the specific problem of a flat cylindrical
punch.

10.3.1 Energy Release Rate for a Linearly Elastic Material

Specifying the stress field is the same as specifying the stored elastic energy.
Fracture occurs when available energy is sufficient to drive a crack forward,
or equivalently in our punch problem, to reduce the contact area between the
punch and the substrate. To begin we define the following variables:

• W= work done on system by external stresses

• Uel= elastically stored energy

• W −Uel= energy available to drive crack forward.

The energy release rate, G, describes the amount of energy that is used to move
a crack forward by some incremental distance. Formally it is described in the
following way:

G =
d

dAc
(W −Uel) (10.13)
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where Ac is the crack area. Fracture occurs when the applied energy release
rate exceeds a critical value characteristic of the material, defined as the critical
energy release rate, GC. The fracture condition is therefore:

G = Gc (10.14)

The lowest possible value of Gc is 2γ where γ is surface energy of the material.
That’s because the minimal energy to break a material into two pieces is the
thermodynamic energy associated with the two surfaces. Some typical values
for the surface energy of different materials are listed below (note that 1 mJ/m2

= 1 erg/cm2 = 1 dyne/cm).

• Polymers: 20-50 mJ/m2 Van der Waals bonding between molecules

• Water: 72 mJ/m2 Hydrogen bonding between molecules

• Metals:≈1000 mJ/m2 Metallic bonding

We can derive a simple expression for the energy release rate if we assume
that the material has a linear elastic response. Consider, for example, an ex-
periment where we apply a tensile force, Pt, to a sample, resulting in a tensile
displacement, δt, as illustrated in Figure 10.4a. If the material has a linear elas-
tic response, the behavior is as illustrated in Figure 10.4. Suppose that the
crack area remains constant as the material is loaded to a tensile force Pt. The
sample compliance, C, is given by the slope of the displacement-force curve:

C =
dδt

dPt

∣∣∣∣
Ac

(10.15)

Now suppose that the crack area is increased by an amount dAc while the
load remains fixed at Pt, i.e. the system moves from point 1 to point two on
Figure 10.4b. This increases the compliance by an amount dC, resulting in
corresponding increase in the displacement of PtδC. If we now unload the
sample from point 2 back to the origin, the slope of this unloading curve is
given by the enhanced compliance, C + δC. At the end of this loading cycle be
have put energy into the sample equal to the shaded area in Figure 10.4b. This
is the total work done on the system by the external stresses (W in Eq. 10.13),
and given by the following expression:

δW =
1
2

P2
t δC (10.16)
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Figure 10.4: Derivation of the compliance expression forG.

Because the sample at the beginning an end of this process is unstrained, we
have Uel =0. We can now take the limit where δAc becomes very small to
replace δW/δC with the derivative, dW/dC to obtain:

G = lim
δAc→0

δW
δAc

=
P2

t
2

dC
dAc

(10.17)

10.3.2 Stable and Unstable Contact

Two different behaviors are obtained as two contacting materials are sepa-
rated, depending on the relationship between G and the contact area A. These
behaviors are referred to as stable contact (dG/dA > 0) and unstable contact
(dG/dA < 0). The difference between these behaviors is illustrated in Fig-
ure 10.5, and can be understood by considering two surfaces that are initially
brought into contact to establish a contact area, A0. We then increase the ten-
sile load, Pt, thereby increasing the applied energy release rate. As the tensile
load and the corresponding tensile displacement are increased, G increases un-
til it reaches the critical value, Gc. The tensile load at this point is defined as
the critical load Pc, and is the load at which A begins to decrease. We fix the
tensile load at Pc and observe one of two possible behaviors:

Unstable Detachment: If dG/da < 0, a decrease in A gives rise to an increase
in G, and the contact is unstable, so that the indenter rapidly detaches from the
indenter once a starts to decrease.

Stable Detachment: If dG/dA > 0, a decrease in a corresponds to a decrease
in G. In this case the contact is stable, and the load (or displacement) must be
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Figure 10.5: Illustration of stable contact, where Pt must increase continuously in
order for the contact area to continue to decrease, and unstable contact, where the
contact area reduces rapidly to zero as soon as a critical tensile load is attained.

increased further to continue to decrease the contact area. Detachment in this
case occurs gradually as the load continues to increase.

10.3.3 Application of the Griffith Approach to the Flat Punch Problem

The edge of the contact is a crack, which advances as a decreases. We can use
Eq. 10.17 for the energy release rate to obtain the following:

G = −P2
t

2
dC
dA

= − P2
t

4πa
dC
da

(10.18)

where we have assumed that the contact area remains circular, with A = πa2.
Not that A in this expression is the contact area between the indenter and the
substrate, and NOT the crack area. The negative sign in Eq. 10.18 emerges
from the fact an decrease in contact area corresponds to an equivalent increase
in the crack area, so we have:

dC
dA

= − dC
dAc

(10.19)

With C = C0 = 1/2Era (Eq. 10.5) we obtain the following expression for G:

G =
P2

t
8πEra3 (10.20)
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In some situations it is more convenient to express the energy release rate in
terms of the tensile displacement, δt. The most general expression is used by
using C = δt/Pt to substitute Pt with δt/C in Eq. 10.17:

G = − δ2
t

2C2
dC
dA

= − δ2
t

4πaC2
dC
dA

(10.21)

If the compliance is the value for an elastic half space (Eq. 10.5), then we obtain
the following expression for the energy release rate in terms of the displace-
ment:

G =
Erδ2

t
2πa

(10.22)

It is useful at this point to make the following general observations:

• In fracture mechanic terms the contact edge is an interfacial crack. An
advancing crack corresponds to a reduction in a, and a receding crack
corresponds to an increase in a.

• In general, G is determined by the applied load and the geometry.

• Gc is a property of the interface. The crack moves forward (a decreases)
when the value of G determined by the loading conditions exceeds Gc.
The detachment criterion is that the energy release rate, G, is equal to the
critical energy release rate, Gc, when the applied tensile force is equal to
the critical pull-off force, Pc:

Gc =
P2

c
8πEra3 (10.23)

This equation can be rearranged to give the following for the pull-off
force:

Pc =
(

8πEra3Gc

)1/2
(10.24)

• Detachment from of a flat punch from an elastic half space (a/h = 0)
is unstable for load controlled (constant Pt) OR displacement controlled
(constant δt) conditions. In each of these cases the contact radius, a, is
equal to the punch radius, a0, at the beginning of an experiment.
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Figure 10.6: Electron micrograph of Gecko setae.

10.3.4 Detachment: Size Scaling

An interesting aspect of Eq. 10.24 is that the pull-off force scales with a3/2,
whereas the punch cross sectional area scales more strongly with a (A = πa2).
This behavior has some interesting consequences, which we can obtain by di-
viding Pc by the punch cross sectional area to obtain a critical pull-off stress,
σc:

σc =
Pc

πa2 =

(
8ErGc

πa

)1/2
(10.25)

Note that the detachment stress increases with decreasing punch size.

Let’s put in some typical numbers to see what sort of average stresses we end
up with:

• Er ≈ 109 Pa (typical of glassy polymer)

• Gc ≈ 0.1 J/m2 (twice the surface energy of a typical organic material)

• a ≈ 100 nm (smallest reasonably possible value)

• σc ≈ 50 MPa

In order for stresses to be obtained, the pillars must be separated so that the
stress fields in substrate don’t overlap. This decreases the maximum detach-
ment stress from the previous calculation by about a factor of 10, so that the
largest stress we could reasonably expect is≈5 MPa. That’s still a pretty enor-
mous stress, corresponding to 500 N (49 Kg) over a 1 cm2 area. This is still
difficult to achieve, however, because it requires that the pillar array be ex-
tremely well aligned with the surface of interest, a requirement that is very
difficult to meet in practice. Nevertheless, improvements in the pull-off forces
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Figure 10.7: Schematic representation of an array of pillars in contact with a flat
surface.

can be realized by structuring the adhesive layer, and this effect is largely re-
sponsible for the adhesive behavior of geckos and other creatures with highly
structured surfaces.

10.3.5 Thickness Effects

When the thickness, h, of the compliant layer between a rigid cylindrical punch
punch and a rigid, flat substrate decreases, the mechanics change in a way that
makes it more difficult to pull the indenter out of contact with the compliant
layer. For the geometry shown in Figure 10.8 we can write the compliance of
the material in the following way:

C =
1

2Era
fC (10.26)

For an elastic half space (h → ∞) fC = 1. The factor fC accounts for changes
in the compliance due to the decreased thickness of the layer. In general it de-
pends on Poisson’s ratio for the compliant layer and the confinement ratio, a/h
(the ratio of the punch radius to the thickness of the layer). For an incompress-
ible compliant layer with ν = 0.5 the following expression for fC provides an
excellent approximation to the behavior of the compliance on the aspect ratio,
a/h:[10]

fC =
[
1 + 1.33 (a/h) + 1.33 (a/h)3

]−1
(10.27)

The behavior of fC as a function of a/h is plotted in Figure 10.9. A series of
geometric correction factors can be derived from this expression for fC. The
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Figure 10.8: A thin, compliant layer being indented with a rigid, cylindrical
punch.

first of these is a correction factor for the compliance of the energy release rate
expression with the tensile load, Pt, as the independent variable. In this case
we use Eq. 10.18 to get write the expression for the energy release rate in the
following form:

G = − P2
t

4πa
dC
da

=
P2

t
8πEra3 fGp (10.28)

Here fGp accounts for deviations in the compliance derivative due to the con-
finement effects, in this case determined by the ratio between the actual value
of dC/da and the value of this quantity for a/h = 0:

fGp =
dC
da

/
dC
da

∣∣∣∣
a/h=0

(10.29)

Finally, we can use the the fact that Pt = δt/C to get a similar expression for G
in terms of the tensile displacement, δt:

G =
Erδ2

t
2πa

fGδ (10.30)

In this case fGδ includes the dependence on a/h of both the compliance and
it’s derivative with respect to a. This dependence is evident from Eq. 10.21,
where G (δt) is seen to be proportional to dC/da and is inversely proportional
to C2. The a/h dependence of dC/da is accounted for by fGp, and the a/h
dependence of C is accounted for by fC, so we obtain the following for fGδ:
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Figure 10.9: Geometric correction factors for the flat punch geometry (generated
with python code given as example ?? in the appendix).

fGδ =
fGp

f 2
c

The confinement functions fGp and fGδ are both equal to one for a/h = 0
and are plotted as a function of a/h for ν = 0.5 in Figure 10.9. A practical
consequence of the decrease in fGp with decreased h is that a larger tensile force
is required in order to remove the cylinder from its contact with the compliant
layer. With a small value of fGp, a larger tensile load needs to be applied in
order for G to exceed the critical energy release rate, Gc.

10.4 Contact of Paraboloids

10.4.1 Non-Adhesive Case

Suppose that the indenter is not flat, but has a parabolic profile that can be
described by the following expression:

z = Apr2 (10.31)

Here z is the vertical distance from the apex of the parabola, r is the radial dis-
tance from symmetry axis for the paraboloid and Ap is a constant that defines
the shape of the paraboloid. A sphere has a parabolic shape near the apex,
which can be seen by considering the equation for a sphere of Radius R that
has it’s center at r = 0, z = R (see Figure 10.10):
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2a

sphere
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Figure 10.10: Non-adhesive contact of a rigid, parabolic indenter into an elastic
material.

r2 + (z− R)2 = R2 (10.32)

Solving Eq. 10.32 forz gives:

z = R
(

1±
√

1− (r/R)2
)

(10.33)

For small x,
√

1− x ≈ 1− x/2, so for r � R we have:

z =
r2

2R
(10.34)

where we have taken the solution with the smaller value of z, corresponding
to the bottom of the sphere. From a comparison of Eqs.10.32 and 10.34, we
see the paraboloid is a good approximation for the shape of a sphere, with
the sphere radius given by 1/2Ap. For this reason we use R instead of A to
characterize the parabolic shape, since the results can be applied to contact of
spheres, provided that the the contact dimensions are much smaller than R.
Generally everything works well as long as r/R < 4.

The compressive a rigid parabolic indenter into the surface of the material (δh
in Figure 10.10) is given by the following expression:

δh = a2/R (10.35)

Note that this is a completely geometric relationship that does not depend on
the modulus of the material that is being indented. The compressive force
required to establish a contact radius of a is referred to as Ph, and is given by
the following expression:
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Ph =
4Era3

3R
(10.36)

We can use Eq. 10.35 to substitute for a and obtain a relationship between Ph
andδh:

Ph =
4Er

3
R1/2δ3/2

h (10.37)

The assumption here is that there is no adhesion between the indenter and the
substrate, i.e., G = KI = 0. The fact that there is no stress concentration at
the interface is consistent with the fact that the slope of the surface profile of
the compliant material is continuous at r = a. This surface profile is plotted in
Figure 10.10 and is given by the following expression:[11]

uz =
δ

π

{(
2− (r/a)2

)
arcsin (a/r) + (r/a)

(
1− (a/r)2

)1/2
}

(10.38)

10.4.2 Effects of Adhesion on Contact

The easiest way to understand the effect of adhesion on the contact between
a parabolic is to consider a hypothetical situation where we turn off the ad-
hesion and bring the indenter into contact with the surface, resulting in the
deformation illustrated in Figure 10.10. Now we we turn on the adhesion, and
begin retracting the indenter from the surface, maintaining a fixed projected
contact radius a. The situation for the case where we have retracted the tip to
the point where the tip apex is level with the undeformed surface (δt = 0) is
illustrated in Figure 10.11. The applied compressive load required to reach a
given contact radius is less than the value of Ph given by Eq. 10.36 (P < Ph).
Similarly, the compressive displacement required to reach a given contact ra-
dius is less than the value given by Eq. 10.35 (δ < δh) . These deviations from
δh and Ph are related by the system compliance, which for this geometry is C0
as given by Eq. 10.5:

δ− δh
P− Ph

= C0 =
1

2Era
(10.39)

Combination of Eqs. 10.5 and 10.39 gives the following relationship between
δ, P and Er:

δ =
a2

3R
+

P
2Era

(10.40)
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(b)

2a

Figure 10.11: An example of the surface profile for adhesive contact for the case
where δt = 0.

This expression is the one that needs to be used in order to obtain the reduced
modulus in situations where adhesive forces between the indenter and the
substrate modify the contact radius. It use requires that the contact radius
be measured independently. This is easy to do when the contact area is big
enough to visualize directly, but is a very difficulty problem for very small
contacts (as in atomic force microscopy) where the contact is too small to visu-
alize optically.

Once we know the reduced modulus of the system, we can obtain the energy
release rate. The expression for the energy release rate for curved object in
contact with surface in a way that is very similar to what we did for the flat
punch in Section10.3. The only difference is that in the absence of adhesion we
need to apply a compressive load, Ph (given by Eq. 10.36):

G = − (Pt + Ph)
2

2
dC
dA

=
(Pt + Ph)

2

8πEra3 (10.41)

This equation can be rearranged to give a3 as a function of the compressive
load, P (P = −Pt), to give an expression that was derived in 1971 by Johnson,
Kendall and Roberts [12] and commonly referred to as the JKR equation:

a3 =
3R
4Er

(
P + 3πGR +

(
6πGRP + (3πGR)2

)1/2
)

(10.42)

10.5 Indentation with Berkovich Trips

Parabolic tips are often used in measurements of adhesion or of the elastic
properties of materials. For Hardness measurements tips with sharp corners
are more commonly used. One example is the Berkovich tip shown in Figure
10.12.
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Figure 10.12: Geometry of a Berkovich tip commonly used in indentation experi-
ments. The angle, a, is 65.35◦ for a standard Berkovich tip.

The hardness, H, of a material is given by the ratio of the load to the pro-
jected contact area of the non-recoverable indent made in the material by the
indenter. In our case we obtain the hardness from the maximum load,Pmax (il-
lustrated in Figure 10.13), and from the corresponding projected area, A, of the
hardness impression:

H =
Pmax

A
(10.43)

The projected area is related to the contact depth, δc, by a relationship that
depends on the shape of the indenter[13]. For a Berkovich tip the appropriate
relationship is:

A = 24.5δ2
c (10.44)

The procedure for determining the contact depth was developed by Oliver and
Pharr, where the following expression is used to estimate the contact depth:

δc = δmax − 0.75
Pmax

S
(10.45)

where δmax is the maximum penetration depth of the indenter tip and S is the
contact stiffness, determined experimentally as the initial slope of the linear
portion of unloading curve (see Figure 10.13). From the measured values of S,
Pmax and δmax, we use Equations 10.44 and 10.45 to determine A. The reduced
modulus is then obtained from the following expression for the contact stiff-
ness, assuming a value for the contact stiffness that is the same for a circular
contact of the same area:

S =
2√
π

Er
√

A (10.46)
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Figure 10.13: Typical load-displacement curve for indentation of the polyester
resin used to embed the paint samples, labeled to illustrate the values ofPmax,hmax
andS.
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Figure 11.1: Typical generic temperature behavior at different temperatures.

11 Fracture

The stress-strain behavior for a many material can exhibit a range of phenom-
ena, depending on the temperature. This is particularly true of many poly-
mers, which can show the range of behaviors in a uniaxial tensile test shown
in Figure 11.1. While not all of these behaviors are necessarily observed in the
same material, the following general regimes can often be identified, based on
4 different temperature regimes (T1, T2, T3 and T4).

• T1: Brittle behavior. This is generally observed at sufficiently low tem-
peratures.

• T2: Ductile behavior (yield before fracture)

• T3: cold drawing (stable neck)

• T4: uniform deformation

Here we are concerned with brittle behavior(T1), or in some cases situations
where there is a small degree of ductility in the sample (T2).. There are two
equivalent approaches for describing the fracture behavior. The first of these is
the energy based approach described in the previous section, where an existing
crack in a material grows when the applied energy release rate is larger than
some critical value. In this section we explore the second approach, where
characteristic stress field in the vicinity of a crack exceeds some critical value.

11.1 Fracture Modes

Different fracture modes are defined by the relationship between the applied
stress and the crack geometry. These are illustrated schematically in Figure
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Mode I: 
Opening

Mode II: 
In-plane shear

Mode III: 
Out-of-plane shear

Figure 11.2: Fracture Modes .

11.2 Fracture of a homogeneous material fracture generally occurs under Mode
I conditions, and this is the most important condition. Mode II conditions,
where a shear stress is applied in the direction perpendicular to the crack front,
is often important for interfacial fracture, including the adhesive bonding of
materials with different properties. Mode III is generally not important for
our purposes.

11.2 Stress Concentrations

In the previous section on contact mechanics we introduced the concept of
the energy release rate, G, which can be viewed as the driving force for crack
propagation. Failure occurs when G exceeds a critical value, Gc. This energy-
based approach was originally formulated by Griffith, and is referred to as the
Griffith model for this reason. We can also describe the driving force for crack
propagation in terms of the detailed stress field in the vicinity of the tip of a
propagating crack. This approach was developed by Irwin, and is referred to
here as the Irwin model. The key concept here is that stresses are enhanced, or
’concentrated’ in the vicinity of a defect like a crack. The easiest way to start
thinking about this is to look at the nature of the stress distribution around a
circular hole in a two-dimensional plate (Figure 11.3). A stress is a force per
unit area, so we can imagine dividing up the stress into individual force lines,
which are equidistant when the stress is uniform. Near a defect the lines of
force are closer to one another, indicating that the stress is higher in this area.
The maximum tensile stress at the sides of the hole is three times the average
applied stress.

For an ellipse of with axis ac perpendicular to the applied stress and axis bc
parallel to the applied stress (see Figure 11.4), the maximum stress in this case
is given by the following expression:

σmax = σ0

(
1 + 2

ac

bc

)
(11.1)
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Figure 11.3: Force lines around a circular defect.

Note that we recover the behavior described above for a circular whole, where
ac = bc and σmax/σ0=3. We can also write this in terms of the radius of curva-
ture of the ellipse, ρc, at the point of maximum stress:

ρc =
b2

c
ac

(11.2)

Combination of Eqs. 11.1 and 11.2 gives:

σmax = σ0

(
1 + 2

√
ac/ρc

)
(11.3)

We are usually interested in very sharp cracks, where ac/ρc � 1. In this case
we can ignore the factor of 1 in Eq. 11.3 and we get the following proportion-
ality:

σmax ∝ σ0
√

ac (11.4)

This combination of parameters, with the applied stress multiplied by the
square root of the crack length, plays a very important role in fracture me-
chanics, as we describe in more detail below.

11.3 Stress Intensity Factor

Consider a planar crack in the x-z plane, as shown conceptually Figure 11.5.
The stress in the vicinity of the crack tip can be expressed in the following
form:

σ =
K√
2πd

f (θ) (11.5)

where K is the stress intensity factor, d is the distance from the crack tip and
f (θ) is some function of the angle θ that reduces to 1 for the direction directly
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Figure 11.4: Elliptical crack with a crack tip radius of curvature,ρc.
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Figure 11.5: Cartesian (a) and polar (b) coordinate axes use d to define stresses in
the vicinity of a crack tip.

in front of a crack (θ = 0). Different functional forms exist for f (θ) for the
different stress components σxx, σyy, etc. The detailed stress fields depend on
the loading mode (Mode I, II or II, or some combination of these), and the
corresponding stress fields are specified by the appropriate value of K (KI for
mode I, KI I for mode II or KI I I for mode III).

Mode I loading

The stresses in the vicinity of a mode I crack are given by the following[14]:

 σ11
σ22
σ12

 =
KI√
2πd

cos
θ

2

 1− sin θ
2 sin 3θ

2
1 + sin θ

2 sin 3θ
2

cos 3θ
2 sin θ

2

 (11.6)

This compact notation is used to specify the three relevant values of f (θ) . For
example, for σ11 we have the following:

σ11 =
(

KI/
√

2πd
)

cos (θ/2)
(

1− sin
θ

2
sin

3θ

2

)
(11.7)
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Figure 11.6: An internal crack in a homogeneous solid.

These expressions assume that the crack tip is very sharp, with a very small
radius of curvature,ρc. If d is comparable to ρc, these equations no longer ap-
ply. Consider for example, the presence of an internal crack of length ac and
radius of curvature ρc in a thin sheet of material, shown schematically in Fig-
ure 11.6. In this case the stress at the crack edge is σmax as given by Eq. 11.3.
An assumption in the use of Eq. 11.6 is that the stresses are substantially less
than σmax. In other words, K describes the stress field close to the crack tip,
but still at distances away from the crack tip that are larger than the crack trip
radius of curvature, ρc.

The mode I stress intensity factor for this geometry is given by the applied
stress, σ0 and the crack length ac:

KI = σ0
√

πac (11.8)

For values ofd that are substantially larger thanρc but smaller thanac, we can
determine the stresses from Eq. 11.6, withKI as given by Eq. 11.8.

Mode II loading

For mode II loading the crack tip stress fields are given by the following set of
expressions[14]:

 σ11
σ22
σ12

 =
KI I√
2πd


− sin θ

2

(
2 + cos θ

2 cos 3θ
2

)
sin θ

2 cos θ
2 cos 3θ

2
cos θ

2

(
1− sin θ

2 sin 3θ
2

)
 (11.9)

It is generally difficult to determine KI I in a straightforward way, and finite
element methods must often be used to determine it for a given loading condi-
tion and experimental geometry. Once KI I is known, the crack tip stress fields
can be obtained from Eq. 11.9.

117



11.4 Fracture condition 11 FRACTURE

Mode III loading

While mode III loading is often encountered in practical applications, it is gen-
erally avoided in experiments aimed at assessing the fracture behavior of ma-
terials, and is not considered further in this text.

11.4 Fracture condition

In the stress-based theory of fracture, the material fails when the stress inten-
sity factor reaches a critical value that depends on the material. For mode I
loading, we refer to this critical stress intensity factor as KIC. Setting σ0 to the
fracture stress, σf , and setting KI to KIC in Eq. 11.8 gives:

KIC = σf
√

πac (11.10)

Rearranging gives:

σf = KIC/
√

πac (11.11)

So the fracture stress decreases as the flaw size, ac, increases. This is why a
material can appear to be fine, even though small cracks are present in the
material. The cracks grow very slowly, but when the reach a critical size for
which Eq. 11.11 is satisfied, the material fails catastrophically.

The fracture toughness, KIC has strange units - a stress multiplied by the
square root of a length. In order to understand where this characteristic stress
and the characteristic length actually come from, we need to consider the ac-
tual shape of the crack tip. Using Eq. 11.3 we see that the maximum stress in
front of the crack tip, σ

f
max , at the point of fracture is:

σ
f
max ≈ 2σf

√
ac/ρc (11.12)

where we have assumed that
√

ac/ρc � 1, so that we can ignore the extra
factor of 1 in Eq. 11.3. Now we can use Eq. 11.10 to substitute KIC for σf . After
rearranging we get:

KIC ≈ σ
f
max

√
π

2
√

ρc ≈ σ
f
max
√

ρc (11.13)

This expression is really only valid for a crack tip with a well-defined radius of
curvature, which is often not the case. Models that aim to predict and under-
stand the fracture toughness of materials are all based on understanding the
details of the yielding processes very close to the crack tip, and the resulting
crack shape. We’ll return to this issue later. For now we can summarize the
stress-based approach fracture mechanics as follows:
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11 FRACTURE 11.5 General relationship between K and G

• With the exception of a very small region near the crack tip, all of the
strains are elastic.

• There is a very small plastic zone in the vicinity of a crack tip, with a
characteristic dimension,ρ that is determined by the details of the way
the material plastically deforms.

• Fracture occurs when the stress field defined by KI reaches a critical
value.

11.5 General relationship between K and G

The stress intensity factor and the energy release rate are related to one another
through the following expression:

G =
K2

I + K2
I I + K2

I I I
Er

(11.14)

Here Er is the reduced modulus that is slightly different for plane stress and
plane strain conditions:

Er = E (Plane stress conditions)
Er =

E
1−ν2 (Plane strain conditions) (11.15)

Plane stress conditions generally apply for very thin samples, whereas plane
strain conditions apply for thick samples, and also for the axisymmetric punch
problems that we have discussed earlier in this text.

The fact that G ∝ K2
I for a mode I fracture experiment is illustrated in Figure

11.7, which we use to show the relationship between stress and stored elastic
energy for an elastically deformed sample. The energy input to the sample up
to the point of fracture, which we refer to asU f , is the area under the stress
strain curve:

U f =
1
2

σf e f =
1
2

σ2
f

Er
(11.16)

The stress intensity factor, KI at the fracture point is proportional to the stress,
σf , and the strain energy release rate, G, at the point of failure is proportional
to the total stored elastic energy, U f . This means that the following propor-
tionality must hold:

G∝
K2

I
Er

(11.17)

This is consistent with Eq. 11.14, but we need to do a more detailed analysis to
get the prefactor exactly right.
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11.6 Some Specific Geometries 11 FRACTURE

x

Figure 11.7: Schematic stress/strain curve for a brittle material in the presence of
a crack.

Figure 11.8: Double cantilever beam geometry.

11.6 Some Specific Geometries

11.6.1 Double cantilever beam geometry

The double cantilever beam geometry illustrated in Figure 11.8 is a common
test used to measure crack propagation in materials. It is commonly used to
measure the adhesion between two materials that have been glued together. It
consists of to beams, each with width, w, and thickness, t. The crack length, ac
in this geometry is the distance between the parts of the beam where the force
is applied and the beginning of the region of the sample where the two beams
are in contact with one another.

For the double cantilever beam geometry the compliance is given by the fol-
lowing expression:

C ≡ δt

Pt

=
8a3

c
Ewt3 (11.18)

The crack area, Ac is obtained by the crack length, ac by the width of the sam-
ple:
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Ac = wac (11.19)

So we have:

dC
dAc

=
1
w

dC
dac

(11.20)

We now combine Eqs. 11.18 and 11.20 to obtain the following for the energy
release rate:

G =
P2

t
2w

dC
dac

=
12a2

c P2
t

Ew2t3 (11.21)

At fixed load, G increases as the crack length increases - unstable geometry!

can use We Eq. 11.18 to substituteδt forPt and write the compliance in the
following way.

G =
3δ2

t t3E
16a4

c
(11.22)

At a fixed displacement, crack will grow until G = Gc and then stop. This is a
better way to do the experiment.

11.6.2 Flat Punch Geometry: Thick Compliant Layer

For the flat punch case, the following analytic expression exists for the shape
of the normal tress distribution directly under the punch (the plane withz = δt
in Figure 10.3):

σzz

σavg
= 0.5

(
1− (r/a)2

)−1/2
(11.23)

Here the average stress,σavg is defined as follows:

σavg ≡
P

πa2 (11.24)
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Note that σzz diverges at the edge of the punch (r = a). We know that this
must be the case because of the stress concentration that exists at the edge of
the punch. To get an expression for stress concentration,KI at this edge, we
first defined as the distance from the punch edge:

d ≡ a− r (11.25)

Substituting d for r in Eq. 11.23 gives:

σzz

σavg
=

1
2

[
2d/a− (d/a)2

]−1/2
(11.26)

The stress intensity factor describes the stress field near the contact edge,
where a/d is small. We can ignore the term involving the square of a/d to
obtain the following expressionσzz that is valid near the contact edge:

σzz

σavg
≈ 1

23/2

(
d
a

)−1/2
(11.27)

by comparing to Eq. 11.6 forKI we obtain the following:

KI =
1
2

σavg (πa)1/2 (11.28)

Now we can use the following equation to obtain the following expression
forG (assumingKI I = KI I I = 0):

G =
K2

I
2Er

=
πaσ2

avg

8Er
=

P2
t

8πEra3 (11.29)

This is the same result that we got above (see Eq. 10.20), so everything checks
out okay. Note that the extra factor of two in the relationship between G andKI
in Eq. 11.29 comes from the fact the punch is rigid, so it has no stored elastic
energy. Because elastic energy is stored only on one side of the interface, the
value of G for crack propagation at the interface with the rigid indenter (Figure
10.3) is half the value of G for a crack propagating through an elastic material
(Figure 11.5, for example).

11.6.3 Flat Punch Geometry: Thin Compliant Layer

Decreasing the thickness of the compliant layer also changes the distribution
of normal stresses in contact with the layer. These normal stresses are plotted
for different values ofa/h in Figure 11.10.
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Figure 11.9: Comparison of the full solution for the flat punch contact stresses (Eq.
11.23) with thed−1/2 singularity obtained fromKI (Eq. 11.28).
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Figure 11.10: Dependence of the stress distribution under a flat punch for different
values of the confinement ration,a/h.
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• Max. stress in center for thin, incompressible layers (ν = 0.5).

• Decrease in edge stress singularity (decrease KI) for thin layers.

Since for very thin layers failure does not initiate from the edge because the
driving force for this ’edge crack’ vanishes as h becomes very thin. Instead,
failure initiates from small defects within the central part of the contact zone
where σzz is the highest. The mode I stress intensity factor for a circular, inter-
nal crack of radius ac is given by the following expression:

KI =
2√
π

σzz
√

ac (11.30)

Note that the prefactor in this expression is slightly different than what is given
in Eq. 11.8 because of the different crack geometries. Eq. 11.8 is for a rectan-
gular crack and Eq. 11.30 is for a circular crack. The energy release rate for
the circular crack is given by using the relationship between KI and G valid
for a mode I crack at the interface between compliant and rigid materials (Eq.
11.29):

G =
K2

I
2Er

=
2acσ2

zz
πEr

(11.31)

11.7 Fracture Toughness of Materials

In the Griffith (energy-based) model of fracture, material fracture occurs when
the applied energy release rate, G, exceeds a threshold value, GC, which is
characteristic of the material. This value is called the critical strain energy
release rate, and is a measure of the fracture toughness of the material, just as
the critical stress intensity factor is a measure of the fracture toughness. The
critical values of K and G are related to one another through Eq. 11.14. For
mode I fracture, KI I = KI I I = 0, and this equation reduced to the following:

GIC =
K2

IC
Er

(11.32)

Note that we have added the subscript ’I’ to G to remind ourselves that this
number corresponds to mode I fracture condition.

Values of GC are a bit easier to understand conceptually than values of KIC,
sinceGc is simply the energy required to break a sample. We can obtain some
estimates of GC by making some assumptions about where energy goes. Typi-
cal values of Gc are as follows:
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11 FRACTURE 11.7 Fracture Toughness of Materials

Table 11.1: Typical fracture toughness values (plane strain) for different material.

Material E (GPa) KIC (MPa
√

m) GIC J/m2

Steel 200 50 12,000
Glass 70 0.7 7

High M polystyrene or PMMA 3 1.5 750
High Impact Polystyrene 2.1 5.8 16,000

Epoxy Resin 2.8 0.5 100
Rubber Toughened Epoxy 2.4 2.2 2,000
Glass Filled Epoxy Resin 7.5 1.4 300

• GC = 2γ
(
≈ 0.1 J/m2) if only work during fracture is to break Van der

Waals bonds

• GC ≈ 1 − 2 J/m2 if only work during fracture is to break covalent or
metallic bonds across interface

• GC � 1 J/m2 if fracture is accompanied by significant plastic deforma-
tion of the sample. For the whole fracture mechanics formulation we
are using to be valid, the zone of plastic deformation where this energy
dissipation is occurring should be small compared to the overall sample
size.

Actual values of GC are much larger than these values (see Table 11.1) because
a significant amount of plastic deformation occurs near the crack tip.

We can use numbers from Table 11.1 to say something about the size of the
plastically deformed zone in front of a crack tip. We know that in the elastic
region directly in front of a propagating crack, the stress scales as KI/

√
2πd,

where d is the distance in front of the crack tip. If the maximum stress is equal
to the yield stress, σy, then this the material must be yielded for values of r that
give a stress exceeding σy. A propagating crack has KI = KIC, so if the size of
the plastic zone is hp, we have:

σy ≈
KIC√
2πhp

(11.33)

Rearranging gives:

hp ≈
K2

I
2πσ2

y
≈ GIC

σy

E
2πσy

(11.34)

This formula is approximate because it neglects the fact that yielding of the ma-
terial actually changes the stress distribution. The details of what is going on
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in the plastic zone depend on the materials system of interest. Below we give
a case study for what happens for some common amorphous, glassy polymers
(non-crystalline polymers deformed at temperatures below their glass transi-
tion temperature).
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Figure 12.1: Tensile testing sample and representative data for a ductile sample.

12 Yield Behavior

The yield point of a material corresponds to the onset of permanent deforma-
tion, originating for example from the movement of dislocations. The stress/s-
train curve for a simple tensile test is shown in Figure 12.1, with the tensile
yield stress, σy, corresponding to the onset of permanent, irreversible defor-
mation in the material. For most materials this corresponds to the onset of
non-linearity in the stress-strain curve (rubber is the exception, and that case
is discussed in more detail in 331). What we need is a generalized criterion
that can be used to determine the onset of yield for any stress state. These
yield criteria all focus on the importance of the shear stress.

12.1 Yield Surfaces

The full stress state of a material is defined by the 3 principal stresses, σ
p
1 ,

σ
p
2 and σ

p
3 . The stress state of a material can therefore be specified on a 3-

dimensionsal space where the values of these 3 principal stresses are plotted
on three orthogonal axes. The yield surface is the surface in this space that
separates the stress states where yielding will occur from those where it will
not occur. Here we describe two of the most common yield surfaces, those
defined by the Tresca and Von Mises yield criteria.

12.1.1 Tresca Yield Criterion

The Tresca yield criterion is the simplest one in that we just assume that shear
occurs whenever the maximum shear stress in the sample exceeds some crit-
ical value value τc. In mathematical terms, yield occurs under the following
conditions:
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∣∣∣σp
i − σ

p
j

∣∣∣
max

2
> τc (12.1)

where the ’max’ subscript indicates that we take the principal stress difference
(σp

1 − σ
p
2 , σ

p
2 − σ

p
3 or σ

p
1 − σ

p
3 ) with the largest magnitude. The yield stress,

σy, is typically measured in a uniaxial tensile experiment, where σ
p
2 = σ

p
3 =

0, and plastic yielding of the material occurs when σ
p
1 > σy. In a uniaxial

tensile experiment, the maximum shear stress is half the applied tensile stress,
so τcrit = σy/2.

12.1.2 Von Mises Yield Criterion

A more complicated yield criterion is that yield occurs when the Von Mises
stress, σe, exceeds some critical value. The Von Mises stress is given as follows:

σe =

√
2

2

√(
σ

p
2 − σ

p
1

)2
+
(

σ
p
3 − σ

p
1

)2
+
(

σ
p
3 − σ

p
2

)2
(12.2)

For uniaxial deformation, as in a simple compression or tensile test, yielding
occurs when σe > σy. The Tresca and Von Mises yield surfaces for a two di-
mensional stress state (σp

3 =0) are shown in Figure 12.2a. Yielding does not
occur inside the surface, but does occur outside the surface. Figure 12.2a is
one particular cross section through a 3d yield surface. Another representa-
tion is shown in Figure 12.2b, which shows the yield surface viewed along the
hydrostatic axis (σp

1 = σ
p
2 = σ

p
3 ) .

Exercise: The tensile yield stress of a materials is measured as 45 MPa by a
uniaxial tensile test.

1. What will the shear stress of the material by if the materials yields at a
critical value of the Tresca stress?

2. How does your answer change if the material yields at a specified value
of the Von Mises stress?

Solution:

1. The shear yield strength prediction, according to the Tresca criterion, is
simply given by the maximum shear stress, at the yield point, which
for a uniaxial tensile test is σy/2 = 22.5 MPa.

128



12 YIELD BEHAVIOR 12.1 Yield Surfaces
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Figure 12.2: Cross sections of the Tresca and Von Mises yield surfaces at the σ
p
3 = 0

plane, and viewed down the hydrostatic line
(

σ
p
1 = σ

p
2 = σ

p
3

)
.

2. Suppose the stress for the tensile experiment is oriented in the 3 direc-
tion, so at the yield point, σ

p
3 = σy and σ

p
1 = σ

p
1 = 0. Substitution

of these values into Eq. 12.2 gives σe = σy, as it should (the prefac-
tor of

√
2/2 was chosen to force this to be the case). Now suppose

that we apply a shear stress in the 1-2 plane, so we have σ
p
1 = τ,

σ
p
2 = −τ and σ

p
3 = 0. Putting these values into Eq. 12.2 gives σe =

√
3τ.

Rearranging to give an expression for τ, and taking σe = σy gives
τ = σy/

√
3 = 26 MPa.

12.1.3 Coulomb Yield Criterion

The Coulomb yield criterion is a modification of the Coulomb criterion that
takes into account that the critical shear stress will be modified by the normal
stress acting on the shear plane. We would expect a compressive normal stress
to increase the shear stress, whereas a tensile normal stress will decrease the
critical shear stress. If the critical shear stress varies linearly with the normal
shear stress we have the following:

τc = τ0
c − µσN (12.3)

Consider a sample that is subjected to a uniaxial compressive stress with a
magnitude of σ1 shown in Figure 12.3. According to the Coulomb yield crite-
rion (Eq. 12.3) yield will occur on the plane for which τ + µσN is maximized,
which means we need to maximize sin (2θ)− µ cos (2θ) to determine the plane
on which yielding will occur. We have:
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Figure 12.3: Normal stress and shear stress on a plane inclined by an angle θ with
respect to horizontal.

d
dθ

(sin (2θ)) = µ
d
dθ

(cos (2θ))

Solution of this equation gives tan (2θ) = −1/µ. After a bit more trigonom-
etry, we get find that the yield condition is first met for θ = 45◦ + φ (and the
corresponding mirror plane about the y axis), with µ = tan (2φ).

12.2 Localized Deformation

A material that obeys the strain hardening law of Eq. ?? will fail when a por-
tion of the sample becomes thinner than the remainder of the sample. The
overall behavior of the sample is a balance between the fact that the strain is
larger in this region, and can therefore support a larger true stress, but the
cross section is larger, so that a larger true stress is needed just to maintain
a constant force along the length of the sample. To understand how to think
about this we need to consider the relationship between the true stress and the
engineering stress.

Consider a sample that is being deformed in uniaxial extension, as illustrated
in Figure 12.4. A sample with an undeformed cross sectional area of A0 and
undeformed length of `0 is stretched with a force, P. The engineering tensile
stress, σeng, is obtained by dividing the load by the undeformed cross section,
and the true tensile stress, σt is obtained by dividing the load by the actual
cross sectional area of the deformed sample:

σeng = P/A0 (12.4)
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Figure 12.4: Uniaxial tensile test.

σtrue = P/A (12.5)

In general, the bulk modulus of a material is much larger than its yield stress,
so the applied stresses associated with yield phenomena are not large enough
to significantly change the volume. As a result, the sample deforms at constant
volume, so we have:

A` = A0`0 (12.6)

The relationship between the true stress and the engineering stress is therefore
as follows:

σt = σeng`/`0 = σengλ (12.7)

12.2.1 Considére Construction

The Considére construction is a simple construction that can be used to deter-
mine the stability of regions in a sample at large tensile deformations. It can
be used in to distinguish between unstable and unstable necking of a sample,
illustrated schematically in Figure 12.5. We begin by considering a region of
the sample that has a slightly thinner cross section than the rest of the sample.
The true stress in this region of the sample will be higher than the rest of the
sample because we are dividing the applied load by a lower cross section . Two
things can happen at this point, the first possibility is that the larger stress in
this region of the sample leads to greater deformation, and the sample breaks
as the necked region begins to thin down. This is the unstable necking condi-
tion illustrated on the left side of Figure 12.5. In this case the maximum force,
P, applied to the sample is the force where the neck begins to form.
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Initial Neck Formation Stable NeckUnstable neck

Figure 12.5: Schematic representation of stable and unstable necking of a sample
under tensile loading conditions.

The second possibility is that the increased strain in the necked region leads to
substantial strain hardening, so that this region of the sample is able to support
the larger true stress in that region. Under the appropriate conditions the cross
section of the necked region will stabilize at a value that is determined by the
stress/strain relationship for the material. The sample deforms by ’drawing’
new material into this necked region, as illustrated on the right side of Figure
12.5.

To understand when stable or unstable necking occur, we begin by recognizing
that the onset of neck formation corresponds to a maximum tensile force that
the material is able to sustain. In mathematical terms:

dP
dλ

= 0 (12.8)

Since the engineering stress is the load divided by the undeformed cross sec-
tional area, which is a constant, we can write Eq. 12.8 as follows:

dσeng

dλ
= 0 (12.9)

We can rewrite this expression in terms of the true stress by recognizing that
σeng = σt/λ (see Eq. 12.7), from which we obtain:

λ
dσt

dλ
− σt = 0 (12.10)

which we rearrange to the following:

dσt

dλ
=

σt

λ
(12.11)

This condition is met when a line drawn fro the origin of a plot of σt vs. λ is
tangent to the curve.
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12.2.2 Stable and Unstable Necking

Use of the Considére construction is illustrated in Figure 12.6, where we show
curves of the true stress vs. extension ratio for a material that does not form
a stable neck (part a) and one that does form a stable neck (part b). In part a
it is only possible to draw one line originating from the origin that is tangent
to the stress-strain curve (point A in Figure 12.6). A necking instability forms
when the true stress reaches this value, resulting in a thinned-down region of
the sample. This region continues to thin down until the sample breaks. The
maximum engineering stress that the sample sees prior to failure is given by
the slope of the tangent line in Figure 12.6a.

In Figure 12.6b, it is possible to draw two lines from the origin that are tan-
gent to the curve, with tangent points labeled as A and B. The tangent at point
B represents a maximum in the applied force (the stress-strain curve lies be-
low the tangent line) and the tangent at point B represents a minimum in the
applied force (the stress-strain curve lies above the tangent line). At point B
the neck stabilizes. Additional material is drawn into the necked region with
a characteristic draw ratio that given by the value of λ at point B. The engi-
neering stress at which this drawing occurs is less than the engineering stress
required to form the neck in the first place. This means that the load during
the drawing process to form the stable neck is lower than the stress required
to form the neck in the first place. This phenomenon is generally observed
in glassy polymeric materials (T < Tg) or semicrystalline polymers for which
stable neck formation is observed.

dσt

dλ
=

σt

λ
(12.12)
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Figure 12.6: Considére construction for a material that does not form a stable neck
(a) and a material that does form a stable neck (b).
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Figure 13.1: Adhesive transfer of a thin, viscoelastic film.

13 Weibull Analysis of Failure

Failure of brittle materials is determined by the largest flaw size, since the
largest flaw size will have the largest value of K for a given applied stress. As
an example of the use of Weibull statistics, consider the adhesive transfer of a
thin layer of a material from a flat, flexible substrate to a rigid, curved indenter
as illustrated in Figure 13.1. The basic geometry of the experiment is illustrated
in Figure 13.1a, and consists of a thin, viscoelastic film that is coated on an elas-
tomeric substrate. A hemispherical glass indenter is brought into contact with
the film and is then pulled away from the surface. The system is designed so
that the adhesion of the film to the glass indenter is stronger than the adhesion
to the elastomeric substrate, the film will be transfered from the substrate to
the indenter. The process occurs by the sequence of steps illustrated in parts
b-e of Figure 13.1:

• b) A crack is nucleated at a defect site at the interface between the film
and the substrate at a region where the hydrostatic pressure is maxi-
mized.

• c) This crack propagates under the indenter as the material is the inden-
ter is pulled away from the substrate.

• d) Eventually the entire film in has detached from the substrate over the
region where it is contact with the indenter. The remainder of the film
begins to peel away from the substrate surface.

• e) The film breaks at the edge of the area of contact with the indenter.

Details of this experiment can be found in reference[15]. The most important
thing to keep in mind is that the whole transfer process is controlled by the
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initial appearance of a cavity at the indenter/substrate interface (Figure 13.1b).
This happens when pmax, the maximum hydrostatic tension at the film/sub-
strate interface, reaches a critical value that we refer to as pcav. Qualitatively
we find that pcav is close to Esub, the elastic modulus of the substrate, but cav-
itation occurs for different values of pcav. The Weibull distribution for the
survival probability, Ps (the probability that cavitation has NOT occurred) is as
follows:

Ps = exp

[
−
(

pmax

pcav

)M
]

(13.1)

Here M is the Weibull modulus, which is a measure of the distribution of fail-
ure probabilities. We generally want M to be large, so that the distribution
stresses is very narrow. For example, if M → ∞, Ps = 0 for pmax > pcav and
Ps = 1 for pmax < pcav.

We can take natural logs of both sides a couple of times to convert Eq. 13.1 to
the following:

ln [ln (1/Ps)] = M ln pmax −M ln pcav (13.2)

This means that we can obtain the Weibull modulus as the slope of a plot of
ln [ln (1/Ps)] vs. pmax. The procedure for obtaining Ps as a function of pmax is
as follows:

1. Start with a data set that includes the measured values of the critical
stress at which the sample failed. In our example this would be a list of
values of pmax at the point where the sample failed.

2. Organize this list from the lowest value of pmax to the highest value.

3. Use the list to obtain the survival probability, Ps, for each value of pmax.
The survival probability is the fraction of samples that did NOT fail for
the given value of pmax. For example, if our data set has 50 samples in
it then the survival probability for the lowest measured value of pmax
is 49/50. The survival probability for the next highest value of pmax is
48/50, etc. We do this for all of the samples except for the one with the
highest value of pmax, since a value of 0 for Ps would cause problems in
the analysis.

In our example the stress is expressed as local maximum in the hydrostatic
tension, pmax, and pcav is a characteristic value of pmax for which a substantial
fraction of samples have failed. From Eq. 13.1 we see that the survival proba-
bility is 1/e=1/2.72=0.37. A Weibull analysis can be applied in a range of sit-
uations, including tensile failure of brittle glass rods. In this case the Weibull
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analysis applies, with the tensile stress σ as the dependent variable, and with
a characteristic tensile stress, σavg for which the survival probability is 37%:

Ps = exp

[
−
(

σ

σavg

)M
]

(13.3)

The point of the Weibull analysis is to obtain an expression that can be sensibly
extrapolated to survival probabilities that are very close to 1. With exp (−x) ≈
1− x for small x, and with Pf = 1− Pf , we have the following expression for
failure probability, assuming Pf is low:

Pf ≈
(

σ

σavg

)M
(13.4)
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14 DEFORMATION OF POLYMERS

Figure 14.1: Structure of an amorphous polymer.

Figure 14.2: Structure at different length scales for a semicrystalline polymer.

14 Deformation of Polymers

The deformation mechanisms in polymeric materials are completely different
from those in metals and ceramics, and (almost) never have anything to do
with the motion of dislocations. To begin with, we can separate into the poly-
mers that are partially crystalline and those that are not. As one would expect,
the structures of these non-crystalline (amorphous) and semicrystalline poly-
mers are very different, as shown schematically in Figure Crystallization and
glass formation are the two most important concepts underlying the physical
properties of polymers. The ways in which the molecules are organized in
non-crystalline (amorphous) polymers and semicrystalline polymers are very
different, as illustrated in Figures 14.1 and 14.3. Polymers crystallize at tem-
peratures below Tm (melting temperature) and form glasses at temperatures
below Tg (glass transition temperature). All polymers will form glasses un-
der the appropriate conditions, but not all polymers are able to crystallize.
The classification scheme shown in Figure Polymers classification scheme. di-
vides polymeric materials based on the locations of Tg and Tm (relative to the
use temperature, T) and is a good place to start when understanding different
types of polymers.
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Polymeric Materials
Crystallizable non-crystallizable

  polymer glass

crosslinked uncrosslinked

soft solid
(elastomer)

Viscoelastic
liquid/solid

Brittle Solid Tough Solid

Semicrystalline Polymers

Amorphous Polymers

Figure 14.3: Polymers classification scheme.
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Figure 14.4: Load-Displacement and true stress-true strain curves for PVC
(polyvinyl chloride) and HDPE (high density polyethylene).
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Figure 14.6: Yield surface for PMMA at 20◦C and at 90◦C. For comparison a map
of the Tresca yield criterion (where normal forces do not matter) shown as the
dashed line.
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Figure 14.7: Molecular weight dependence of fracture toughness for polystyrene
(PS) and poly(methyl methacrylate) (PMMA).
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(a)
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Figure 14.8
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Void
tip

Entanglement point

Figure 14.9: Conceptual drawing of fibrils at the interface between the crazed and
uncrazed material (from ref.[16])

14.0.1 Case Study: Fracture toughness of glassy polymers

Deformation is significant, but GIc is still small compared to other engineering
materials.

Deformation Mechanisms Suppose we do a simple stress strain experiment
on polystyrene. Polystyrene deforms by one of two different mechanisms:

1. Shear bands due to strain softening (decrease in true stress after yield in
shear).

2. Crazing - requires net dilation of sample (fracture mechanism for PS and
PMMA).

Crazes are load bearing - but they break down to form cracks - failure of spec-
imen.

Crazing Fibrils are cold drawn polymer. Extension ratio remains constant as
craze widens

Crack propagation:
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craze bulk

advancing fluid interface

fibrils

craze tip craze tip

Figure 14.10: Meniscus instability mechanism for the formation of craze fibrils.

1. 1) new fibrils are created at the craze tip

2. 2) fibrils break to form a true crack at the crack tip

3. Crazing requires a stress field with a tensile hydrostatic componentσ1 +
σ2 + σ3 > 0 (crazes have voids between fibrils)

4. Crazing occurs first for PMMA in uniaxial extension (σ2 = 0)

5. GIc is determined by energy required to form a craze (≈ 1000 J/m2)

6. Crazing requires strain hardening of fibrils - material must be entangled
(M > Mc),Mc typically≈30,000 g/mol.

7. In general, shear yielding competes with crazing at the crack tip

Meniscus instability mechanism (fibril formation at craze tip)

Material near the craze tip is strain softened, and can flow like a fluid between
two plates.

http://n-e-r-v-o-u-s.com/blog/?p=1556

Competition between Shear Deformation and Crazing Shear deformation
is preferable to crazing for producing high toughness.

Plane stress - shear yielding and crazing criteria (for PMMA)
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pure shear

shear yielding criterion
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Figure 14.11: Deformation map for the shear yielding and crazing for plane stress
conditions (σp

3 = 0)

x

yDugdale zone
(craze)

Figure 14.12: Crack tip stresses in the Dugdale model.

Dugdale model Earlier we considered the maximum stress in front of an
eliptical cra

Assumptions:

1) Tensile stress throughout plastic zone is constant value,σc

2) This stress acts to produce a crack opening displacementδc

GIC = δcσc (14.1)

The Dugdale zone (the craze in our polystyrene example) modifies the stress
field so that it doesn’t actually diverge to infinity, since infinite stresses are not
really possible.

High Impact Polystyrene: Polystyrene (PS) is a big business - how do we
make it tougher? High impact polystyrene (HIPS) is a toughened version of
polystyrene produced by incorporating small, micron-sized rubber particles
in the material. The morphology is shown in Figure 14.13, and consists small
PS inclusions embedded in rubber particles that are in turn embedded in the
PS matrix materials. The rubber particles act as stress concentrators that act as
nucleation points for crazes.
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Rubbery, polybutadiene particles with
         PS inclusions

PS matrix

Figure 14.13: Morphology of high impact polystyrene.

Figure 14.14: Multiple crazes in high impact polystyrene.

Tensile Behavior: In Figure 14.15 we compare the tensile behavior of normal
polystyrene (PS) and high impact polystyrene (HIPS). The rubber content in
the material reduces the modulus but substantially increases the integrated
area under the stress/strain curve up to the point of failure, which is a measure
of the toughness of the material. We can summarize the differences between
PS and HIPS as follows:

• PS is brittle, with E =3GPa and relatively low fracture toughness

• HIPS is ductile, with a lower modulus, (E = 2.1 GPa) and a much larger
energy to fracture.

This area under the stress/strain curve is not a very quantitative measure of
toughness because we don’t have any information about the flaw size respon-
sible for the eventual failure of the material.
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Figure 14.15: Schematic stress-strain curves for polystyrene (PS) and high impact
polystyrene (HIPS) in the absence of a crack.
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Figure 14.16: Schematic stress-strain curves for polystyrene (PS) and high impact
polystyrene (HIPS) in the presence of a crack.

deformation via crazing in vicinity of rubber particles (stress concentrators)
throughout sample

Samples with Precrack:

(measurement of KIC or GIC)

• Deformation limited to region around crack tip

• Much more deformation for HIPS - higher toughness
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Figure 14.17: Charpy impact test.

Figure 14.18: Izod impact geometry.

Impact Tests Impact tests are designed to investigate the failure of materials
at high rates. Two common standardized are the Izod impact test and the
Charpy impact test. They both involve measuring the loss in kinetic energy
of a swinging pendulum as it fractures a sample. The geometry of a Charpy
impact test is illustrated in Figure 14.17 Decrease in pendulum velocity after
breaking sample gives impact toughness. For a useful discussion of a Charpy
impact test, see https://www.youtube.com/watch?v=tpGhqQvftAo.

For most materials the fracture toughness is rate dependent, but same general
features for toughening materials often apply at both high and low fracture
rates. For example, high impact polystyrene is much tougher than polystyrene
at high strain rates, for the same general reasons outlined in Section 14.0.1.
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15 CASE STUDY: TRIBLOCK GELS

15 Case Study: Thermoreversible Gels from Tri-
block Copolymer Solutions

15.1 Introduction

Many of the principles of this course are illustrated by the behavior solutions
of acrylic triblock copolymers in higher alcohols. The specific molecular struc-
tures of the polymer and the solvent are shown in Figure 15.1 and consist of a
midblock of poly(n-butyl acrylate) (PnBA) between two blocks of poly(methyl
methacrylate) (PMMA). The value of χ for the PnBA/solvent system is less
than 0.5 for all temperatures of interest, but the χ for the PMMA/solvent sys-
tem has the following temperature dependence:

χ = 1.45− 0.0115T (15.1)

with T in ◦C.

The following points are illustrated by this example:

1. Polymers are soluble in solvents when χ < 0.5.

2. For χ > 0.5, the solvent content within the polymer can be obtained from
the chemical potential expression.

3. To understand the temperature dependence of the solubility you need to
know the temperature dependence of χ.

4. Polymer liquids have higher heat capacities than the corresponding
polymer glasses.

5. Calorimetry can be used to detect the enthalpy recovery peak from an
aged polymer glass.

6. Gelation occurs when the average functionality is ≈2.

7. Time-temperature superposition works when the structure does not
change appreciably with Temperature.

8. The viscosity is obtained by integrating G (t) or from the response at very
low frequencies.

From Eq. 15.1 we see that the value of χ characterizing the PMMA/solvent
interaction is greater than 0.5 for T < 83 ◦C. At temperatures above 83 ◦C the
PMMA and PnBA blocks are both in good solvent conditions, and the polymer
behaves as a normal polymer solution. At lower temperatures, however, the
PnBA midblock remains in good solvent conditions, but the PMMA endblocks
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(a)

Triblock Copolymer

(b)

Solvents

OH

(butanol)

OH

(ethyl hexanol)

Figure 15.1: Chemical structure of gel-forming triblock copolymer gels (a), and
the alcohols used as the solvents (b).
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Figure 15.2: Schematic representation of the temperature and concentration de-
pendence of the structure of the triblock copolymer solutions.

are no longer soluble. As a result these endblocks aggregate to form the micel-
lar structures illustrated schematically in Figure 15.2. As a solution is cooled,
χ increases and solvent is expelled from these aggregates. When sufficient sol-
vent has been expelled from the PMMA aggregates, they become glassy, and
the system behaves as a solid.

15.2 Thermoreversible Gelcasting of Ceramics

The transition from ’liquid-like’ to ’solid-like’ behavior as the temperature is
changes enable these materials to be used in a variety of applications, includ-
ing the ceramics processing application illustrated in Figures15.3 and15.4. In
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 Solid State

 
Gel Matrix (solvent + polymer)

PMMA polymer chain
PNBA polymer chain
PMMA polymer chain
 

PMMA polymer aggregate 

10 nm 10 nm

Figure 15.3: Schematic representation of the alumina particles dispersed within a
thermoreversible triblock copolymer gel.

Figure 15.4: Illustration of the thermoreversible gelcasting process.

this application ceramic particles are added to the triblock copolymer at a rel-
atively high volume fraction (around 50% by volume). The thermoreversible
nature of the triblock copolymer solution allows the suspension to be poured
into a silicone mold at high tempertures (typically ≈ 80 ◦C). When the system
is cooled to room temperature, the triblock copolymer forms a solid gel and the
material can be removed from the mold. A ceramic material with the shape of
the mold is obtained by letting the solvent evaporate from the suspension, and
firing the object at elevated temperature to burn off the polymer and sinter the
ceramic particles together.

15.3 Quantifying the Solid/Liquid Transition

The temperature dependence of the mechanical properties of the triblock
copolymer solutions are quantified by the frequency dependence of the stor-
age and loss moduli, G′ (ω) and G′′ (ω). It is conceptually simpler to think in
terms of the time-dependence of the relaxation modulus, G (t), which can be
written as a sum of exponential relaxations:
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G (t) = ∑
i

Gi exp (−t/τi) (15.2)

In the frequency domain, the values storage and loss moduli are given by the
following expressions:

G′ (ω) = ∑
i

Giτ
2
i ω2

1 + τ2
i ω2

(15.3)

G′′ (ω) = ∑
i

Giτiω

1 + τ2
i ω2

(15.4)

The most important thing for us is the viscosity, which we can obtain in terms
of the values of Gi and τi, or in terms of the loss modulus at very low frequen-
cies:

η = ∑
i

Giτi= lim
ω→0

G′′

ω
(15.5)

We generally obtain data as a master plot (where the frequency is multiplied
by the temperature shift factor, aT). In this case we obtain the temperature
dependence of the viscosity by multiplying by aT :

η = aT lim
aTω→0

G′′

aTω
(15.6)

We can also obtain an expression for the limiting modulus at high frequency
(or low temperature):

G0 = ∑
i

Gi (15.7)

Finally, we define an average relaxation time, τav in the following way:

τav =
η

G0
=

∑ Giτi

∑ Gi
(15.8)

Values of the storage and loss moduli for the triblock copolymer solutions are
shown in Figure 15.5, along with the values of Gi and τi used to fit the data.
The temperature dependent viscosity for a solution with φp = 0.15 is shown
in Figure 15.6, and the temperature dependent relaxation times for a variety of
solution concentrations are shown in Figure 15.7.
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Figure 15.5: a) Master curves for G′ and G′′ (symbols) with fits to Eqs.15.3 and15.4.
b) Values of Gi and τi used to fit the data from part a (the relaxation times, τi
are referred to by λi in the figure). The reference temperature (defined as the
temperature where aT = 1) is 65 ◦C for these data.

Figure 15.6: Temperature dependence of the viscosity for a triblock copolymer
solution with φp = 0.15. in 2-ethyl hexanol. The x’s represent the solvent viscosity.
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15.4 Glass Transition 15 CASE STUDY: TRIBLOCK GELS

Figure 15.7: Values of the average relaxation time, τav as a function of tempera-
ture. Data are included for φp = 0.05 (•) φp = 0.10 (�) φp = 0.15 (�) φp =
0.20 (N) φp = 0.25 (H) φp = 0.30 (©).

15.4 Characterizing the Glass Transition in PMMA domains

The glass transition is typically observed as step change in heat flow as a sam-
ple is cooled through the glass transition. In our case the PMMA domains
go through a glass transition during cooling, but the PMMA concentration is
so low that the glass transition is not clearly observed during cooling or when
when the sample is immediately reheated after cooling (see Figure 15.8). How-
ever, a large enthalpy peak is observed after the sample has been left to ’age’
at room temperature for a long time before reheating the sample. As shown in
Figure 15.9, the enthalpy peak gets larger and moves to higher temperature as
the aging time at room temperature is increased. This peak has the appearance
of a melting peak associated with crystallization, but in this case it arises from
the glassy PMMA domains.

The origins of the enthalpy peak observed during the aging experiments can
be understood by realizing that the glass transition separates an equilibrium,
liquid regime at temperatures above Tg from a non-equilibrium, glassy regime
at temperatures below Tg. At temperatures below the glass transition, the en-
thalpy content of the sample is higher than the equilibrium enthalpy content
defined by the extrapolation of the liquid behavior (the dashed line in Figure
15.10). As a result, the enthalpy slowly decreases toward this equilibrium line
as the sample is aged below the glass transition. The decrease in enthalpy
during this aging process is labeled as ∆Ha in Figure 15.10. When the sample
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Figure 15.8: Measured heat flow during cooling, immediate reheating, and reheat-
ing after room temperature storage for 130 days.

is reheated, the enthalpy increases with temperature according to the glassy
heat capacity, Cg

p. As a result the enthalpy content eventually crosses the equi-
librium line and becomes less than the equilibrium enthalpy content. At a
temperature somewhere just above Tg, the sample is able to equilibrate, and
the enthalpy increases by an amount ∆Hr in order to catch up to the equilib-
rium value. This is the enthalpy corresponding to the peaks in Figure 15.9. As
the aging time decreases, ∆Ha and ∆Hr both decrease, and the temperature at
which the enthalpy is recovered moves closer to Tg. The actual value of the
Tg can be estimated by measuring the area of the enthalpy recovery peak and
plotting against the location of this peak. Doing this for the data shown in
Figure 15.9 results in an estimate for Tg of the PMMA domains of 35 ◦C.

As a final check on all of this, we can see if it makes sense that the glass tran-
sition of the PMMA domains should be around 35 ◦C. The glass transition of
PMMA is about 125 ◦C, which is certainly a lot higher than the value of 35 ◦C
that we are claiming here. However, we need to remember that the PMMA
domains contain a lot of solvent, and this solvent will depress Tg significantly.
How much solvent do we expect there to be in the PMMA domains? From
Eq. 15.1 we obtain χ=1.05 at T = 35 ◦C. The relationship between χ and φs,
the solvent volume fraction in the PMMA cores of the micelles is obtained by
setting Np to ∞ and setting the solvent chemical potential (from EqH.43) to 0:

ln(φs) + 1− φs + χ (1− φs)
2 = 0

ln(1− φp) + φp + χφ2
p = 0

(15.9)

This equation needs to be solved numerically to obtain φs (or φp) from a speci-
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Figure 15.9: Dependence on the enthalpy recovery peak on the aging time.

Figure 15.10: Origins of the enthalpy recovery peak.
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Figure 15.11: Relationship between φp and χ obtained from Eq. 15.9.

fied value of χ. A simple MATLAB script used to do this is given in Section??.
A value of 1.05 for χ gives φs=0.289. Independent measures of the glass tran-
sition temperature of bulk PMMA samples with solvent loadings comparable
to this do in fact show measured glass transition temperatures close to 35 ◦C.
The relationship between χ and φp given by Eq. 15.9 is plotted in Figure 15.11.

15.5 Concentration Dependence of the Gel Modulus

Elasticity of the triblock copolymer solutions at low temperatures arises from
the fact that the middle, PnBA blocks of the copolymer can span different
PMMA aggregates, thereby linking the whole structure together. The PMMA
aggregates behave as physical crosslinks with a functionality given by the
number of midblocks that that bridge different aggregates. This functionality
is obtained by multiplying the aggregation number,i.e. the number of PMMA
endblocks in a single aggregate, by the probability f that a PnBA midlbock
spans two different PMMA aggregates (we also have to divide by two to ac-
count for the fact that there are two PMMA blocks on each triblock copoly-
mer molecule). Aggregation numbers depend on the polymer concentration,
and are typically very large, as illustrated in Figure 15.12. For high molecular
weight polymers the percolation threshold, where the average functionality of
a micelle is 2, is quite low, corresponding to φp ≈ 0.035. Above this percolation
threshold, the shear modulus is given by the following expression:

G0 = νkBT
D2

R2
0

(15.10)

Here D is the average distance between micelle cores, which can be measured
experimentally by x-ray scattering. We also have R0 = N1/2a, where N is
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Figure 15.12: Concentration dependence of aggregation number for three differ-
ent PMMA-PnBA-PMMA block copolymer solutions. The three data sets corre-
spond to three differnt triblock copolymers, with different molecular weights for
the PMMA and PnBA blocks.

the midblock degree of polymerization and a is the statistical segment length
for the midblock. The quantity ν is the conentration of ’load bearing strands’,
which in this case is the concentration of triblock copolymer chains with bridg-
ing midblocks:

ν =
f φpρNav

M

where M is the molecular weight of the triblock copolymer molecule and ρ
is the polymer density. The modulus is strongly concentration dependent be-
cause of the concentration dependence of the bridging fraction, f , which is
shown in Figure 15.13. Measured and calculated values of G0 are shown in
Figure 15.14.

15.6 Hydrogels: Water as the Solvent

As a final illustration of what can be done with these sorts of triblock
copolymer gels, we consider materials where the midblock is replaced with
poly(acrylic acid), a polymer that is water soluble at neutral pH. The structure
of these polymer is shown in Figure 15.15. This figure also shows a scheme for
forming gels from these materials. Instead of adjusting χ between the solvent
and the PMMA endblocks by changing temperature, we do this by adding a
small amount of water to the solvent (which is initially dimethyl sulfoxide).
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Figure 15.13: Concentration dependence of the network functionality.

Figure 15.14: Calculated and experimental concentration dependence of the net-
work functionality.
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Figure 15.15: Formation and ionic crosslinking of PMMA-PMAA-PMMA triblock
copolymer hydrogels (PMAA = poly(methacrylic acid).

Figure 15.16: Master plots of storage and loss moduli for PMMA-PMAA-PMMA
triblock copolymer gels in DMSO/water mixtures, for water contents within the
solvent of 4, 6 and 8 wt. %.

Addition of just a small amount of water increases the effective value of χ
characterizing the solvent/PMMA interaction. The result is that the relaxation
times for the triblock copolymer solution increase dramatically, as illustrated
by the rheological data in Figure 15.16. The effects of solvent composition can
be illustrated by introducing a shift factor, as that depends on the composition
of the solvent. It’s use is illustrated in Figure 15.17. The viscosity at a given
temperature is proportional to as, so we see that small increases in the water
content of the solvent result in an increase in the solution viscosity by several
orders of magnitude. This occurs because water induces the aggregation of
PMMA blocks in to discrete domains, just as reducing temperature did for the
case where alcohol was used as the solvent.

A useful feature of the hydrogels formed from the triblock copolymers with
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Figure 15.17: ’Super Master’ plot of the data from Figure.

Figure 15.18: Elastic modulus for triblock copolymer gels that have been ionically
crosslinked to varying degrees.

the poly(acrylic acid midblocks) is that the properties can be changed dramat-
ically by immersing the gels in solutions containing divalent cations like Ca 2+

or Zn 2+. These ions add additional crosslinks to the material, increasing the
modulus by a factor of 100 or more (Figure 15.18). The materials also have high
toughness, and can be extended to several times their original length prior to
failure (Figure 15.19).
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Figure 15.19: Tensile stress/strain curves for ionically crosslinked triblock copoly-
mer gels.
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Figure 16.1: Linear creep model.

16 Creep Behavior

In a creep experiment we apply a fixed stress to a material and monitor the
strain as a function of time at this fixed stress. This strain is generally a function
of both the applied stress, σ and the time, t, since the load was applied.

16.1 Creep in the Linear Viscoelastic Regime

In the linear viscoelastic regime the strain is linearly dependent on the applied
stress, σ, allowing us to define the creep compliance function, J (t), in the
following way:

J (t) ≡ e (σ, t)
σ

(16.1)

An example of the sort of spring/dashpot model used to describe creep behav-
ior of a linear viscoelastic material is shown in Figure 16.1. The model consists
of a single Kelvin-Voigt element in series with a spring and a dashpot. In this
example the strain obtained in response to a jump in the stress from 0 to σ at
t = 0 can be represented as the sum of three contributions: e1, e2, and e3:

e (σ, t) = e1 (σ) + e2 (σ, t) + e3 (σ, t) (16.2)

In this equation e1 corresponds to an instantaneous elastic strain, e2 is the re-
coverable viscoelastic strain and e3 is the plastic strain, with the three different
components illustrated in Figure 16.2, and given by the following expressions:

e1 = σ
E1

e2 = σ
E2

[1− exp (−t/τ2)]

e3 = σ
η3

t
(16.3)
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Figure 16.2: Strain contributions in a nonlinear creep model.

In many cases we are interested in situations where the strain does not increase
linearly with the applied stress. The yield point is one obvious example of
nonlinear behavior. In ideally plastic system, we only have elastic strains for
stresses below the yield stress, but above the yield stress the strains are much
larger.

16.2 Nonlinear Creep: Potential Separability of Stress and
Time Behaviors

The situation becomes much more complicated in the nonlinear regime, where
it is no-longer possible to define a stress-independent creep compliance func-
tion. In general the strain in the nonlinear regime is a complex function of
both the time and the applied stress. In some cases, however, we can separate
the stress dependence from the time dependence and write the stress in the
following way:

e (σ, t) = f (σ) J (t) (16.4)

If this sort of separability holds, then it is possible to make predictions of creep
based on limited experimental data. The procedure is illustrated in Figure 16.3
and involves the following steps:

1. Measure e(t) at different different stresses (σ1 and σ2) in Figure 16.3. If the
ratio e (σ1, t) /e (σ2, t) is constant for all value of t, then the separability
into stress dependent and time-dependent functions works (at least for
these two stress levels). These experiment enable us to obtain the time
dependent function J (t).

2. To get the stress-dependent function, f (σ), it is sufficient to make a series
of measurements at a single, experimentally convenient time.
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Figure 16.3: Creep response of a material with separable dependencies on stress
and time.

16.3 Use of empirical, analytic expressions

The procedure outlined in the previous Section only works if the ratio
e (σ1, t) /e (σ2, t) is independent of the time. This is not always the case. How-
ever, it is often possible to fit the data to relatively simple models. These mod-
els are similar to the spring and dashpot models of Section??, but a linear stress
response is not necessarily assumed. One example corresponds to a nonlinear
version of the linear model shown in Figure 16.1. As with the linear model, the
strain components are assumed to consist of an elastic strain, e1, a recoverable
viscoelastic strain, e2 and a plastic strain, e3. However, we now use nonlinear
elements to describe e2 and e3, with these two strain components given by the
following expressions:

e1 = σ
E1

e2 = C1σn [1− exp (−C2t)]
e3 = C3σnt

(16.5)

Not that the material behavior is specified by 5 constants,E, C1, C2, C3, n, that
we need to obtain by fitting to actual experimental data. For a linear response
(n = 1) we can make a connection to the spring and dashpot models described
earlier. In this case the behavior of the material is represented by the model of
linear viscoelastic elements shown in Figure 16.4, and the constants appearing
in Eq. 16.5 correspond to the following linear viscoelastic elements from Figure
16.1:

E = E1
C1 = 1/η2

C2 = E2/η2
C3 = 1/η3

(16.6)

This is just one possible nonlinear model that can be used. An additional non-
linear element is obtained from Eyring rate theory, and is described in the fol-
lowing Section.
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Figure 16.4: Nonlinear creep model.

Energy

Deformation

Figure 16.5: Effect of an applied stress on a thermally activated creep process.

16.4 Eyring Model of Steady State Creep

The Eyring rate model of creep is a very general model aimed at understand-
ing the effect of the stress on the flow properties of a material. It can be used
to describe a very wide range of materials, and is based on the modification of
the activation energy for material for flow by the applied stress.

16.4.1 Material Deformation as a Thermally Activated Process

Our starting point is to realize that material deformation is a thermally ac-
tivated process, meaning that there is some energy barrier that needs to be
overcome in order for deformation to occur. The general idea is illustrated in
Figure 16.5. The stress does an amount of work on the system equal to σv,
where σ is the applied stress and v is the volume of the element that moves
in response to this applied stress. The quantity v is typically referred to as an
activation volume. The net result of the application of the stress is to reduce
the activation barrier for motion in the stress direction by an amount equal
to vσ/2 and to increase the activation barrier in the opposite direction by this
same amount.

Eyring Rate Law We can develop an expression for the strain rate by rec-
ognizing that the net strain rate is given by the net frequency of hops in the
forward direction. The frequency of hops in the forward and reverse direc-
tions, which we refer to as f1 and f2, respectively, are given as follows:

f1 = f0 exp
(
−Q∗ − vσ/2

kBT

)
= exp

(
− Q∗

kBT

)
exp

(
vσ

2kBT

)
(16.7)
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Figure 16.6: Behavior of the hyperbolic sine function.

f2 = f0 exp
(
−Q∗ + vσ/2

kBT

)
= exp

(
− Q∗

kBT

)
exp

(
−vσ

2kBT

)
(16.8)

The net rate of strain is proportional to f1− f2, the net frequency of hops in the
forward direction:

de
dt

= A ( f1 − f2) = A f0 exp
(
− Q∗

kBT

) [
exp

(
vσ

2kBT

)
− exp

(
−vσ

2kBT

)]
(16.9)

Where A is a dimensionless constant. Using the following definition of the
hyperbolic sine function (sinh):

sinh (x) =
(
ex − e−x) /2 (16.10)

we obtain the following expression for the strain rate:

de
dt

= 2A f0 exp
(
− Q∗

kBT

)
sinh

(
vσ

2kBT

)
(16.11)

Before considering the behavior of the Eyring rate equation for high and low
stresses, it is useful to consider the overall behavior of the sinh function, which
is illustrated in Figure 16.6. Note that for small x, sinh x ≈ x, and for large x,
sinh (x) ≈ 0.5 exp (x).

Low Stress Regime In the low-stress regime we can use the approximation
sinh (x) ≈ x to get the following expression, valid for vσ� kBT.
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de
dt

=
A f0vσ

kBT
exp

(
− Q∗

kBT

)
(16.12)

In this regime the strain rate is linear in stress, which means that we can define
a stress-independent viscosity from the following expression:

de
dt

=
σ

η
(16.13)

Comparing Eqs.16.12 and16.13 gives the following for the viscosity:

η =
kBT
A f0v

exp
(

Q∗

kBT

)
(16.14)

So the Eyring theory reduces to and Arrhenius viscosity behavior in the linear,
low-stress regime.

High Stress Regime In the high-stress regime, we use the fact that sinh (x) ≈
exp(x)

2 for large x to obtain the following expression for vσ� kBT:

de
dt

= A f0 exp
(
− Q∗

kBT

)
exp

(
vσ

2kBT

)
(16.15)

Equivalently, we can write the following:

de
dt

= A f0 exp
(
−Q∗ − vσ/2

kBT

)
(16.16)

The effective activation energy decreases linearly with increasing stress, giving
a very nonlinear response. In practical terms the activation volume is obtained
by plotting ln (de/dt) vs. σ, with the slope being equal to v/2kBT.

Physical significance of v Eyring rate models are most often used for poly-
meric systems. In this case the activation volume can be viewed as the volume
swept out the portions of a polymer molecule which move during a fundamen-
tal creep event, as illustrated schematically in Figure 16.7. A large activation
volume means that cooperative deformation of a large region of the material is
required in order for the material to flow. Low values of the activation volume
indicate that the deformation is controlled by a very localized event, corre-
sponding, for example, to the rupture of a single covalent bond.
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Figure 16.7: Illustration of the activation volume.

Figure 16.8: Nonlinear creep model, including an Eyring rate element for the
steady-state creep component.

16.4.2 Additional Nonlinear Dashpot Elements

Nonlinear elements based on the Eyring rate model can also be included in
our spring and dashpot models of viscoelastic behavior. For example, we can
use an Eyring rate model to describe the stress dependence of the steady state
creep of a nonlinear model, in which case Figure 16.4 gets modified to Figure
16.8. The steady state component is specified by the prefactor A f0 the activa-
tion energy Q∗, and the activation volume, v.
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17 495 PROBLEMS

17 495 Problems

Notes:

• If you use MATLAB or Python to solve any of these problems, include
the code that you used.

17.1 Course Organization

1) Send an email to Prof. Shull (k-shull@northwestern.edu) and Qihua
(r6p5t6@u.northwestern.edu) with any thoughts that you have about topics
for your journal club presentation at the end of the quarter. Also, make a
suggestion for a ’soft material of the day’ for Prof. Shull to mention at the
beginning of lecture.

17.2 The Stress Tensor

2) Consider the following stress tensor:

σij =

 4 3 0
3 1 2
0 2 6

 x106 Pa

(a) Calculate the stress tensor for coordinate axes rotated by 30◦ about the z
axis (the 3 axis).

(b) Repeat the calculation for a 30◦ rotation around the x axis (the 1 axis).

(c) Calculate the three principal stresses.

(d) Calculate the maximum shear stress in the sample.

3) Consider the following stress tensor:

σij =

 −2 1.4 0
1.4 6 0
0 0 2

 x106 Pa

(a) Draw a Mohr circle representation of the stress contributions in the xy
plane

(b) What are the three principal stresses?

(c) Show that the the sum of the diagonal components from original stress
tensor is equal to the sum of the three principal stresses. What is the
hydrostatic pressure for this stress state?
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17.3 Strains

4) An engineering shear strain of 1 (100%) is applied to a rubber cube with
dimensions of 1cm×1cm×1cm. Young’s modulus for the rubber sample is 106

Pa, and you can assume it is incompressible.

(a) Sketch the shape of the object after the strain is applied, indicating the
dimensions quantitatively.

(b) On your sketch, indicate the magnitude and directions of the forces that
are applied to the object in order to reach the desired strain.

(c) Calculate the 3 principal extension ratios characterizing the final strain
state.

17.4 Typical Moduli

5) Calculate the sound velocities for shear and longitudinal waves travel-
ing through the materials listed in the ’Representative Moduli’ table from the
course text.

17.5 Matrix Representation of Stress and Strains

6) For an isotropic system there are only two independent elastic constants,
s12 and s11. This is because if properties are isotropic in the 1-2 plane, the com-
pliance coefficient describing shear in this plane, s44, is equal to2 (s11 − s12).
We can use the Mohr’s circle construction to figure out why this equality must
exist.

(a) Start with the following pure shear stress and strain states:

σ =

 0 σ12 0
σ12 0 0
0 0 0

 ; e =

 0 e12 0
e12 0 0
0 0 0


Use the matrix formulation to obtain a relationship between σ12 and e12
in this coordinate system.
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(b) Rotate the coordinate system by 45◦ so that the stress state looks like this:

σ =

 σ
p
1 0 0
0 σ

p
2 0

0 0 0

 ; e =

 ep
1 0 0
0 ep

2 0
0 0 0


Use the Mohr’s circle construction to write these principal stresses and
strains in terms of σ12 and e12. Then use the matrix formulation to obtain
an expression betweenσ12 ande12 in this rotated coordinate system.

(c) For an isotropic system, the relationship between σ12 ande12 should
not depend on the orientation of the coordinate axes. Show that the
only to reconcile the results from parts a and b is for s44to be equal to
2 (s11 − s12).

7) Consider a material with orthorhombic symmetry, with different prop-
erties along the 1, 2 and 3 directions. Young’s moduli are measured along the
3 different directions, and we obtain the following results:

E1 = 5.5 GPa; E2 = 2.0 GPa; E3=3GPa

(a) Is this material a metal, a ceramic or a polymer? How do you know?

(b) The compliance matrix, s, is a symmetric 6x6 matrix as shown below. For
this material, cross out all of the elements that must be zero.

s11 s12 s13 s14 s15 s16
s12 s22 s23 s24 s25 s26
s13 s23 s33 s34 s35 s36
s14 s24 s34 s44 s45 s46
s15 s25 s35 s45 s55 s56
s16 s26 s36 s46 s56 s66


(c) What are the values of s11, s22 and s33 for this material?

(d) A value of 0.38 is obtained for Poisson’s ratio is measured in the 1-2 plane
by applying a tensile stress in the 1 direction and measuring the strains
in the 2 direction. What is the value of s12 for this material?

8) Consider a material with elastic constants given by the following com-
pliance matrix:

sij =


14.5 −4.78 −0.019 0 0 0
−4.78 11.7 −0.062 0 0 0
−0.019 −0.062 0.317 0 0 0

0 0 0 31.4 0 0
0 0 0 0 61.7 0
0 0 0 0 0 27.6

GPa−1
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(a) Describe the symmetry of this material, and explain your reasoning.

(a) What is the highest value for Young’s modulus that you would expect
for this material? What direction does it correspond to?

(b) Calculate the value of Poisson’s ratio obtained from an experiment where
the materials is pulled in the 3 direction and change in sample width in
the 2 direction is measured.

9) In developing an expression for E` it is actually easiest to use the stiff-
ness matrix, since the only nonzero strain is the normal strain in the direction
of compression. If this is compression is in the 1 direction, then E` = σ11/e11.
Use this information, and the information provided in the text about the rela-
tionship between [s] and [c] to get an expression for E` in terms of s11 and s12,
and show that E` = Kb + 4G/3

17.6 Rubber Elasticity

10) Consider the data below for the temperature dependence of the elastic
modulus for an epoxy system (data from Polymer, 221, 123560 (2021)). (For our
purposes you can assume that the value plotted for E′ is Young’s modulus, and
that Poisson’s ratio for the materials is 0.5).

(a) Use the value where E′ is a minimum to estimate the number aver-
age molecular weight between crosslinks for the material labeled PACM
(blue circles) and D400-100 (purple diamonds).
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(b) The two materials from the previous section represent the reaction of a
stoichiometrically balanced mixture of epoxy with a diamine crosslinker.
From the paper cited above, compare the molecular weights of these dif-
ferent components and comment on the values that you calculated from
part 1. Do your numbers make sense?

(c) Is the increase in modulus at the higher temperatures consistent with the
theory of rubber elasticity? To answer this question, calculate the frac-
tional change in modulus that you would expect between 80 ◦C and 200
◦C. Compare this to the actual modulus ratio for the D400-100 sample.

17.7 Viscoelasticity

11) The following questions relate to the DGEBA-PACM/Jeffamine system
that was introduced in class.

(a) For the D230-based system, make a plot comparing the temperatures
where the slope in log(E′) vs. temperature is maximized, and also the
temperature where tan(δ) is maximized. Comment on the relationship
between these two temperatures.

(b) How many moles of D230 need to be combined with one mole of DGEBA
to make a stoichiometric mixture? (no PACM added)

(c) How many grams of D230 need to be combined with one mole of DGEBA
to make a stoichiometric mixture? (again assume that no PACM is added.
Note that 230 in this case is the molecular weight of the Jeffamine in g/-
mole. You’ll need to calculate or look up the molecular weight of DGEBA
to do this DGEBA stands for diglycidyl ether of bisphenol A, but DGEBA
is pretty standard abbreviation for it).

(d) What happens to the amount of jeffamine you need to add to get a stoi-
chiometric ratio as the molecular weight of the jeffamine is increased as
you move from D230 to D400 to D2000 to D4000? (a qualitative answer
is okay - you don’t need to be quantitative for this. Continue to assume
that no PACM is added).

(e) What happens to the glass transition temperature for samples with-
out any PACM as the molecular weight of the Jeffamine increases from
230g/mole to 400 g/mole? Describe how you obtained Tg from the data
shown in the lecture. Also describe why the trend in Tg is as you de-
scribe.

(f) Mixtures with DGEBA and an equal amount of jeffamine and PACM be-
come cloudy as the molecular weight of the jeffamine increases. Why is
this?
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12) Consider a cylindrical metal bar with a density of 7.6 g/cm3, a diame-
ter of 1 cm and a length of 10 cm. It is suspended from a polymer fiber with a
length, `, of 30 cm and a diameter of 1 mm.

Polymer Wire

Inertial Mass

(a) Suppose the fiber is perfectly elastic, with a shear modulus 109 Pa. Cal-
culate the natural frequency of the system if the bar is rotating back and
forth, causing the fiber to twist.

(b) Suppose the fiber is viscoelastic, with G′ at the frequency calculated from
part a equal to 109 Pa, and with G′′ = 107 Pa. How many periods of the
oscillation will take place before the magnitude of the oscillation decays
by a factor of e (2.72)? Note: the rotational moment of inertia for the
suspended metal bar in this geometry is m`2/12, where m is the total
mass of the bar and ` is its length.

13) As mentioned in class, the Maxwell model, with a viscous element and
an elastic element in series with one another, is the simplest possible model for
a material that transitions from solid-like behavior at short times, to liquid-like
behavior at long times. For a shear geometry we refer to the elastic element as
G0 and the viscous element as η.

(a) For what angular frequency are the storage and loss moduli equal to one
another for a material that conforms to the Maxwell model? Express you
answer in terms of the relaxation time, τ.

(b) Suppose the material is oscillated at a frequency that is ten times the
frequency you calculated from part a. Does the material act more like a
liquid or a solid at this frequency? Describe your reasoning.

(c) Calculate the values of G′ and G′′ at the frequency from part b, and cal-
culate the phase angle, φ describing the phase lag between stress and
strain in an oscillatory experiment. Note that the following expression
relates φ, G′ and G′′:
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tan φ =
G′′

G′

Does this phase angle make sense, given your answer to part b? Com-
pare your value of φ to the values you expect for a perfectly elastic solid
and a perfect liquid.

14) The following stress and strain response are observed for a material
during the initial stages of a creep experiment.

1
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0.06

10 20 30 40

(a) Draw a spring/dashpot model that describes this behavior. Label mod-
uli and viscosities as quantitatively as possible.

(b) A stress relaxation test (strain shown below) is performed on the same
material. On the stress axis below, draw the stress response that you
expect for the model you have drawn from part a.

1
2
3
4
5

0.01
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10 20 30 40

15) A tensile experiment is performed on a viscoelastic material, with the
tensile strain (e) and tensile stress (σ) exhibiting the time dependence shown
in the following figure:
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(a) Draw a spring and dashpot model that would give this response. Give
values (modulus or viscosity) for each element in your model (the values
of these quantities are not expected to be exact).

(b) Suppose the sample were vibrated in tension at a frequency of 1000 Hz
(cycles per second). Estimate the value of |E∗| (magnitude of the complex
shear modulus) that you would expect to obtain.

(c) For what range of frequencies do you expect the loss modulus (E′′) to
exceed the storage modulus (E′) for this material?

16) Can creep of a glass window by viscous flow give measurable changes
in sample dimensions over a very long period of time? To sort this out, do the
following:

(a) Estimate the stress at the bottom of a very tall pane of window glass, due
to the weight of the window itself. Look up the density of silica glass,
and a height of the window that makes sense (choose a big one).

(b) Estimate the viscosity that would be needed to give a measurable change
in sample dimensions after 400 years.

(c) Using the data below, does it make sense to you that observable flow
could noticeably change the dimensions of the window? (You’ll need
to make some assumptions about how the viscosity will extrapolate to
room temperature.
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17) In the text we use data from the poly(t-butyl acrylate) (PTBA) system to
illustrate the concept of time-temperature superposition. This problem steps
through this exact same process but with a different data set. You can use
any software that you want for this, but the best procedure is to adapt the
Python code for the PTBA system, which you can down load from msec-
ore.northwestern.edu/331/python/ptba_master_curve.py. The PTBA data
can be found at msecore.northwestern.edu/331/data/ptbadata.xlsx, but we
want to repeat the same procedure for poly(2-vinyl pyridine) (PVP), using the
data found at msecore.northwestern.edu/331/data/pvpdata.xlsx.

(a) Plot the frequency dependence of |G∗| and φ for the each of the 5 tem-
peratures provided in the data set.

(b) Find shift factors that give well-superposed master curves for |G∗| and
φ when plotted against ωaT . Plot the master curves for both quantities,
and show your plot of aT vs. Temperature. Use 200 ◦C as the reference
temperature for which aT = 1.

(c) Fit the aT data to the Vogel-Fulcher-Tamman equation. What values do
you get for T∞ and B. Compare T∞ to the glass transition temperature of
100 ◦C, and compare the value of B to the value of B obtained from the
PTBA sample.

(d) Describe how your plot of aT vs. temperature would look if you used
130 ◦C as the reference temperature (you do not need to make a separate
plot).

(e) Plot η0, the zero-shear viscosity for the PVP sample as a function of tem-
perature.

17.8 Contact Mechanics

18) Consider the contact of a flat rigid punch with a thin elastic layer, as
shown schematically below:
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2a

rigid substrate

rigid
cylinder

compliant
layerh

Suppose the compliant layer is incompressible gel (ν = 0.5), with a Young’s
modulus, E, of 104 Pa. The critical energy release rate for failure at the
gel/punch interface is 0.1 J/m2. The punch radius, a, is 3 mm.

(a) What is the tensile force required to separate the punch from the layer if
the layer is infinitely thick?

(b) What is the stress intensity factor, KI , just prior to detachment of the
punch from the surface?

(c) How close to the punch edge to you need to be for the tensile stress at
the punch/layer interface to be equal to the modulus of the layer?

19) Describe in qualitative terms what happens to the following quantities
as the thickness, h, of the compliant layer from the previous problem decreases:

(a) The overall compliance of the system.

(b) The load required to detach the indenter from the substrate.

(c) The displacement at which the indenter detaches from the substrate.

(d) The shape of the tensile stress distribution at the punch/substrate inter-
face.

17.9 Nanoindentation

20) Commercial nanoindenters are generally not suitable for the charac-
terization of soft materials. To understand why this is the case, consider the
following indentation data from the Hysitron web site (this is for the same
instrument that Northwestern has in the NUANCE facility):
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(a) If the data in this figure are obtained with a rigid spherical indenter of
radius R, use the data from this figure to estimate the value of R. Assume
that the material is being indented elastically and that adhesion can be
neglected. (You’ll need to look up mechanical property data for silicon).

(b) Suppose that the material is replaced by an elastomer with a modulus
of 106 Pa. What value of R would need to be used to obtain the same
Force displacement curve for this much softer material? (Assume that
the effects of adhesion can eliminated by performing the indentation in
a suitable liquid).

21) Suppose an elastomeric sphere with a radius of 1 mm and a reduced
modulus, E∗, of 106 Pa is placed on a flat, rigid substrate. Suppose also that
the adhesion between the sphere and the substrate is characterized by a critical
energy release rate of 0.05 J/m2, independent of the crack velocity or direction
of crack motion. Calculate the radius of the circular contact area that develops
between the elastomer and the surface, assuming that there is no external load
applied to the sphere (apart from it’s weight).

22) Obtain the hardness and elastic modulus from the following nanoin-
dentation curve, obtained from a Berkovich indenter:
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17.10 Fracture Mechanics

23) The stress fields in the vicinity of a crack tip in a material are deter-
mined by the distance, d, from the crack, and the polar angle θ, defined in the
following diagram.

y

x

 

σ0

σ0

(a) For a fixed value of d, plot the behavior of σxx, σyy and σxy for a mode I
crack as a function of θ.

(b) What happens to the stresses for θ = 180◦? Why does this make sense?

(c) A mode I crack will travel in the direction for which the normal stress
acting across the crack surfaces is maximized. What direction is this?

24) As a crack advances, what happens to the stiffness of the cracked body?
What happens to the compliance?
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25) A set of double cantilever beam adhesion test specimens was fabri-
cated from a set of aluminum alloy samples. The geometry as as shown below:

Suppose each of the two beams has a thickness (t) of 10 mm, a width (w) of 20
mm and a length of 80 mm. The double cantilever beam sample was produced
by using an adhesive to glue the two beams together. Assume the precrack
with a length, ac, of 10 mm. The critical energy release rate for the adhesive is
65J/m2.

(a) Calculate the values of the tensile load, P, and the displacement, ∆,
where the crack starts to propagate.

(b) In a load-controlled experiment, Pt is held constant once the crack starts
to propagate, and in a displacement controlled test ∆ is held constant
once the crack starts to propagate. From the relationship between G and
Pt, ∆ and a, describe why the load controlled experiment results in un-
stable crack growth, but the displacement controlled experiment results
in stable crack growth.

(c) From your answer to part b, describe how you would design an experi-
ment where you measured the energy release rate required to propagate
the crack at a specified velocity.

26) Describe the difference between a crack and a craze? How is the maxi-
mum width of a craze related to Gc and KIC?

27) What is a Charpy impact test conducted, and what does it measure?

28) Silicones containing resin fillers are used as an encapsulant materials
in light emitting diodes (LEDs) in order to protect the electronics from harsh
environments and to aid in heat dissipation. Near the surface of the electronic
components, temperatures can go as high as200 ◦C for extended time periods.
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Figure 17.1: High dynamic mechanical contrast is important

(a) Given that a high dynamic mechanical contrast is desirable in creating a
soft material with high fracture toughness, what would you suggest as
a design criteria in order to maintain high dynamic mechanical contrast
at high temperatures? (Hint: think about the role of the Tg of the matrix
and filler content.)

(b) Thermal mismatch at the interface between the encapsulant and elec-
tronic can lead to residual stresses that promote crack propagation. In
assessing the performance of the encapsulant at the interface, should a
failure stress or a failure strain criteria be used? Why?

(c) From a thermal management and mechanics perspective, why do you
think a soft encapsulant (e.g. silicone) will be more preferable over a
hard encapsulant (e.g. glass)?

17.11 Weibull Statistics

29) A set of glass rods with a Weibull modulus of 30 are fractured in a
uniaxial tensile test. The stress at which 63% of the samples fracture is 100
MPa.

(a) What is the maximums stress if you want to make sure that less than one
in 100 rods fail? (Note that 1/e is 0.37).

(b) What is the maximums stress if you want to make sure that less than one
in 106 rods fail?

(c) What does the stress need to be to get less than 1 failure in106 if the
Weibull modulus is 10 instead of 30?

30) What determines the value of the Weibull modulus in a brittle mate-
rial?

31) A brittle material with a specified geometry fails with a 50% probability
at a tensile stress of 100 MPa. From the failure statistics, it is determined that
the Weibull modulus for this material is 40. What fraction of these materials
will fail at a tensile stress of 70 MPa?
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17.12 Yield Criteria

32) A cube of material is loaded triaxially resulting in the following prin-
cipal stresses at the point

of plastic yielding: σ
p
1 =140 MPa, σ

p
2 =20 MPa, and σ

p
3 =35 MPa.

(a) What is the shear strength of the material according to the Tresca yield
criterion?

(b) If the the value of σ
p
3 were increased to 70 MPa, how does this change

your result? Explain.

33) The tensile yield stress of a materials is measured as 45 MPa by a uni-
axial tensile test.

(a) What will the shear stress of the material by if the materials yields at a
specified value of the Tresca stress?

(b) Now calculate the same quantity (shear yield stress) if the material yields
at a specified value of the Von Mises stress.

(c) Suppose the material is a glassy polymer like Plexiglas, and Tresca yield
stress is obtained from a uniaxial compression experiment and from a
uniaxial tensile experiment. Which of these experiments to you expect to
give the largest Tresca yield stress?

34) What is the effect of the resolved normal stress on the yield behavior
of crystalline metals and ceramics? What about polymers? Describe any dif-
ferences between the two cases.

35) A sample of pure iron has a uniaxial tensile yield strength of 100 MPa.
Assume that the yield behavior is described by the Von Mises yield criterion.

(a) What do you expect for the yield strength of the material in a state of
uniaxial compression?

(b) What will the yield strength be under a stress state of pure hydrostatic
pressure?

(c) What is the shear yield strength of the material.
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36) Consider the following two stress-strain curves obtained from a glassy
polymer material. In these plots σt is the true stress and λ is the extension ratio
(1+e, wheree is the tensile strain).

(a)
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(a) Sketch the behavior of the engineering stress vs extension ratio that you
expect for each of these samples in a uniaxial tensile test. Be as quantita-
tive as possible. Briefly describe why you drew the curves the way you
did.

(b) Which of these samples can be cold drawn? What value do you expect
for the draw ratio? (The plastic strain in the drawn region of the sample)?

(c) Suppose the cross sectional area of each sample is 1 cm2. What is the
maximum load that the sample will be able to support prior to failure
for each of the two samples?

37) Consider a material with the following true stress vs. engineering
strain behavior, measured in uniaxial extension:
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(a) Suppose the cross sectional area of this material is 1 cm2. Calculate the
maximum force that this material would be able to support prior to fail-
ure.

(b) Will this material form a stable neck? If so, what is the characteristic
strain in the necked region?
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38) The following stress tensor describes the state of stress of a material at
its yield point:

σ =

 0 3 0
3 0 0
0 0 −5

MPa

Suppose the same material is subjected to stress state of simple shear. At what
value of the applied shear stress do you expect yielding to occur, assuming
that the material obeys a Tresca yield criterion.

17.13 Nonlinear Viscoelasticity and Creep

39) A step stress (0 for t<0, σ for t>0) is applied to a solid which can be
modeled by the following combination of linear springs and dashpots:

E

E1

2

1
e

2e
3

e

(a) This model is useful because it includes a non-recoverable creep compo-
nent, a recoverable time dependent creep component, and an instanta-
neous, recoverable strain.

i Identify the element (or combination of elements) in the above
model which is associated with each of these three contributions
to the strain.

ii Write down the expression for the total strain, e(t), after the impo-
sition of the step increase in stress.

iii Suppose the stress is applied for a long time, so that the strain is in-
creasing linearly with time. At some time, t′, the stress is removed.
Derive an expression for the change in strain after the stress is re-
moved.

(b) This model has been applied to creep data for oriented polyethylene at
room temperature. Model predictions were compared to data obtained
from samples of high molecular weight (High M) and low molecular
weight (Low M). Both samples were drawn to the same draw ratio. The
following values of E1, E2, η2 and η3 were obtained from experimental
data:
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Sample σ (GPa) E1 (GPa) E2 (GPa) η3 (GPa-s) η2 (GPa-s)
Low M 0.025 17.4 33.5 1.8x105 4300
Low M 0.05 13.6 35.6 6.3x104 5000
Low M 0.1 17.7 26.4 3.1x104 2200
Low M 0.15 17.7 26.5 2.6x104 2300
Low M 0.2 16.4 26.8 1.2x104 2000
High M 0.1 18.3 31.9 3.1x106 8.7x104

High M 0.15 16.6 21.3 1.7x106 7.3x104

High M 0.2 15.8 32.7 7.7x105 3x104

High M 0.3 25.4 39.1 4.8x104 2800
High M 0.4 25.0 43 3x104 3000
High M 0.5 21.7 46 2.5x104 5000

From the values of η3 given in this table, determine the stress depen-
dence of the steady state creep rate. From this stress dependence, calcu-
late the activation volume for non-recoverable creep in the high and low
molecular weight samples, and compare these values to one another.

17.14 Polymer Swelling

40) Rheological data is obtained for some polymers and we obtain the fol-
lowing:

We know that we can obtain the average molecular weight between crosslinks
from these data. We can also obtain this information from swelling experi-
ments (at least approximately). To see if this is feasible in this case, calculate
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the amount of swelling you would expect for the PACM and D400-100 poly-
mers if they are immersed in toluene. Assume χ=0.4 and a density of 1 g/cm3

for the polymer. Note that the swelling theory uses a degree of polymerization
between crosslinks, which you can take as the volume of a network strand di-
vided by the solvent volume (you’ll need to look up the density for toluene
somewhere).
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'mer'

Figure A.1: Schematic representation of a polymer

A Synthetic Polymers

Most of this book is devoted to synthetic polymers because of their widespread
use and importance, and because they illustrate many of the key concepts that
are relevant to natural polymers and other soft materials. We begin with a ba-
sic introduction to the synthesis of polymeric materials, and the z component
is between properties of these materials. We conclude with some examples of
soft materials made up of building blocks that are held together by relative
weak forces.

A.1 What is a Polymer

A polymer is a large molecule made from many small repeat units or ’mers’.
There is an inherent anisotropy at the molecular level because both strong and
weak bonding interactions are important:

• Strong covalent bonds are formed within a molecule (between ’mers’).

• Weak Van der Waals or hydrogen bonding are formed between
molecules, and cause the materials to condense into a solid or liquid
phase.

A.2 Classification Scheme

Crystallization and glass formation are the two most important concepts un-
derlying the physical properties of polymers. Polymers crystallize at tempera-
tures below Tm (melting temperature) and form glasses at temperatures below
Tg (glass transition temperature). All polymers will form glasses under the
appropriate conditions, but not all polymers are able to crystallize. The classi-
fication scheme shown in Figure A.2 divides polymeric materials based on the
locations of Tg and Tm (relative to the use temperature, T) and is a good place
to start when understanding different types of polymers.
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Polymeric Materials
Crystallizable non-crystallizable

 
T<Tm T>Tm

T<Tg

T>Tg T<Tg

T>Tg

polymer glass

crosslinked uncrosslinked

soft solid
(elastomer)

Viscoelastic
liquid/solid

Brittle Solid Tough Solid

Semicrystalline Polymers

Amorphous Polymers

Figure A.2: Classification scheme for polymeric materials.

Polychloroprene
(Neoprene)

H2
C C

CH3

CH3

Polyisobutylene Silicone

Figure A.3: Examples of elastomeric materials.

Elastomers

Traditional elastomers are amorphous materials with a glass transition tem-
perature less than the use temperature so that they remain flexible. The are
generally crosslinked so that they do not flow over long periods of time. Com-
mon examples are shown in Figure A.3.

Glassy Polymers

Glassy polymers are amorphous like elastomers, but their glass transition tem-
perature is above the use temperature. Because of this they behave as rigid
solids, with elastic moduli in the range of 109 Pa. Glassy polymers do not
need to be crosslinked, because below Tg the molecules and flow of the ma-
terial is suppressed. Also, because the materials are homogenous over length
scales comparable to the wavelength of light, they are transparent. Common
examples are illustrated in Figure A.4.
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Poly(methyl
methacrylate)

(PlexiGlas)

Polycarbonate Poly(phenylene oxide)

Figure A.4: Examples of glassy polymers.

Polyethylene
terephthalate. Poly(tetrafluoroethylene)

(Teflon)

Spider Web

Figure A.5: Examples of semicrystalline polymers.

Semicrystalline Polymers

Semicrystalline polymers must have molecular structures that are compati-
ble with the formation of an ordered lattice. Most atactic polymers are amor-
phous (non-crystalline) for this reason (with the exception being examples like
poly(vinyl alcohol where the side group is very small). Another requirement
is that Tg be less than Tm. If the glass transition temperature is higher than
Tm the material will form a glass before crystallization can occur. In the glassy
polymer the material is kinetically trapped in the glassy state, even though the
crystalline state has a lower free energy below Tm. Examples of some semicrys-
talline polymers are shown in Figure A.5.

A.3 Understanding Polymer Chemistry

Crystallization and glass formation processes are central to our understanding
of polymeric materials, we must eventually address the following question:

• How is a polymer’s tendency to crystallize or form a glass determined
by is molecular structure?

189



A.3 Understanding Polymer Chemistry A SYNTHETIC POLYMERS

Before we answer this question, however, we must answer the following ques-
tion:

• What determines this molecular structure, and how are our choices lim-
ited?

In order to answer this question properly, we need to study the processes
by which polymeric materials are made. Polymer synthesis involves organic
chemistry. After familiarizing ourselves with some of the relevant polymer
chemistry, we will be in a position to study the physical properties of poly-
mers. For this reason, our discussion of molecular structure in polymers will
include some chemistry.

A.3.1 Covalent Bonding

Polymer molecules consist of atoms (primarily carbon, nitrogen, oxygen and
hydrogen) which are covalently bound to one another. The fraction of the peri-
odic table that can form strong covalent bonds is relatively small, correspond-
ing to the ten atoms shown in yellow in Figure A.6 (H, C, N, O, F, Si, P, S, Cl,
Br). It is useful at this point to recall some of the basic principles governing the
bonding between these atoms:

• Nitrogen, oxygen, carbon and the other covalent bond forming atoms
with M > 6 (F, Si, P, S, Cl, Br) are surrounded by 8 electrons, included
shared electrons.

• Hydrogen atoms are surrounded by 2 electrons, included shared elec-
trons.

• A single bond involves two shared electrons, a double bond involves 4
shared electrons, and a triple bond involves 6 shared electrons.

A.3.2 Lewis Diagrams

Lewis diagrams (Wikipedia link) provide a convenient way of keeping track
of the valence electrons in covalently bonded compounds. Several examples
are given here. Note how the rules given on the previous page are followed in
each case.

A.3.3 Bonding

The following principles of covalent bonding in organic materials are very
helpful:
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Polymer-Forming Elements

Figure A.6: Periodic table, illustrating the ten atoms that make up the covalently-
bonded portion of polymeric materials.

Methane

Acetic Acid

Benzene
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C H
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Figure A.7: Examples of Lewis Diagrams
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C

C
C
C

C
C

H

H H

HH

H

Figure A.8: Examples of Shorthand Notation when drawing chemical structures

• Carbon, Silicon: group 14 (4 valence electrons) - 4 more needed to com-
plete shell -C, Si form 4 bonds with neighboring atoms.

• Nitrogen, Phosphorous: group 15 (5 valence electrons) - 3 more needed
to complete shell -N, P form 3 bonds with neighboring atoms.

• Oxygen, Sulfur: group 16 (6 valence electrons) - 2 more needed to com-
plete shell -O, S form 2 bonds with neighboring atoms.

• Hydrogen (group 1) or Fluorine, Chlorine, Bromine (Group 17): Fl, Cl,
Br form 1 bond with neighboring atoms.

(The situation for P and S is actually a bit more complicated when either of
these atoms are bonded to oxygen, but these general rules serve our purpose
for now.) The chemical structures throughout this book can be seen to obey
these rules.

A.3.4 Shorthand Chemical Notation

Most of the chemical structures illustrated in this text are relatively simple,
consisting of single and double bonds between atoms. We generally don’t
bother to write all of the carbons and hydrogens into to the structure. We use
the following common conventions.

• If no element is included, element at junctions between different bonds
are assumed to be carbon.

• If atoms are missing, so that the rules given above for the number of
bonds attached to each atom type are not satisfied, the missing atoms are
hydrogens.

An example of this convention is shown below in the structure for benzene::

Note the resonance between the two possible ways of drawing the double
bonds in the drawing on the left. Molecules with these types of alternating
aromatic compounds.
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Figure B.1: Polymers produced by step growth polymerization. The red and green
circles correspond to ’A’ and ’B’ monomers that react with one another to form the
polymer.

B Polymerization Reactions

Polymerization is the process by which small molecules react with one another
to form large polymer molecules. Polymerization reactions can be broken up
into the following two general categories:

1) Step Growth Polymerizations: Collections of A and B species react with
one another. In linear step growth polymerizations, the ends of molecules react
with one another to form longer molecules. A variety of reactions are possible,
so you need to know at least a little organic chemistry. We’ll focus on just a
few of the most common cases.

2) Chain Growth Polymerizations: Each polymer chain has one reactive
site to which additional monomers are added.

3) Additional Resource: The Macrogalleria web site has some excellent,
simple descriptions of polymerization reactions. Specific examples are refer-
enced at different points throughout this book.

Click here for Macrogalleria polymerization overview.

B.1 Step-Growth Polymerizations

In this example green and red monomers can only react with each other.
Because there are 5 more red monomers than green monomers, there are 5
molecules remaining at the end of the reaction, with each of these molecules
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R1 N

H

H
+

HO R2

O
R1

N
C

H

R2

O

+ H2O

Primary amine Acid Amide

Figure B.2: Formation of an amide from an amine and a carboxylic acid

R1 N

H

H

+ C
Cl R2

O
R1

N
C

H

R2

O

+ HCl

Acid chloride Amide

Figure B.3: Formation of an amide from a primary amine and an acid chloride

possessing two red end groups. The extent of reaction, p is defined as the frac-
tion of available reactive groups which have actually undergone a reaction.
Values close to one are needed in order to obtain useful, high molecular weight
polymer. A delicate stoichiometric balance generally needs to be maintained
(same amount of red and green monomers) in order to obtain high molecular
weight.

The following pages illustrate some of the specific reactions which take place
during the polymerization process. To illustrate the concepts involved, we
consider the following polymer types, all of which are produced by step-
growth polymerization:

(a) Polyamides

(b) Polyesters

(c) Polyurethanes

(d) Epoxies

B.1.1 Polyamides

In this example, a primary amine reacts with a carboxylic acid to form an
amide linkage. Water is liberated during the condensation reaction to form
the amide. Primary amines and acid chlorides undergo a similar reaction:

Acid chlorides react very rapidly with amines at room temperature, which is
very useful for demonstration purposes. Acid chlorides can also react with
water to form carboxylic acids, however, and commercial polyamides are gen-
erally produced by reaction with carboxylic acids.
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Figure B.4: Schematic representation of the interfacial polymerization off nylon.

R1 O H + HO C

O

R2 R1 O C R2

O

+ H2O

Alcohol Acid Ester

Figure B.5: Formation of an ester from an alcohol and a carboxylic acid.

B.2 Interfacial Polymerizations

B.2.1 Polyesters

Polyesters can be formed by condensation reactions of alcohols with carboxylic
acids:

Polyethylene terephthalate (Mylar, Dacron, 2L soda bottles) is a common ex-
ample. Note that under appropriate conditions, the reverse reaction (hydroly-
sis) reaction can also take place, where the addition of water to an ester bond
forms the acid and the alcohol. This reaction is important in a variety of poly-
mers used in biomedical applications, which degrade in the body via hydrol-
ysis of the polymer. Polycaprolactone is one example.

R1 O H + HO C

O

R2 R1 O C R2

O

+ H2O

Hydrolysis

Figure B.6: Ester hydrolysis: The reverse of the esterification reaction.
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R1 N C O + H O R2 R1
H
N C O R2

O

Isocyanate Urethane

Figure B.7: Urethane Formation
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R2

H

Epoxide Primary Amine

Figure B.8: Reaction of an epoxide with a primary amine.

B.2.2 Polyurethanes

Polyurethanes are formed by the reaction of isocyanates with alcohols, as
shown below:

Note that this is NOT a condensation reaction, since no byproducts are formed
during the reaction. Also note that the urethane linkage contains an oxygen
atom in the backbone, whereas the amide linkage does not. (The R1 and R2

substituents can have different structures, but are always attached to the illus-
trated linkages by carbon atoms.)

B.2.3 Epoxies

All epoxies involve reactions of epoxide groups (3-membered rings containing
an oxygen atom) with curing agents. Amine curing agents are very common,
as illustrated Figure , which shows a primary amine reacint with an epoxide
group).

The secondary amines which remain can react with additional epoxide groups
to form a branched structure as shown in Figure B.9. The reactive functionality
of a primary diamine is 4 when the reaction is with an epoxide (as opposed to
its functionality of 2 in the case where the diamine reacts with an acid or acid
chloride).
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Figure B.9: Reaction of an epoxide with a secondary amine.
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Figure C.1: Nonlinear Step Growth Polymerization

loop

Branch Points (from 
monomers with f>2)

dangling end
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sol

Figure C.2: Molecular schematic of gel network.

C Non-Linear Step Growth Polymerizations

Nonlinear step-growth polymerizations involve the use of monomers that
have a reactive functionality, f , which is greater than 2.

C.1 Gelation

A network (or gel) is formed when the molecular weight of the largest
molecule in the system reaches infinity. Everything which is covalently at-
tached to this single very large molecule is part of the gel fraction.

Unattached molecules which are not part of thegel fraction make up thesol
fraction. Thegel point refers to the point in the polymerization reaction at
which point a gel fraction first appears, and the overall process is referred to
asgelation.

C.2 Prepolymers

In many cases, the length of the polymer between branch points is determined
by the molecular weight of a prepolymer. Prepolymers generally have a reac-
tive functionality of 2.
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H C
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O
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Figure C.3: Example of a Prepolymer

The following factors determine the property of the network:

(a) Molecular weight of prepolymer

(b) Composition of prepolymer

(c) Functionality of curing agent (4 for diamine curing of epoxies)

(d) Extent of reaction (number of dangling ends)

(e) Network structure (loops, entanglements, etc.)

C.3 Corothers Theory of Gelation

We begin with na molecules with a reactive functionality of fa that are able to
react with nb molecules with a reactive functionality of fb. For illustrative pur-
poses, consider the perfectly stoichiometric case where the total functionality
of all the A monomers is equal to the total functionality of all the B monomers:

na fa = nb fb (C.1)

We define an average reactive functionality, fav, so that (na + nb) fav is equal
to the total number of functional groups:

(na + nb) fav = na fa + nb fb (C.2)

The number of initial molecules corresponding to a given number of functional
groups is inversely proportional to fav. For large values of fav, p does not have
to reach unity in order for the total number of molecules to be reduced to
one. An expression for Nn can be obtained substituting p fav/2 for p in Eq. ,
describing the evolution of Mn with p for linear step growth polymerization:

Nn =
1

2− p fav
(C.3)

The quantity p fav describes the average number of times that any given
molecule has reacted. The number average molecular weight is predicted to
diverge to infinity when this average number of reactions per molecule is 2.
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This occurs when p = pgel , where pgelStandardextent of reaction at the end-
point. Setting pgel fav = 2 gives:

pgel =
2
fav

(C.4)

This simple equation for the gel point is very useful, although it is important
to remember that this derivation suffers from the following deficiencies:

(a) Gelation actually occurs for finite Nn, since N = ∞ only for the largest
molecule.

(b) The theory neglects loop formation (reactions between two portions
of the same molecule). These reactions change the shape of a given
molecule, but do not decrease the overall number of molecules.

The first assumption tends to overestimate pgel , and the second assumption
tends to underestimate pgel . A more accurate description of gelation requires
a much more detailed theory than the one presented here.

When one molecule which spans the entire sample, it can no longer flow like
a liquid. One the characteristics of non-linear step growth polymerizations is
that the viscosity (resistance to flow) of the reaction mixture increases as the
extent of reaction increases, and eventually diverges at the gel point. Also,
the reaction rate generally decreases as the reaction proceeds and the reac-
tive molecules become larger and larger. These features are illustrated con-
ceptually in Figure C.4. Here we show schematic representations of the time-
dependent extent of reaction, along with the time dependence of the number
average degree of polymerization, Nn, and of two physical properties of the
material: η0 and E∞. Here η0 is the limiting viscosity measured at very low
shear rates, and E∞ is the elastic modulus measured at very long times. The
viscosity is a characteristic of a liquid material, and characterizes the material
for values of the extent of reaction, p, that are less than the extent of reaction
corresponding to the gel point, pgel . For values of p that exceed pgel , the mate-
rial behaves as a solid, and has a finite elastic modulus, E∞. At the gel point,
the viscosity diverges to infinity, since it is no longer possible for the material
to flow. Instead, the material becomes an elastic solid, with a value of E∞ that
increases from 0 at the gel point.

Note that that materials near the gel point are viscoelastic, and can no longer
be described by a single value of the viscosity or modulus. Instead, these prop-
erties depend on the timescale of the measurement, as described in more detail
on the section on viscoelasticity.
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Reaction Time

Liquid Behavior Solid Behavior

 

Gel Point

Figure C.4: Time-dependence of property development in a nonlinear step growth
polymerization.

1) Exercise: A very simple epoxy formulation has bisphenol A digly-
cidyl ether as the epoxide component and hexamethylene diamine as the
crosslinker:

H2N(CH2)6NH2

A) Hexamethylenedi-
amine

H3C CH3

O O
O O

B) Bisphenol A
diglycidyl ether

(a) How many grams of hexamethylene diamine should be added to 1g of
Bisphenol A diglycidyl ether in order to optimize the polymerization
reaction in a homogeneous solution?

(b) Estimate the fraction of amine groups that need to react in order to
reach the gel point.

2) Solution: In this case monomer A (the hexamethylenediamine) has a
molecular formula of C6H16N2, corresponding to a molecular weight, Ma,
of 116 g/mole. The functionality of monomer A, fa, is 4 in this case, since
each primary amine is able to react with 2 epoxide groups. Monomer B has
a molecular formula of C21H24O4, giving Mb = 340 g/mole, and a reactive
functionality, fb of 2. We want the total functionality of the A monomers
to be equal to the total functionality of the B monomers in this case, which
means that the molar quantities of A and B monomers should be related by
Eq. C.1, from which we obtain the following for na:
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na =
nb fb
na

=
nb
2

We have 1g of B, which we divide by it’s molecular weight to get the number
of moles:

So we know we need about 1.45x10−3 moles of the hexamethylenediamine.
Multiplying by its molecular weight of 116 g/mole gives a total mass of 0.17g.
Note that we need a lot less of A than B in this case. If we want our two
component epoxy to consist of two parts that we combine in nearly equal
volumes, we’ll have to add some extra stuff to part A (the diamine part) that
doesn’t take part in the curing reaction.

To figure out the average functionality, we arrange Eq. C.2 to give the follow-
ing for fav:

fav =
na fa + nb fb

na + nb

Combining this with Eq. C.4 for the gel point gives:

pgel =
2 (na + nb)

na fa + nb fb

Substituting our stochiometric condition that na = nb/2 gives pgel = 0.75.
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Figure D.1: Chain growth polymerization.

D Chain-Growth Polymerizations

In chain growth polymerization monomers are added one at a time to a re-
active site at that typically remains at the end of the monomer that has been
most recently added. There are three phases of the reaction that need to be
considered in general:

(a) Initiation: In this step the a reactive species is formed that is able to form
covalent bond with a monomer, reforming the active species at the end
of the growing polymer chain.

(b) Propagation: Monomers are added one at a time to the growing chain.

(c) Termination: The reactive undergoes a reaction of some sort that causes
it to lose its reactivity toward other monomers. The polymer chain is
’dead’ at this point, and no longer grows in length.

D.1 Chain Growth Polymerization Mechanisms

Chain growth polymerizations generally occur either by addition to a dou-
ble bond, or by opening a ring. In both cases the overall number of bonds is
conserved, and there are no condensation products. If the cases where chain
growth occurs by addition to double bond between two carbon atoms, the fol-
lowing takes place:

• A new bond is formed between the active sight and one if the doubly
bonded carbons

• The double bond is shifted to a single bond.

In a ring opening polymerization, the following takes place:
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Figure D.2: The two basic types of chain growth polymerizations.

• A new bond is formed between the active species and one of the atoms
in a cylic monomer.

• An adjacent bond in the monomer is broken.

• The active site moves to the end of the linear molecule.

D.2 Reactive Species for Chain Growth Polymerization

Three of the most common active sites are a free radical, negatively charged
anion, and a positively charged cation, illustrated in Figure D.3 for the addi-
tion to the double bond of vinyl polymers. Vinyl polymers have the general
structure CH2CHR, where R is something other than hydrogen. In each of
these cases, a single monomer repeat unit is added to the end of the chain,
and the reactive site moves to the end of the chain, on the repeat unit that has
just been added. Reactions in organic chemistry are all about keeping track of
what the bonding electrons are doing, and Lewis diagrams are very helpful in
this sense. In the figures designed to illustrate different propagation and ter-
mination reactions, we just show the Lewis structures for some of the bonds,
to make it simpler to keep track of the situation before and after the reaction
has taken place. For our purpose we are not as interested in the detailed reac-
tion mechanism, which would require that we provide a bit more information
about the structure of some of the short-lived reaction intermediate.

D.3 Initiation

The previous section outlines the chemistry of some different propagation re-
actions, where monomers are added to an active site. Initiation is the step by
which the active site is produced at the beginning. Here we give two simple
examples, one for initiation of a radical polymerization, and the second being
the initiation of a an anionic polymerization.
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Free Radical Polymerization
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Figure D.3: Propagation mechanisms for three common chain growth polymer-
ization mechanisms.

D.3.1 Initiation of a free radical polymerization

In this example, illustrated in Figure D.4, a peroxide bond between two oxygen
atoms splits to form two free radicals. These radicals are able to add to the
double bond in a vinyl monomer like styrene to initiate the polymerization
reaction.

D.3.2 Initiation of an anionic polymerization

In the example shown in Figure D.5 is very simple conceptually. The reaction
is done in solution, and a small amount of secondary butyl lithium is simply
added to a solution of styrene molecule in an appropriate organic solvent. The
carbon-lithium bond is very reactive, and has a lot of ionic character. It can
really be viewed as an existing anion that is ready to react directly with the
styrene monomer.

D.4 Termination Mechanisms

Termination is the process by which reactive chain ends become unreactive.
Termination reactions can be avoided in ’living polymerizations’ like anionic
and cationic polymerizations.

205



D.4 Termination D CHAIN-GROWTH

H3C CH3

O O

H3C CH3

H3C CH3

O2
Heat

H3C CH3

O

H2C CH

H3C CH3

O

C

H2
C

H

+

Figure D.4: Initiation off a radical polymerization reaction with an epoxide that
decomposes into two radical species at elevated temperature.
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Figure D.5: Initiation off a radical polymerization reaction with an epoxide that
decomposes into two radical species at elevated temperature.
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Figure D.6: Termination by radical recombination.
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Figure D.7: Termination by disproportionation. The circled proton, along with an
electron, moves from the molecule on the right, terminating the free radical on the
right. The remaining electrons on the molecule on the left rearrange themselves
into a double bond.

D.4.1 Radical Recombination

Termination reactions cannot be eliminated in free radical polymerizations,
since two free radicals can always combine directly to form a single bond, as
illustrated below in Figure D.6.

As unpaired electrons, free radicals are very reactive towards one another. As
illustrated in this example, two free radicals can readily combine with one
another to form a covalent bond. Combination is therefore one type of ter-
mination reaction which is very prominent with free radical polymerizations.
Note that the number of molecules decreases by one during the combination
reaction.

D.4.2 Disproportionation

Plain Laytionation reactions can be viewed as the transfer of a proton an-
dEntanglementsfrom one active molecule to another. The animation here il-
lustrates how the transfer results in the termination of both molecules, with
the formation of a double bond. In the final state, the carbon atoms all have
eight electrons (including shared electrons) in the valence shell. The molecular
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Figure D.8: Chain transfer to toluene.
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Figure D.9: An Animation of Intramolecular Chain Transfer

weights of the two polymer molecules remain essentially unchanged (with the
exception of the transfer of a single proton).

D.4.3 Chain Transfer

Chain transfer refers to the migration of the active free radical from one
molecule to the other. In this example, the active radical from the growing
polymer chain is terminated by the addition of a proton and an electron from
the toluene molecule on the right. The net result is that the free radical is trans-
ferred from the polymer molecule to the solvent molecule (toluene), which can
then initiate the polymerization of additional monomer. Note that the process
is very similar to disproportionation, except that the species which donates the
proton and electron does not already have a free radical.

D.5 Intramolecular Chain Transfer

In this example, the active radical moves from the end of the polymer chain to
a different portion on the same polymer chain. Polymerization continues from
this radical, resulting in the formation of a short branch, in this case consisting
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of four carbons. Because the branches are randomly placed along the polymer
backbone, they interfere with the polymer’s ability to crystallize.

1) Exercise:

(a) Chain transfer agents, like toluene in the previous example, can be in-
tentionally added to give some control over the molecular weights of
polymers synthesized by free radical polymerizations. In a qualitative
sense, how will the addition of chain transfer agents change the number
average molecular weight of the polymer?

(b) How does your answer to this question change if the chain transfer is
always to other sites within the same polymer molecule?

(c) Termination reactions involving free radical polymerizations involve
the elimination of two radicals to form a new bond. Where does this
new bond appear for combination and disproportionation reactions?

D.6 Polymerization of Dienes

Dienes are monomers with two double bonds, with a single bond between
them. Examples include butadiene, isoprene and chloroprene. The situation
for isoprene is illustrated in Figure D.10. The monomer has 4 carbon atoms
in a line, which we number 1 through 4. Double bonds connect carbons 1
to 2 and 3 to 4, and a single bond connects carbon 2 to 3. Carbons 2 and 3
are distinguishable from one another because carbon 2 is bonded to a methyl
group that is not present on carbon 2. When a propagating polymer chain
interacts with the isoprene monomer, addition can occur in any of 4 different
ways, which are illustrated in Figure D.10:

• 1,2 addition: The active chain end adds across the bond between carbons
1 and 2, just as it would in a normal polymerization.

• 3,4 addition: Like 1,2 addition, but the reaction occurs across the bond
between carbons 3 and 4.

• 1,4 addition: Here the reactive site attaches to carbon 1 and the active site
moves to carbon 4, with a double bond being formed between carbons
2 and 3. This double bond can exist in a ’cis’ conformation or ’trans’
configurations. These cis and trans configurations represent chemically
different structures, resulting in polymers with different properties.

Natural rubber is a naturally occurring version of polyisoprene that is har-
vested from certain tropical trees. The excellent elastomeric properties of this
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material arise from the pure cis 1-4 microstructure that is produced during the
natural polymerization of this polymer. Because of the zigzag nature of the
polymer backbone, it does not readily crystallize. A segment of the backbone
of the polymer is shown in Figure D.11. This schematic shows a portion of the
molecule in a fully extended form. Because of the easy rotation about single
bonds, the molecules actually exist in a collection of random configurations.

*
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trans 1,4 Additioncis 1,4 Addition
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*
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Figure D.10: Polymerization of Isoprene
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Figure D.11: The chemical structure of natural rubber (cis 1-4 polyisoprene)..
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C C

H H

H R

Figure D.12: Chemical structure of a vinyl monomer.

D.7 Living Polymerizations

Living polymerizations are chain growth polymerizations that proceed with-
out termination or chain transfer reactions. Relatively monodisperse polymers
( Mw/ MN < 1.1) can typically be obtained when the initiation rate is faster
than than the propagation rate. Block copolymers are formed by the sequential
addition of two (or more) different monomer types in a living polymerization.

D.8 Vinyl Polymers and Tacticity

Vinyl polymers are an important class of polymers produced by chain growth
polymerizations. They are produced from vinyl monomers with the following
general structure:

When a vinyl monomer is polymerized and we stretch the resulting polymer
chain out so that the backbone C-C bonds all lie on the same plane, the ’R’
groups end up on different sides of the molecule. The distribution of these R
groups determines the tacticity, according to the following definitions:

• Isotactic: All R groups on same side of the molecule.

• Syndiotactic: R groups on alternate sides of the molecule.

• Atactic R groups randomly placed.

These different tacticities are illustrated in Figure D.13.

Tacticity is significant because it determines the ability of a polymer to crys-
tallize. The disordered structure of an atactic polymer is inconsistent with the
ordered structure of a crystalline polymer. As a result, atactic polymers gen-
erally cannot crystallize.Standardons to this rule include polymers where the
’R’ group is very small, so that this group can be incorporated into an ordered
crystalline array, even if it is randomly placed along the polymer chain. For
this reason polyvinyl chloride can be partially crystalline even if the polymer
is atactic. Atactic polystyrene and atactic polypropylene, however, are always
amorphous.
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Figure D.13: Illustration of different polymer tacticities.

Figure D.14: Diagram representation of crosslinking.

D.9 Crosslinking

Crosslinking is the process by which separate molecules in an amorphous
polymer are chemically attached to one another, as shown schematically in
Figure D.14. The black lines indicate individual molecules, and the red dots
represent crosslink points where these molecules are ’tied’ together.

A representative and commercially important crosslinking system, known by
the commercial name of Sylgard 184, consists of the two different parts shown
in Figure D.15. Part 1 consists of poly(dimethyl silioxane) polymer with vinyl
groups (double bonds) at each end of the polymer molecules. Part 2 contains a
silicone crosslinker with several silane groups (Si-H) that are able to react with
the vinyl groups as shown in Figure D.16. The reaction can be viewed as a step
growth reaction involving a component with a reactive functionality of 2 (part
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Figure D.15: A diagram of silicone crosslinking.
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Figure D.16: Reaction diagram of silicone crosslinking.

1) and a second component with a reactive functionality that is much larger
than 2 (part 2).
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E Common Polymers

Here we list some common polymer produced by the different synthesis meth-
ods introduced in the previous sections.

E.1 Chain Growth: Addition to a Double Bond

E.1.1 Polyethylene

The simplest polymer from a structural standpoint is polyethylene, with the
structure shown below in Figure E.1. Tacticity is not relevant in this case, since
there are no substituents other than hydrogen on the carbon backbone.

CH2 CH2

Figure E.1: Chemical structure of polyethylene.

1) High Density Polyethylene: High density polyethylene refers to version
with very little chain branching, thus resulting in a high degree of crystallinity.
Completely linear polyethylene has a melting point of 138 °C, and a glass tran-
sition temperature near -100 °C.

Tg =≈ −120 ◦C, Tm = 138◦C (perfectly linear)

2) Low Density Polyethylene: Low density polyethylenes (LDPE’s) and
high density polyethylenes (HDPE’s) are identical in their chemical structure
at the atomic level. They are actually structural isomers of one another. Chain
branching within low density polyethylene inhibits crystallization, resulting
in a material with a melting point lower than 138 degrees C. The decreased
crystallinity of LDPE results in a material which is more flexible (lower elastic
modulus) than HDPE.

 

Figure E.2: Structure of low density polyethylene
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The chain branches responsible for inhibiting crystallization in low density
polyethylene are typically short. This illustration shows a 3-carbon (propyl)
branch, potentially resulting from intramolecular chain transfer during the
polymerization reaction.

Tg =≈ −120 ◦C, Tm < 138◦C (depending on branching)

3) The Importance of Molecular Weight: Polymeric materials generally
have favorable mechanical properties only when the molecular weight is very
large - typically hundreds of thousands of g/mol. The point is illustrated with
polyethylene:

• M = 16 g/mol: ethylene gas

• M ∼=200 g/mol: candle wax

• M ∼= 2x105- 5x105 g/mol: milk jugs, etc.

• M ∼= 3x106 - 5x106 g/mol: ultrahigh molecular weight polyethylene.
This materials as excellent toughness and wear resistance, and is often
used as one of the contact surfaces in joint implants.

E.1.2 Polypropylene

H2
C C

H

CH3

Figure E.3: Structure of polypropylene

The most widely used form of polypropylene is isostatic, with a melting point
of 171 °C (for the perfectly isotactic version - a few degrees lower for the actual
commercial versions), and a glass transition temperature which is well below
room temperature (≈ 5 ◦C). Single crystals of polypropylene have lower mod-
uli than single crystals of polyethylene along the chain direction, because of
the helical structure of propylene. The modulus of isotropic semicrystalline
polypropylene is often larger than that of high density polyethylene, however,
because of the details of the semicrystalline structure that is formed. The uses
of polypropylene and high density polypropylene are similar.
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E.1.3 Polybutene-1

This polymer included to illustrate the evolution o the polymer properties
when we continue to make the side chain longer.

(CH2) C

H

CH2

CH3

Figure E.4: Polybutene-1

E.1.4 Poly(methyl methacrylate):

Poly(methyl methacrylate) (PMMA) is one of the most common materials used
to make polymer glass. It is commonly known by the DuPont tradename Plex-
iglas,™ and has a glass transition temperature between 100 °C and 125 °C,
depending on the tacticity. It is also forms the basis for many biomaterials,
including dental adhesives.

Tg = 100− 125 ◦C, no Tm (atactic)

CH2 C

C

CH3

O

CH3

O

Figure E.5: Poly(methyl methacrylate)

E.1.5 Poly(methyl acrylate)

Poly(methyl acrylate) is not a widely used polymer, primarily because it’s
glass transition temperature is too low ( ≈5 ◦C for the atactic polymer) to be
useful as a rigid polymer glass, and too high to be useful as an elastomer. It
is included here to illustrate the effect that removing the extra methyl group
from the polymer backbone has on the glass transition of the polymer.

Tg = 5 ◦C, no Tm (atactic)
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Figure E.6: Poly(methyl acrylate).

E.1.6 Neoprene

Neoprene, also called polychloroprene, is a material commonly used in wet-
suits. Like polyisoprene, it can be polymerized in different forms, correspond-
ing to 1-2, 3-4, cis 1-4 and trans 1-4 addition of the monomer (trans 1-4 ad-
dition shown below). This pictured wetsuit has a 0.5mm layer of neoprene
sandwiched between layers of nylon and another synthetic material.

H2
C C

Cl

C
H

H2
C

Figure E.7: Neoprene (polychloroprene).

E.1.7 Polyisobutylene

Polyisobutylene is a common material used to make elastomers, referred to
more simply as ’butyl’ rubber. It is generally copolymerized by with a small
amount of isoprene, so that the resulting double bonds can be used to form
a crosslinked material. It is more resistant to solvent penetration than most
elastomers, and is often used in applications (like the gloves above) where
barrier resistance is needed.

Tg = −75 ◦C, Tm = 2 ◦C

H2
C C

CH3

CH3

Figure E.8: Polyisobutylene.
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E.1.8 Polystyrene

Polystyrene is almost always atactic, and therefore amorphous. It has a glass
transition temperature of 100 °C, and is therefore a glassy polymer at room
temperature. Its uses are typically in packing material "Styrofoam", and for
making cheap plastic objects, like the vials shown above. When suitably modi-
fied by the addition of other types of polymers, it is the basis for relatively high
performance plastics such as high impact polystyrene (HIPS) and acrylonitrile-
butadiene-styrene (ABS).

Tg = 100 ◦C, no Tm (atactic)

H2
C C

H

Figure E.9: Structure of polystyrene.

E.1.9 Poly(tetrafluroethylene) (PTFE)Poly(tetrafluoroethylene) (PTFE)

Poly(tetrafluoroethylene) is more commonly known by its DuPont trade name,
Teflon. Its most outstanding properties are its low surface energy and its low
friction against a variety of other materials. It has very poor mechanical prop-
erties, however, and is difficult to process by its melting temperature exceeds
the temperature at which it begins to degrade.

Tg = 130◦C (by one report[17]); Tm ≈ 330 ◦C.

C C

FF

F F

Figure E.10: Monomer unit of poly(tetrafluroethylene) (Image from[18]).
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E.1.10 Poly(vinyl acetate)

Poly(vinyl acetate) is often used as base for chewing gum. It is glassy at room
temperature but becomes softer at body temperature, which is just above Tg.

Tg = 30 ◦C, no Tm (atactic)

Figure E.11: Monomer unit of poly(vinyl acetate)

E.1.11 Poly(vinyl chloride) (PVC)

Poly(vinyl chloride) can be partially crystalline even if the material is atactic,
because the "R" group in this case is a chlorine atom, which is relatively small.
The glass transition temperature of the material is 85 °C, although the addition
of small molecules as "plasticizers" can reduce Tg to below room temperature.
When a material is referred to as "vinyl", it is probably PVC. Record albums
(before the age of compact disks) and water pipes are commonly made out of
poly(vinyl chloride).

Tg = 85 ◦C, no Tm (atactic)

H2
C C

H

Cl

Figure E.12: Structure of poly(vinyl chloride)

E.1.12 Poly(vinyl pyridine)

Poly(vinyl pyridine) is very similar to polystyrene, and its physical proper-
ties (entanglement molecular weight, etc.) are quite similar to the properties
of polystyrene. It exists in one of two forms, poly(2-vinyl pyridine) (P2VP
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and poly(4-vinyl pyridine) (P4VP), based on the location of the nitrogen in the
phenyl ring. Both types interact strongly with metals. The polymers are not
used in wide quantities, but have been useful in a range of model studies of
polymer behavior, often when incorporated with another material as part of a
block copolymer.

Tg = 100 ◦C, no Tm (atactic)

H2
C C

H

N

H2
C C

H

N

P2VP P4VP

Figure E.13: Structure of two types of poly(vinyl pyridine)

E.2 Chain Growth: Ring Opening

E.2.1 Poly(ethylene oxide)

Poly(ethylene oxide) (PEO) is generally formed by the ring opening polymer-
ization of ethylene oxide. It is also referred to as polyethylene glycol, although
this generally refers to lower molecular weight versions with hydroxyl end
groups. PEO is water soluble, and is used in a wide range of biomedical appli-
cations, often in a gel form. Lithium salts are also soluble in PEO, and PEO/Li
complexes are often used as an electrolyte in battery and fuel cell applications.

Tg = −65 ◦C; Tm ≈ 65 ◦C

(CH2) (CH2) O

Figure E.14: Monomer unit of poly(ethylene oxide)

E.2.2 Polycaprolactam:

Polycaprolactam is the polyamide equivalent of polycaprolactone, and is
synthesized by the ring opening polymerization of the corresponding cyclic
amide. It is often referred to as Nylon 6, since there are 6 carbon atoms in
the repeating unit of the polymer. Note that this is different than Nylon 6,6
produced by condensation polymerization, where the repeat unit has 6 car-
bons originating from each of the two monomers used in the polymerization
reaction.
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Tg ≈ 50 ◦C; Tm ≈ 220 ◦C

(CH2)5
H
N C

O

Figure E.15: Polycaprolactam.

E.2.3 Polycaprolactone:

Polycaprolactone somewhat unique in that is a polyester that is synthesized by
ring opening polymerization of a cyclic ester. It can be viewed as a polyester
version of the polyamide, polycaprolactam. Contrary to step growth poly-
merization of polyesters, the ester linkage is not formed during the polymer-
ization reaction, but is already present in the monomer. Polycaprolactone is
biodegradable because the polymer slowly degrades by ester hydrolysis over
time.

Tg ≈ −50 ◦C; Tm = 60 ◦C

(CH2)5 C

O

O

Figure E.16: Polycaprolactone.

E.3 Step Growth Polymers

A variety of common polymers are discussed briefly in the pages below.

E.3.1 Kevlar™

Kevlar™ is a trademark of DuPont, Inc. The name actually is used to refer to
a variety of aromatic polyamides, or aramids. As the name suggests, the poly-
mers have phenyl groups in the backbone of the chain, and the repeat units
are joined by amide linkages. The simplest possible aramid has the structure
shown in Figure E.17.

Tm: above degradation temperature for the polymer.
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O

C C N

O

H

N

H

Figure E.17: Monomer unit of one version of Kevlar

E.3.2 Polycarbonate

A variety of polycarbonates exist. The most common one, (with the
GE trademark of Lexan) has a glass transition temperature of 150 °C. It
is used for compact disks, eyeglass lenses, and shatterproof glass. See
http://www.pslc.ws/macrog/pcsyn.htm for a good description of the syn-
thesis of polycarbonate via a step growth, condensation reaction involving a
phenolic di-alcohol and phosgene (COCl2) .

Tg ≈ 150 ◦C

CH3

CH3

O C O

O

Figure E.18: Polycarbonate.

E.3.3 Polyethylene Terephthalate (PET)

Polyethylene terephthalate (trade names include Mylar and Dacron) is pro-
duced in fiber form for textiles, and in film form for recyclable bottles, etc. Its
degree of crystallinity is highly dependent on the processing conditions, since
it can easily be quenched to a glassy state before crystallization is able to occur.

Tg = 80 ◦C

Tm = 260 ◦C

C C

O

O (CH2)

O

(CH2) O

Figure E.19: Polyethylene Terephthalate
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E.3.4 Poly(phenylene oxide)

Polyphenylene oxide is a high performance polymer has many varied uses,
largely because of its excellent performance at high temperatures.

Tg ≈ 190 ◦C

CH3

CH3

O

Figure E.20: Poly(phenylene oxide).http://plastiquarian.com/ppo.htm

E.3.5 Ultem Polyetherimide

Ultem (a trademark of GE) is a form of polyetherimide. It is a high perfor-
mance polymer that combines high strength and rigidity at elevated temper-
atures with long term heat resistance ( Tg = 215 ◦C). The repeat unit is illus-
trative of the complex chemical structure of many modern, high performance
polymers.

Figure E.21: Structure of Ultem polyetherimide, with some materials that have
been made from it.http://www.alcanairex.com/products/e/100/120p01_e.htm

E.3.6 Silicones

Silicones are an important class of synthetic polymers which do not have car-
bon in the backbone. Instead, the backbone consists of alternating silicon and
oxygen atoms. Different classes of silicones are specified by the substituents on
the silicone atoms. Poly(dimethyl siloxane) (PDMS), with methyl substituents,
is the most important silicone. Its glass transition and melting temperatures
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Si O

CH3

CH3

Figure E.22: Poly(dimethyl siloxane).

CH3

SiCl Cl

CH3

+ 2H2O

CH3

SiHO OH

CH3

+ 2HCl

Figure E.23: Hydrolysis of chlorosilane bonds.

are very low, so that it remains flexible at very low temperatures. It also has a
very low surface energy, and forms a hydrophobic surface that is very water
resistant.

Tg =∼ −130ºC; Tm = −45ºC

We list PDMS here as a step growth polymer because it can be produced from
a self-condensation of silanol (SiOH) groups. The starting point is actually
dimethyl-dichlorosilane. In th presence of water the SiCl bonds hydrolyze to
SiOH:

The resultant silanol groups than can then condense by the elimination of wa-
ter:

One of the interesting features of silicones is that they can also be synthesized
by anionic, ring opening polymerization of cyclic, oligomeric forms of PDMS.
Here’s one example:

E.4 Copolymers

The polymers considered so far are homopolymers, which means they consist
of a single chemical repeat unit. Copolymers consist of more than one repeat

SiHO

CH3

CH3

OH SiHO

CH3

CH3

OH+ SiHO

CH3

CH3

O Si

CH3

CH3

OH + H2O

Figure E.24: Condensation of silanol groups.
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Figure E.25: Anionic ring opening polymerization of a cyclic silicone oligomer.

Figure E.26: Schematic representation of a statistical copolymer.

unit. Examples includestatistical copolymers, where the different repeating
units are distributed throughout a molecule, as shown schematically in Figure
E.26.

Inblock copolymers, the different repeating units appear as distinct ’blocks’. A
diblock copolymer for example, can be viewed as two different homopolymer
molecules that have been covalently joined to one another as shown in Figure
E.27. A wide variety of interesting block copolymer morphologies have been
observed. Diblock copolymers are most often synthesized by living, chain
growth polymerizations.

4) Exercise: Describe a procedure for making a diblock copolymer of
polystyrene and poly(methyl methacrylate).

5) Solution: The details of how to do this go a bit beyond the scope of
this text, but conceptually we know we need to do the following in sequence:
Add and appropriate initiator for a living chain growth polymerization, add
monomer ’A’ until all of it reacts, add monomer B until all of it reacts, termi-
nate the reaction. Here are the details that can work for this system.

(a) Add an appropriate initiator. We don’t want to use a radical initiator,
because we need to avoid the inevitable termination reactions. From
the information given in this text, either anionic or cationic polymer-
ization. It turns out that the only anionic polymerization works in this
case. We’ll choose tetrahydrofuran as a solvent, clean it up very well
to get rid of any impurities, and add some secondary butyllithium (see

Figure E.27: Schematic representation of a block copolymer.
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Fig. D.5) as the initiator. The molar quantity of initiator will be equal to
the number of moles of polymer we get at the end of the reaction.

(b) Add the first monomer to the initiator solution. The order matters in
this case. We need to add the styrene first, and choose reaction con-
ditions so that the initiation is much faster than the subsequent poly-
merization. This ensures that the polymers all have roughly the same
length, since they all started polymerizing a the same time.

(c) Once all the styrene reacts, we add the methyl methacyrylate monomer
to the solution. Because the polymerization is ’living’, the active chain
ends from the polystyrene part of the polymerization are still available
to react with the methyl methacrylate.

(d) Terminate the reaction. This is very easy to do, and can be done by
adding a small amount of methanol to the reaction, to produce lithium
methoxide and a ’dead’ chain after the proton from alcohol trades
places with the lithium that is associated with the negatively charged
carbon at the end of the polymer chain.
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R

Figure F.1: Vector diagram of a polymer.

F Models of Chain Dimensions

Our discussion of random walk statistics tells us what the shapes of the
molecules look like when we know the statistical segment length, but it doesn’t
tell us what the statistical segment length actually is for a particular polymer.
Clearly the statistical segment length must be related to the detailed chemi-
cal structure of the repeat unit itself. For example, we wouldn’t expect that
polyvinyl chloride and polyethylene terephthalate would have the same sta-
tistical segment length, based on the very different chemical structures of these
polymers. To obtain a prediction for the statistical segment length we need to
zoom in and consider the actual backbone bonds that are connecting the poly-
mer together. In general every bond is vector,~r with a length and an orienta-
tion. As illustrated in Figure F.1, the end-to-end vector is obtained by adding
up all Nb bond vectors ( Nb=12 in this example):

~R =
Nb

∑
i=1

~ri =~r1 +~r2 +~r3 + ... +~rNb (F.1)

F.1 General Considerations

We are interested in the average magnitude of the end-to-end vector. As dis-
cussed in the previous section, the average of ~R itself is not useful, since it just
averages to zero. We are interested in the average value of the square of the
magnitude of the end-to end vector. This quantity is equal to the dot product
of the end-to-end vector with itself:

R2 = ~R · ~R =
(
~r1 +~r2 +~r3 + ... +~rNb

)
·
(
~r1 +~r2 +~r3 + ... +~rNb

)
(F.2)
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Figure F.2: Definition of the angle between two vectors.

The dot product has N2
b terms, which can be represented in the following ma-

trix form:

R2 =


~r1 ·~r1 +~r1 ·~r2 +~r1 ·~r3 +... +~r1 ·~rNb
+~r2 ·~r1 +~r2 ·~r2 +~r2 ·~r3 +... +~r2 ·~rNb
+~r3 ·~r1 +~r3 ·~r2 +~r3 ·~r3 +... +~r3 ·~rNb
+... +... +... +... +...

+~rNb ·~r1 +~rNb ·~r2 +~rNb ·~r3 +... +~rNb ·~rNb

 (F.3)

The dot product between two vectors, ~A and ~B is given in general by∣∣∣~A∣∣∣ ∣∣∣~B∣∣∣ cos θ where θ is the angle between the two vectors, illustrated below
in Figure F.2. At this point we will make our first simplifying assumption,
which is that the lengths of all bonds along the backbone are identical. This
assumption is certainly valid for vinyl polymers, and other polymers which
have only C-C single bonds along the backbone.

If this bond length is `, then R2 can be represented as follows, where θij is the
angle between bondi and bondj:

R2 = `2


cos θ11 + cos θ12 + cos θ13 +... + cos θ1Nb
+ cos θ21 + cos θ22 + cos θ23 +... + cos θ2Nb
+ cos θ31 + cos θ32 + cos θ33 +... + cos θ3Nb

+... +... +... +... +...
+ cos θNb1 + cos θNb2 + cos θNb3 +... + cos θNb Nb

 (F.4)

The average value of R, will be determined by the average values of θ ij In
mathematical terms, we have the following expression:

〈
R2
〉
= `2


〈cos θ11〉 + 〈cos θ12〉 + 〈cos θ13〉 +... +

〈
cos θ1Nb

〉
+ 〈cos θ21〉 + 〈cos θ22〉 + 〈cos θ23〉 +... +

〈
cos θ2Nb

〉
+ 〈cos θ31〉 + 〈cos θ32〉 + 〈cos θ33〉 +... +

〈
cos θ3Nb

〉
+... +... +... +... +...

+
〈
cos θNb1

〉
+
〈
cos θNb2

〉
+
〈
cos θNb3

〉
+... +

〈
cos θNb Nb

〉


(F.5)
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In more compact notation we can write:

〈
R2
〉
= `2

Nb

∑
i,j=1

〈
cos θij

〉
(F.6)

So we have reduced the problem to figuring out what the values of
〈
cos θij

〉
are in the system. This requires a specific model of how the bonds are joined
to one another. In the following sections we consider two specific models (the
freely jointed and freely rotating models), and a general model where the bond
rotation angles are constrained.

F.2 Freely Jointed Chain Model

The simplest (and most unrealistic) model of chain dimensions is the freely
jointed chain model, where all bond orientations are equally likely. In the
freely jointed chain model

〈
cos θij

〉
= 0 for i 6= j, because orientations giving

positive and negative values of cos θij are equally likely. The only exception is
for the Nb diagonal terms for which i = j. These represent the projection of a
vector onto itself, and all have θ = 0 and cos θ = 1.

〈
R2
〉
= Nb`

2 (F.7)

F.3 Freely Rotating Chain Model

In this model, bond angles are fixed, but rotation about bonds is possible. Rota-
tion about a bond sweeps out a cone as shown below. The bond rotation angle
is defined as φ, and in the freely rotating model all values of φ are assumed to
be equally likely.

In the freely rotating chain model, the angle between adjacent bonds is fixed
at certain angle, referred to here simply as θ (without the subscripts). Adjacent
bonds,i.e. those with i− j = 1 or i− j = −1, have

〈
cos θij

〉
= cos θ. It can be

shown that terms with i− j=2 or -2 have
〈
cos θij

〉
= cos2 θ, terms with i− j=3

or -3 have
〈
cos θij

〉
= cos θ, etc. The matrix of terms making up the summation

to give
〈

R2〉 therefore has the following form:
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Stationary bond

Rotating bond

Viewed perpendicular to
axis of rotating bond.

Viewed along axis of
rotating bond. 

Figure F.3: Freely Rotating Chain Models with views perpendicular to the axis of
the rotating bond and along the axis of the rotating bond

〈
R2
〉
= `2


1 + cos θ + cos2 θ +... + cos(Nb−1) θ

+ cos θ +1 + cos θ +... + cos(Nb−2) θ

+ cos2 θ + cos θ +1 +... + cos(Nb−3) θ
+... +... +... +... +...

+ cos(Nb−1) θ + cos(Nb−2) θ + cos(Nb−3) θ +... +1


(F.8)

Of the N2
b terms in the summation, Nb terms (the diagonal terms with i = j)

are equal to 1. There are Nb − 1 terms with i − j=1, and an additional Nb-1
terms with i− j=-1. There are therefore 2( Nb-1) terms with a magnitude equal
to cos θ. Similarly, there are 2( Nb -2) terms equal to cos 2θ, 2( Nb -3) terms equal
to cos 3θ, etc. The expression for

〈
R2〉 can therefore be written as follows:

〈
R2
〉
= `2

{
Nb + 2(Nb − 1) cos θ + 2(Nb − 2)(cos θ)2 + ... + 2 (cos θ)Nb−1

}
In the more compact notation, we have:

〈
R2
〉
= Nb`

2 + `2
Nb−1

∑
i=1

2 (Nb − i) (cos θ)i (F.9)

Equation F.9 is an exact expression that is valid for any value of Nb. Unfortu-
nately, it’s not a very useful equation. Fortunately, we can get a greatly sim-
plified expression that is very nearly exact for any reasonably large value of
Nb. We are able to do this because cos θ is less than one, so that (cos θ)i rapidly
decreases asi increases. For example, for θ = 71◦ (the value corresponding to
C-C single bonds), (cos θ)i = 1.3x10−5 for i = 10. For large values of Nb, we
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Figure F.4: Bond angle restrictions shown perpendicular and along the axis of
rotation (Newman projection).

only need to consider contributions from values of i which are much smaller
than Nb. A very good approximation is obtained by substituting Nb for Nb − i
and extending the sum to i = ∞, which leads to the following:

〈
R2
〉
= Nb`

2

{
1 + 2

∞

∑
i=1

(cos θ)i

}
(F.10)

At this point we are in a position to use the following standard sum, valid for
any value of x with an absolute magnitude less than 1:

∞

∑
i=1

xi =
x

1− x
(F.11)

Use of this expression with x = cos θ gives (after a little algebraic rearrange-
ment):

〈
R2
〉
= Nb`

2
{

1 + cos θ

1− cos θ

}
(F.12)

For singly bonded carbon along the backbone, θ = 71◦ and
〈

R2〉 = 2Nb`
2.

F.4 Bond Angle Restrictions

The freely rotating model is overly simplistic, because all bond rotation an-
gles cannot be equally likely. At certain angles, functional groups attached to
adjacent carbon atoms are too close to one another, as illustrated here.

Interferences between functional groups cause the free energy to vary as a
function of the bond rotation angle, φ, with an energy vs. φ curve that looks
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Energy

-180 180
0

(degrees)
Viewed along axis of

rotating bond.

gauche - gauche +

trans

Figure F.5: Energy as a function of bond rotation angle.

like the one shown in Figure F.5. The trans configuration, where φ = 0, has the
lowest free energy, because the backbone carbon bonds are as far from each
other as possible in this configuration. Secondary minima in the energy exist
for φ = ±120◦, where there is minimal overlap between the additional groups
bonded to the carbon carbon molecules. These configurations are referred to
as the gauche configurations.

We know that the freely rotating chain model must also be overly simplistic,
because some bond rotation angles (those corresponding to the gauche and
trans configurations, for example) are more likely than others. In this case

〈
R2〉

is given by the following expression, which we present here without proof.

〈
R2
〉
= Nb`

2
{

1 + cos θ

1− cos θ

}{
1 + 〈cos φ〉
1− 〈cos φ〉

}
(F.13)

Here 〈cos φ〉 is the average of cos φ, taking into account the fact that not all
angles are equally likely. Note that 〈cos φ〉 = 0 for the freely rotating chain
model, in which case Eq. F.13 reduces to Eq. F.12.

F.5 Characteristic Ratio

The characteristic ratio, C∞, is defined as the ratio of the actual value of
〈

R2〉
to the value which would be obtained from the freely jointed chain model:

C∞ ≡
〈

R2〉
Nb`2 (F.14)

Each model of chain dimensions has it’s own prediction for the value of C∞.
For a chain with fixed bond angles, comparison to Eq. F.13 gives the following:

C∞ =

{
1 + cos θ

1− cos θ

}{
1 + 〈cos φ〉
1− 〈cos φ〉

}
(F.15)
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1) Exercise: What would the characteristic ratio be for polystyrene if 70%
of the bonds were in trans configurations and the remaining 30% were in
gauche configurations?

2) Solution: We use Eq. F.15 for C∞,with θ = 71◦, the correct bond angle
for singly bonded carbon, which we have along the polystyrene backbone.
Gauche bonds have φ = ±120◦ ( cos φ = −0.5) trans bonds have φ = 0 (
cos φ = 1). With our assumed distribution of gauche and trans bonds we
obtain the following for 〈cos φ〉:

〈cos φ〉 = 0.7 (1) + 0.3 (−0.5) = 0.55

This gives C∞ = 6.9, which is actually a pretty reasonable value. Most poly-
mers with singly bonded carbons along the backbone have a value for C∞
that is between 6 and 10.

3) Exercise: How is the statistical segment length of a vinyl polymer re-
lated to C∞?

4) Solution: The characteristic ratio and statistical segment length are
both defined in terms of an expression for R2. All we need to do is equate
these two expressions (Eqs.5.17 andF.14):

C∞Nb`
2 = Na2 (F.16)

The repeat unit for a vinyl polymer contains two C-C single bonds along the
backbone, so Nb = 2N. Also, single bonds between carbon atoms have a
bond length of 1.54 Å. The statistical segment length is therefore related to
C∞ as follows:

a = 2.18Å
√

C∞ (F.17)
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Figure F.6: Random walk diagram

F.6 Self-Avoiding Random Walks

An isolated polymer molecule in a solvent no longer obeys random walk statis-
tics. If the polymer is surrounded by solvent molecules, these surroundings no
longer look the same as other parts of the same molecule. The chain will adopt
shapes that avoid direct polymer/polymer contacts, and the end-to-end dis-
tance will be larger than the value predicted by random walk models. The rms
end-to-end distance increases with the 0.6 power of the chain length, instead
of the 0.5 power that was obtained for random walk statistics:

R0 = asN0.6 (F.18)

Note: The value of as is not exactly the same as the statistical segment length
describing chain dimensions in pure polymer melts, but it will be close to it.
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G Semicrystalline Polymers

Many polymers of commercial importance are able to crystallize to a certain
extent. The most widespread crystallizable polymers are polyethylene and
isotactic polypropylene. As we will see, crystallization is never complete, and
there is always a certain amorphous fraction in any polymer. For this rea-
son, many of the concepts which apply to amorphous polymers are still valid
for semicrystalline polymers. For example, semicrystalline polymers are of-
ten quite brittle at temperatures below the glass transition temperature of the
amorphous fraction.

In the following pages, we introduce some common semicrystalline polymers,
and discuss their basic structural feature polymers, in addition to kinetic issues
that are important in their processing.

G.1 Structural Hierarchy in Semicrystalline Polymers

The structure of semicrystalline polymers is much more complex than the
structure of amorphous polymers, and our discussion in the following pages
is not as quantitative as our discussion of the random walk configurations of
polymer chains in amorphous polymers. Instead, we illustrate the features
of semicrystalline polymers by considering the following basic structural fea-
tures:

(a) Helices formed by individual polymer molecules

(b) Perfect crystals formed by the lateral packing of these helices

(c) Lamellar crystallites formed by folded helices

(d) Semicrystalline regions formed by stacking of lamellar crystallites

(e) Spherulitic morphologies formed by radial growth of lamellar crystal-
lites

G.2 The Structural Repeat Unit

The molecular structure is an important factor in the ability of a polymeric
material to crystallize. One relevant parameter related to the structure vinyl
polymers is the number of backbone carbons structural repeat unit, which is
distinct from the monomeric repeat unit that is defined in terms of the struc-
ture of the monomer itself. Polyethylene, example, can be viewed as a repeat-
ing string of CH2 units, so there one carbon atom per structural repeat unit, al-
though there are two carbon atoms per monomeric repeat unit. Tacticity needs
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to be accounted for as well. Isotactic vinyl polymers have two backbone car-
bon atoms per structural repeat, because all non-hydrogen substituent groups
are on the same side of the molecule. Syndiotactic vinyl polymers have four
backbone carbon atoms per structural repeat, because the substituent groups
alternate between different sides of the molecule.

1) Exercise: What are the structural repeats for each of the following
polymers:

(a) Poly(tetrafluoroethylene)

(b) Syndiotactic Polypropylene

(c) Isotactic Polypropylene

(d) Atactic Polystyrene

Solution:

(a) The repeating unit here is simply CF2 since I can reconstruct the poly-
mer simply by connecting these units to one another.

(b) The repeating unit here contains 4 backbone carbons and two methyl
groups, since there is a methyl group on every other carbon, and these
methyl groups alternate from one side of the backbone to the other.

(c) In this case there are two backbone carbons and a single methyl group
(a single propylene unit).

(d) Since the polymer is atactic, it has an inherently disordered structure,
with no structural repeat. This is why it is always amorphous.

G.3 Helix Formation

The first step in understanding the structure of crystalline polymer is to un-
derstand the shapes that the polymer molecules take when they pack within
the crystalline structure. The simplest situation is for a molecule like polyethy-
lene, for which the molecules in the crystalline structure are all fully extended,
with all of their bonds in the trans configuration as shown in Figure G.1.

The planar zigzag configuration is one special case of the shapes of polymers
along the chain axis. In the more general case, the backbone carbon atoms all
lie along the a helix that is formed about some central axis. Helices of vinyl
polymers form by rotation about the C-C single bonds which make up the
backbones of the molecules. The curved line in the side view of the planar
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C

C

C

Figure G.1: Diagram of a planar zigzag (left), with the specific geometry for tetra-
hedrally bonded carbon (right). Note that the bond angles appear distorted in the
leftmost portion of the figure because the horizontal and vertical scales are not
necessarily equivalent.)

zigzag in Figure G.1 represents the helix that passes through each of the carbon
atoms in a single molecule in the polyethylene crystal structure.

The general notation describing the helical structure is x ∗ y/z where x, y and
z are defined as follows:

• x: the number of backbone carbons in the structural repeat. This is the
only number that we can get by looking at the molecular structure of the
polymer itself. We need to know the crystal structure to know what y
and z are.

• y: the number of structural repeats per crystallographic repeat. This
means that the product xy gives the number of carbon atoms that repeat
along the chain direction within one unit cell.

• z: the number of turns of the helix per crystallographic repeat.

The planar zigzag can be formally viewed as a 1*2/1 helix, with 3 turns of the
helix shown in Figure G.1. From the top view, we see that all of the backbone
atoms of this helix are in the same plane. More complicated helices form be-
cause of steric interactions between the other substituents that are placed on
the carbon backbones. It’s easy for polyethylene molecules to adopt an all-
trans configuration because the hydrogen atoms are small and don’t interfere
with each other when the polymer chain adopts this particular shape. Fluorine
atoms are larger than hydrogens, however, so poly(tetrafluorethylene) (Teflon
TM) adopts a more complicated, 13/7 helix, which is is shown below in Figure
G.2.
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Figure G.2: Representation of a 13/7 helix.

2) Exercise: What is length of a polyethylene molecule with M = 10,000
g/mole, if the molecule is in all-trans (planar zigzag) configuration.

3) Solution: For bond angle, θ, for singly bonded carbon atoms are 71
◦, and the C-C bond length is 1.54 Å. From the drawing below, we see that
the projected length of this bond along the direction of the zigzag is equal to
1.25 Å. We just need to multiply this length by the number of carbons in the
polyethylene chain, which we get by dividing the molecular weight of 10,000
g/mole by the molecular weight of a single CH2 unit (14 g/mole). This gives
the following for the total length, L:

L = 1.25 Å
(

10, 000 g/mole
14 g/mole

)
= 960 Å

G.4 Crystalline unit cells

The structure of a perfect, three dimensional crystal, is defined by the lateral
packing of polymer helices into repeating structure. As with any crystalline
material, the structure is defined by the unit cell dimensions, and by the con-
tents of the unit cell. The dimensions of the unit cell are defined by three
lengths ( a, b and c) and by three angles ( α, β and γ), as illustrated in Figure
G.3.
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a b

c

c

b a

Figure G.3: Diagram of a crystalline unit cell.

α = β = γ = 90◦

a= 4.946 A

b= 7.418 A

c= 2.546 A

2 helices per unit cell

Figure G.4: Structure of polyethylene I.

The perfect crystal structure of a polymer is defined by the helix type, unit cell
dimensions and by the packing of the helices in the unit cell. Polyethylene can
exist in multiple crystal structures. One of these, referred to as polyethylene I,
is illustrated in Figure G.4. This crystal structure has two 1*2/1 helices packed
into an othorhombic unit cell ( α = β = γ = 90 ◦). As is often the case, the helix
axis corresponds to the c direction of the unit cell.
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Polymer Helix Type a, b, c (Å) α, β, γ structural
unit-
s/cell

polyethylene
I

1*2/1 7.41, 4.95, 2.55 90, 90, 90 4

polyethylene
II

1*2/1 8.09, 4.79, 2.53 90, 107.9, 90 4

poly(tetrafluoroethylene
) I

1*13/6 5.59, 5.59, 16.88 90, 90, 113.3 13

polypropylene
(syndiotac-

tic)

4*2/1 14.50, 5.60, 7.40 90, 90, 90 8

polypropylene
(isotactic)

2*3/1 6.66, 20.78, 6.50 90, 99.6, 90 12

PET 12*1/1 4.56, 5.96, 10.75 98.5, 118, 112
Polyisoprene

(cis 1,4)
8*1/1 12.46, 8.86, 8.1 90, 90, 90 8

4) Exercise: Calculate the density of perfectly crystalline polyethylene,
given assuming the crystal structure from the previous page.

5) Solution: Density is mass/volume, so we just need to calculate the
volume of a unit cell, and the total mass of material included in the unit cell:

1. Unit cell volume: a · b · c= 9.341× 10−23 cm3

2. Mass: 14 g/mole = 2.326× 10−23 g per CH2 unit. Since there are 4 CH2
units in a unit cell, mass per unit cell = 4(2.326× 10−23 g) = 9.302× 10−23 g.

3. Density = mass/volume = 0.996 g/cm 3.

Note that the density is close to 1 g/cm 3, which is generally true for most
polymers.

G.5 Stiffness of Polymer Single Crystals

Single crystal polyethylene has the following calculated values for the modu-
lus along the 3 crystal axes:

• E=315 GPa along c axis

• E=8.0 GPa along a axis

• E=9.9 GPa along b axis

240



G SEMICRYSTALLINE POLYMERS G.6 Chain Folding

Figure G.5: Macromol. 23, 2365-2370 (1990).

(crystal thickness)

Figure G.6: Diagram of polymer chain folding

Amorphous fraction: E=0.001 GPa

The actual modulus is almost always much lower than this because of imper-
fect crsytal alignment, chain folding and the presence of an amorphous frac-
tion. See the following pages for details.

G.6 Chain Folding

The solid line in this animation represents the axis of a helix. As the polymer
crystallizes, the helix folds back and forth on itself, producing a flat, plate-
like lamellar crystallite. The chain folds are energetically unfavorable - the
configuration with the lowest free energy would be a for the helices to pack
in a completely extended manner, with no chain folds at all. However, the
chain-folded structure is favored kinetically. Thin crystallites (low values of
the crystal thickness, λ), are able to form much more quickly than crystallites
with high values of λ.

G.6.1 Models of chain folding

These drawings illustrate two extreme views of the structure of chain folded
crystals. In the adjacent reentry model, the molecules are assumed to fold

241



G.6 Chain Folding G SEMICRYSTALLINE POLYMERS

Random Switchboard Adjacent reentry

Figure G.7: Extreme views of chain folded crystals

Crystallites

Amporphous region

Tie molecules

Figure G.8: Lamellar crystallites

back on themselves in a very well-organized way. In the random switchboard
model, chains which leave the crystal at the tops and bottom surfaces reenter
the crystal at random positions. Reality lies somewhere between these two
extremes.

G.6.2 Amorphous Fraction and Tie Molecules

Isolated lamellar crystallites can be obtained from polymers crystallized from
dilute solution, but melt-crystallized polymers often have structures similar
to what is illustrated here. The lamellar, platelike crystallites are separated by
amorphous regions. Individual crystallites are bridged by tie molecules. These
tie molecules span the amorphous region, and are incorporated into adjacent
crystallites.

G.6.3 Percent Crystallinity for Lamellar Crystallites

The amorphous fraction in a semicrystalline polymer resides between the
lamellar crystallites as depicted here. If the crystallites are assumed to be per-
fectly crystalline, the percent crystallinity is given by the ratio of the crystal
thickness ( λc) to the crystal period ( dc). The crystal period is determined
from x-ray scattering measurements. The overall percent crystallintity is de-
termined by measuring the density of the sample.
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Figure G.9: Diagram of percent crystallinity of lamellar crystallites

Spherulite boundary

Lamellar crystallites

Figure G.10: A representation of a spherulite

G.7 Spherulitic morphologies

A spherulite originates from the radial growth of lamellar crystallites from
a central nucleation point. Not all semicrystalline polymers have spherulitic
morphologies, but this morphology is quite common.

During crystallization, the spherulite grows radially outward, with each
branch extending in the growth direction while maintinaing a constant crystal
thickness, λc.

This is the geometric requirement for addition of new lamellae; the additional
space taken up by the spherulite as a whole is filled by new lamellae.

Spherulite Nucleus

growth
direction

Figure G.11: Formation of a spherulite
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Figure G.12: Geometric representation of a spherulite

Figure G.13: Video of the formation of a spherulite
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Figure G.14: Interactive model of birefringence

G.8 Birefringence

(a) Light emerging from the sample for ψ = 45º and
∆φ = 90º is said to be circularly polarized. Why is this a
sensible description of the polarization state you
observe under these circumstances?

(b) For what values of ψ is no light at all transmitted
through the analyzer?

(c) The maximum light transmission through the analyzer
is obtained for ϕ = 45º and ∆φ = 180º . What fraction of
the light emerging from the sample is transmitted under
these circumstances?

G.8.1 Birefringence and Radial Symmetry

http://bly.colorado.edu/lcphysics/textures/

If the object between the polarizer and analyzer has spherical symmetry, as
is the case with these liquid crystalline droplets, the ’Maltese cross’ pattern
shown here will be obtained. Dark patches correspond to Ψ= 0 and 90°, and
the bright patches are obtained at Ψ= ± 45°.
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Figure G.15: Diagram showing birefringence

G.9 Growth of a Lamellar Crystallite

The overall free energy change ( ∆F) associated with the formation of a small
crystallite has two components:

(a) A surface energy component, which is always positive.

(b) A bulk free energy component, which is negative for temperatures below
the equilibrium melting temperature, T0

m.

The bulk component can be written in terms of the undercooling ( T0
m − T)

by writing the bulk free energy change per unit volume ( ∆ f c) in terms of its
entropic and enthalpic components:

∆ fc = ∆hc − T∆sc (G.1)

Here ∆hc and ∆sc are the enthalpy and entropy of melting for a perfect crystal,
normalized by the volume of the crystal. We can use the fact that ∆ fc = 0
when T = T0

m to eliminate ∆sc from the equation and write ∆ fc in terms of the
enthalpy of melting and the undercooling, ∆T, defined as T0

m − T:

∆ fc = −
∆hc∆T

Tm
(G.2)

Note that we have used the following sign conventions (as is generally the
case):

• ∆hc is the enthalpy required to melt the crystal, and is always a positive
number.

• From its definition, ∆T is positive whenever the temperature is below
the equilibrium melting temperature.
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a' b'

 Growth
Direction

 Fold
Surface

Lateral
Surface

n=4

Figure G.16: Schematic representation of a growing lamellar crystallite.

• ∆ fc is the free energy difference between the crystal and the amorphous
material, and is negative for temperatures below the equilibrium melting
temperature.

The growth of a lamellar crystallite occurs by the addition of molecular strands
(typically corresponding to the c axis of the cyrstalline structure) to the grow-
ing crystallite as illustrated in Figure G.16. In addition to the

If we account for the surface energies associated with the new crystal/amor-
phous interface that is created, the increase in free energy for adding n
"strands" to the face of a lamellar crystallite is given by the following expres-
sion:

∆F = 2a′λcγs + 2na′b′γe + na′b′λc∆ fc (G.3)

If we assume that n is large we can neglect the term involving γs, so that ∆F <

0 when ∆ fc < 2γe
λc

. With ∆ fc given by Eq. G.2, we can rewrite the condition
that ∆F < 0 in the following form:

λc >
2γeT0

m
∆hc∆T

(G.4)

A crystal will grow by the addition of additional strands when this criterion
is met. Thick crystals (high λc) are thermodynamically favorable, but thin
crystals (low λc) are kinetically favorable. In this model, the crystal thick-
ness which is actually obtained is the lowest, thermodynamically possible
value. The inequality from the previous page therefore becomes an approx-
imate equality:

λc ≈
2γeT0

m
∆h∆T

(G.5)
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c

Figure G.17: Graphical representation of the crystal thickness prediction from Eq.
G.5.

Figure G.18: Melting temp ( Tm) as a function of the crystallization temperature,
Tc.

Because thick crystals are thermodynamically more stable than thin crystals,
the thick crystals will melt at a slightly higher temperature than thin crystals.
One therefore expects a relationship between the temperature at which the
crystals will form, and the temperature at which the crystals will melt. Crys-
tals crystallized at higher temperatures will also melt at higher temperatures.
At an undercooling of zero the actual melting temperature, Tm, will be equal to
the equilibrium melting temperature. For very low undercoolings, however,
the crystallization rate becomes very slow, so crystallization will never take
place at the exact equilibrium melting temperature. Values of the equilibrium
melting temperature are obtained from measurements of Tm at higher under-
coolings, and extrapolating to ∆T = 0 as illustrated in the following graph:

G.10 Density of Semicrystalline Polymers

The percent crystallinity in a polymer sample is generally determined by mea-
suring the density of the material. A linear relationship between density and
percent crystallinity is assumed, so that the following relationship holds:

% Crystallinity =
ρ− ρamorphous

ρcrystalline − ρamorphous
x100 (G.6)
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(density)

% crystallinity

Figure G.19: Density vs percent crystallinity
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H Solutions and Blends

We now move from our discussion of the shapes of individual polymer
molecules in a homogeneous, one component system, to the behavior of so-
lutions and blends consisting of different types of molecules that have been
mixed together. We are interested in studying these systems for many reasons,
including the following:

(a) Characterization: many of the properties of polymer molecules are de-
termined by the properties of polymer solutions.

(b) Processing: many applications of polymers involve require that the poly-
mer molecules be dissolved in an appropriate solvent.

(c) Improved materials: new materials with improved properties can often
be formed by blending or "alloying" different polymers.

(d) Recycling: polymers need to be separated before they can be recycled
because the different polymers do not mix favorably.

The key quantity when discussing thermodynamics of polymer solutions
(polymer + small-molecule solvent) and polymer blends (polymer A + poly-
mer B) is the free energy of mixing. We therefore begin with a discussion of
polymer solution thermodynamics. In general, we consider the case where we
mix na A molecules with a degree of polymerization Na with nb B molecules
with a degree of polymerization Nb. Polymer solutions will correspond to the
case where one of the degrees of polymerization is very small (typically 1).
We will make the assumption that the sizes of the repeat units for the com-
ponents of the mixture are identical. This assumption is not as restrictive as
it would initially appear, since one can always define "effective" repeat units
with the desired volume. In this sense, Na and Nb are determined by the rela-
tive molecular volumes of the components in the mixture, and are defined in
terms of some reference volume.

1) Exercise: The room temperature densities of polystyrene and toluene
are 1.05 g/cm3and 0.87 g/cm3, respectively. What reference volume, V0,
should we use to characterize the thermodynamics of polystyrene solutions
in toluene? What degrees of polymerization would characterize a solution
where the polystyrene molecular weight is 100,000 g/mole?

2) Solution: The obvious reference volume in this case is the volume of
a toluene molecule, which we take as having N=1. This volume is obtained
from the density and molecular weight of toluene. Toluene ( C6H8) has a
molecular weight of 92 g/mole.
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V0 =

(
92 g
mole

)(
cm3

0.87 g

)
= 106 cm3/mole

Note that we have used the molar volume for V0. This convention will be
followed throughout our discussion.

The value of N for the polymer molecules will be given by the molecular
volume, divided by the reference volume:

Npolystyrene =

(
100, 000 g

mole

)(
cm3

1.05 g

)(
mole

106 cm3

)
= 898

In our discussion of the thermodynamics of mixtures, we will refer to N as the
number of "segments", defined in terms of a reference volume as described
here. In some cases this reference volume will correspond to a repeat unit of
the polymer, but this does not need to be the case in general.

H.1 Chemical Potentials and Free Energy of Mixing

The chemical potential of A molecules, µa, is defined as the free energy
required to add an additional ’A’ molecule to the system. Because all A
molecules are equivalent, it is also equal to the free energy per A molecule
in the system. The following expressions are helpful

F = naµa + nbµb (H.1)

∂F
∂na

∣∣∣
nb

= µa

∂F
∂nb

∣∣∣
na

= µb
(H.2)

The derivative with respect to na is taken with nb held constant, and vice versa.
Note that F is the total extensive free energy of the system, since it increases as
the numbers of A and B molecules ( na and nb) increases.

The chemical potentials of A and B molecules of the pure components are de-
fined as u0

a and u0
b. The free energy of the two components before mixing is

therefore given by:

Funmixed = naµ0
a + nbµ0

b (H.3)

The free energy of mixing is equal to the difference in the free energies of the
mixed and unmixed systems:
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Figure H.1: Animation of the chemical potential of a molecule

∆Fmix = F− Funmixed = naµa +nbµb− (naµ0
a +nbµ0

b) = na(µa−µ0
a)+nb(µb−µ0

b)
(H.4)

Because we are only interested in changes in chemical potentials due to mix-
ing, we can set the chemical potentials of the pure, unmixed components to
zero ( µ0

a = µ0
b = 0).

By defining the chemical potentials of the pure components as zero, we obtain:

∆Fmix = naµa + nbµb (H.5)

Equation H.5 is completely general, and valid for mixtures of molecules of
any size. It’s not that useful, however, because we generally don’t write down
values of na and nb when we want to specify the composition of a multicom-
ponent mixture. For mixtures of small molecules (metal alloys, for example),
we commonly use mole fractions, Xa and Xb, to specify the composition:

Xa =
na

na+nb
Xb = nb

na+nb

(H.6)

This makes sense for metals because the molar volumes of the different com-
ponents are not that different from one another. In polymer systems, however,
we are often dealing with systems where the components have molar volumes
that can differ by orders of magnitude. This is the situation if we are inter-
ested in the solubility of a high molecular weight polymer (which can have a
molecular weight of several hundred thousand g/mole) in a solvent (which
will typically have a molecular weight of ≈ 100 g/mole). Organic solutions
are typically specified by the weight fractions of the different components. In
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discussions of polymer solution thermodynamics it is more common to work
in terms of volume fractions of the different components in the systems.

The concepts in this section can be easily extended to systems with more than
two components, but we confine ourselves here to binary solutions of just two
components: A molecules of length Na and B molecules of length Nb. In our
discussion of polymer thermodynamics it is important to keep in mind Na Nb
are not necessarily true degrees of polymerization as defined earlier in this
text. Instead they are obtained by dividing the molar volumes of the different
components by some reference volume, V0. For polymer/solvent mixtures this
reference volume is typically taken as the molar volume of the solvent, and for
polymer/polymer mixtures it is typically taken as the volume per repeat unit
for one of the polymers. The total volume, V, and volume fractions, φa and φb
are given by the following expressions:

V = naNaV0 + nbNbV0 (H.7)

φa =
na NaV0

V
φb = nb NbV0

V
(H.8)

The free energy of mixing per unit volume, ∆ fmix, is obtained from ∆Fmix by
dividing by the volume of the system:

∆ fmix =
naµa + nbµb

naNaV0 + nbNbV0
=

µaφa

NaV0
+

µbφb
NbV0

(H.9)

By rearranging the equation at the bottom of the previous page we obtain:

∆ fmixV0 =
µaφa

Na
+

µbφb
Nb

(H.10)

The quantities ∆ fmix, µa/Na and µb/Nb all depend on the composition of the
material. The relationship between these quantities is illustrated by the tan-
gent construction shown in Figure H.2, where the composition dependence of
∆ fmix is plotted as a function of φb for a hypothetical material. For a given
composition (denoted φ′b in Figure H.2), the chemcial potentials are obtained
by first drawing a tangent to the free energy curve at φb = φ′b. The value of
µa/Na is determined by extrapolating this tangent line to φb = 0 and µa/Na
is obtained by extrapolating the tangent line to φb = 1. This result is consis-
tent with Eq. H.10, which shows that normalized free energy of mixing at a
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Figure H.2: Relationship of the free energy of mixing to the chemical potentials.

certain composition is determined by the weighted average of the normalized
chemical potentials. As a result a straight line drawn between the normalized
chemical potentials on the left and right axes must hit the free energy curve at
φb = φ′b.

To fully validate the tangent construction illustrated in Figure H.2 we still need
to show that the straight line between the chemical potentials must be equal to
the slope of the free energy curve. This can done in formal terms by combining
Eqs. H.2 and H.8, which after simplification leads to the following relation-
ship:

∂(∆ fmixV0)

∂φb
=

µb
Nb
− µa

Na
= −∂(∆ fmixV0)

∂φa
(H.11)

The fact that the tangent must give the difference between µb/Nb and µa/Nb
makes sense conceptually, because the only way changing the composition by
some amount requires that an A segment be replaced by a B segment.

H.2 Ideal Entropy of Mixing for Polymers

For small molecules the ideal free energy of mixing is given by the following
expression:

∆sidealV0

R
= −Xa ln Xb − Xb ln Xb (H.12)

The quantity sidealV0 is the entropy of mixing per mole of molecules. If the
molar volumes of the A and B molecules are the same, than we can simply
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replace the mole fractions, Xa and Xb with the corresponding volume fractions,
φa and φb. The entropy of mixing per molecule is independent of the size of
the molecule. Therefore, the entropy of mixing per repeat unit is smaller than
the entropy of mixing per molecule by a factor of N, where N is the degree of
polymerization. In general, we have the following expression for the ideal free
energy of mixing per volume for polymers with molar volumes of NaV0 and
NbV0:

sidealV0

R
= −φa ln φa

Na
− φb ln φb

Nb
(H.13)

H.3 Idealized Enthalpy of Mixing

The key result is that the entropy of mixing for a given volume is much smaller
for large molecules than it is for small molecules. This result explains why dif-
ferent types of polymers almost never mix with one another in the liquid state.
The driving force for two liquids to mix is normally the entropy of mixing, but
this driving force is very low for mixtures of very large polymer molecules.
In fact, the entropy of mixing for polymer mixtures is sometimes negative.
While the ideal entropy of mixing must be positive, it is very small, and can
be overwhelmeed by non-ideal contributions to the entropy of mixing which
can be positive or negative. Before discussing these effects, however, we will
continue in our derivation of the Flory Huggins equation for the free energy
of mixing. The Flory-Huggins theory combines the ideal free energy of mix-
ing with a very simple form for the enthalpy of mixing. Unlike the entropy of
mixing, the enthalpy of mixing is assumed to be independent of the size of the
molecules. We can therefore use small molecules to illustrate the origins of the
equation for the enthalpy of mixing.

In this example, the blue square is placed into an environment where one of
its four nearest neighbors is blue, and three are red. Red-blue contacts have an
energy (or enthalpy) of Eab, red-red contacts have an energy of Eaa, and blue-
blue contacts have an energy of Ebb. The enthalpy change, ∆H, associated with
the removal of the square from a pure blue phase on the left (4 blue neighbors)
to the mixture on the right (1 blue neighbor and 3 red neighbors) is therefore
given by the following formula:

∆H = 3Eab + Ebb − 4Ebb = 3(Eab − Ebb) (H.14)

How do we calculate the energy of a randomly mixed collection of A and B
molecules? We begin by assuming that the energy of an A-A contact is Eaa, the
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Figure H.3: An animated simulation of mixing

Figure H.4: Pictoral representations of mixing

Figure H.5: Diagram showing contacts
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energy of an B-B contact is Ebb, and the energy of an A-B contact is Eab. Also
assume that each molecule z nearest neighbors ( z = 4 for the 2-dimensional
array of squares shown above.) The number of A-B contacts in a mixture of na
A molecules and nb B molecules is given by:

naa = nazpa/2
nbb = nbzpb/2

nab = nazpb

(H.15)

where pa is the probability that a nearest neighbor is an A molecule. The factor
of 2 in the expressions for naa and nbb is needed to avoid double counting. (For
example, if na =2, there is only one interaction between the two molecules, not
2.) Now we invoke the mean field (or random mixing) approximation, which
is that pa = φa, and pb = φb. We obtain the follwing.

naa = nazφa/2
nbb = nbzφb/2

nab = nazφb

(H.16)

The energy of the mixed state is obtained by multiplying the numbers of dif-
ferent contacts by their energy:

Emixed = Eaanaa + Ebbnbb + Eabnab (H.17)

Substitution for naa, nbb and nab gives the following:

Emixed = Eaanazφa/2 + Ebbnbzφb/2 + Eabnazφb (H.18)

The energy of the unmixed state is obtained in a similar fashion, remembering
that in this state all A’s are surrounded by other A’s, and all B’s are surrounded
by other B’s:

Eunmixed = Eaanaz/2 + Ebbnbz/2 (H.19)
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The energy change due to mixing is obtained by subtracting the energy of the
mixed state from the energy of the mixed state:

∆Emix = Emixed − Eunmixed =
Eaanazφa

2
+

Ebbnbzφb
2

+

Eabnazφb −
Eaanaz

2
− Ebbnbz

2
(H.20)

This expression can be further simplified by recalling that na = φan and nb =
φbn, where n is the total number of molecules ( n = na + nb):

∆Emix = nz

[
Eaaφ2

a
2

+
Ebbφ2

b
2

+ Eabφaφb −
Eaaφa

2
− Ebbφb

2

]
(H.21)

After some rearrangement we obtain the following expression:

∆Emix = nzφaφb[Eab −
Eaa + Ebb

2
] (H.22)

Note that the mixing energy is positive if the energy of a-b contacts is larger
than the average energy of a-a and b-b contacts. Because z, Eaa, Ebb, and Eab are
actually not measurable quantities, it is common to lump them together into a
parameter called the Chi parameter represented by the Greek letter ’chi’:

χ ≡ z
kBT

[
Eab −

Eaa + Ebb
2

]
(H.23)

With this definition of χ, the energy of mixing for A and B molecules (with the
same size) is:

∆Hmix = ∆Emix = RTχnφaφb (H.24)
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Strictly speaking, the ’enthalpy’ and the ’energy’ of a system are not the same
thing. The Gibbs free energy involves the enthalpy, and is the appropriate ther-
modynamic quantity at a fixed temperature and pressure. The Helmholtz free
energy involves the energy, and is the appropriate thermodynamic quantity at
fixed temperature and volume. For compressible systems the two quantities
differ slightly. We use the expression from the previous page for the extensive
enthalpy of mixing, and divide by the volume of the system (nV0) to obtain
the intensive enthalpy of mixing:

∆hmix =
∆Hmix

nV0
=

RTχφaφb
v0

(H.25)

Normalizing as we did for the ideal entropy of mixing gives:

∆hmixV0

RT
= χφaφb (H.26)

H.4 Flory-Huggins Free Energy of Mixing

The most commonly used expression used to describe the free energy of mix-
ing for polymer/polymer and polymer/solvent mixtures combines mean-field
enthalpy of mixing with the ideal combinatorial entropy of mixing:

∆ fmix = ∆hmix − T∆sideal (H.27)

Combining these forms for the enthalpy and entropy gives the following ex-
pression, referred to as the Flory-Huggins free energy of mixing:

∆ fmixV0

RT
=

φa ln φ

Na
+

φb ln φb
Nb

+ χφaφb (H.28)

It is important to recognize that many assumptions went into the derivation
of this equation, and that they can’t possibly all be true. Nevertheless, this
equation is very commonly used in polymer science, and needs to be under-
stood. In fact, this equation is often used as a definition for χ. Based on our
earlier definition of χ in terms of energetic parameters, one would expect that
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Figure H.6: Regular solution form or for the free energy of mixing of small
molecules.

it’s magnitude would decrease as the temperature increases. In fact, the actual
free energy of mixing can have very different behavior, and the free energy
of mixing is generally accurately described by the Flory- Huggins expression
only when χ is allowed to vary with temperature and composition. We begin
on the next page by constructing phase diagrams, with the assumption that
the free energy of mixing is adequately described by a value of χ that is inde-
pendent of composition. Free energy curves for Na = Nb = 1 are shown in
Figure H.6 for χ ranging from 0 to 4. For Na = Nb = 1, the critical value of χ
is equal to 2. When χ is larger than this critical value there will be a region of
compositions where the free energy curve has a negative curvature in the free
energy curve.

H.5 The Coexistence (binodal) and Spinodal Curves

The critical value of χ decreases as Na and Nb increase. In addition, the free
energy curves are no longer symmetric about φb = 0.5 when Na 6= Nb. Both
of these points are illustrated in Figure H.7, where we plot the Flory-Huggins
free energy of mixing (Eq. H.28) for Na = 200, Nb = 500 and χ =0.012. A
two-phase region will exist for average compositions of the alloy that are be-
tween the compositions between φ1 and φ2, the two compositions defined by
the common tangent construction in Figure H.7. Because the tangent to the
curve at these two compositions are identical, they have the same values of µa
and µb, which is a requirement for equilibrium. In addition, the average free
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Figure H.7: Free energy of mixing for a system with asymmetric molecular sizes
in the two phase regime.

energy for a mixture of these two phases (dashed line in Figure H.7) is less than
the free energy for a homogenous phase of this average composition (solid line
in Figure H.7). By plotting these two composition as a function of χ, we obtain
the binodal curve shown as the solid line in Figure H.8. The binodal curve is
also referred to as the coexistence curve because it shows the compositions of
the phases that are in equilibrium with one another in the two-phase region of
the phase diagram.

The spinodal curve (or stability limit) represents the boundary in the phase
diagram where the free energy of mixing changes from a positive curvature to
a negative curvature. It occurs when χ = χs, where χs defines the spinodal
curve. For Na = 200 and Nb = 300 the spinodal curve is shown as the dashed
line in Figure H.8. The change in curvature from positive to negative values
occurs when the second derivative of the free energy with respect to compo-
sition is equal to zero. We obtain the following expression for χs by setting
φb = 1− φa in the free energy expression:

∂2

∂φ2
a

(
φa ln φa

Na
+

(1− φa) (ln 1− φa)

Nb
+ χsφa (1− φa)

)
= 0 (H.29)

Evaluating the second derivative leads to the following:
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Figure H.8: Binodal and spinodal curves for Na = 200 and Nb = 300.

1
φaNa

+
1

(1− φa)Nb
− 2χs = 0 (H.30)

which can be rearranged to give the following for χs:

χs =
1

2φaNa
+

1
2φbNb

(H.31)

H.6 Critical Point

The phase diagrams obtained from the free energy of mixing expression show
under what conditions polymeric liquids are completely miscible, and under
what conditions phase separation will occur. The critical point is the point on
the phase diagram where a liquid is just beginning to undergo phase separa-
tion. Mathematically, the critical point corresponds to the point on the spin-
odal curve where χs has the lowest possible value. We obtain this point by
setting the derivative of χs to zero:

∂

∂φa

(
1

2φaNa
+

1
2(1− φa)Nb

)
= 0 (H.32)

262



H SOLUTIONS AND BLENDS H.7 Spinodal Decomposition

The solution to this equation is given by φa = φa,crit, at which point χs is equal
to χcrit:

φa,crit =

√
Nb√

Nb +
√

Na
(H.33)

χcrit =
Na + Nb + 2

√
NaNb

2NaNb
(H.34)

3) Exercise: The value of for blends of polystyrene (PS) and poly(methyl
methacrylate) (PMMA) is 0.037 at 170 °C, based on a reference volume equal
to the reference volume of a polystyrene repeat unit. Suppose monodisperse
samples of PS and PMMA of equal molecular weights are mixed with one an-
other. What range of molecular weights will be completely miscible with one
another at 170 °C? (Assume the densities of the two polymers are identical).

4) Solution: First we calculate χcrit:

χcrit =
Na + Nb + 2

√
NaNb

2NaNb
=

2
N

(H.35)

for Na = Nb = N

The polymers are completely miscible for χ< χcrit, which occurs when N <
2/ χ. With χ= 0.037, we have complete miscibility for N < 54. The repeat
unit molecular weight for polystyrene is 104 g/mol, so the critical molecular
weight below which the polymers are completely miscible is 54*104 g/mol =
5616 g/mol.

H.7 Spinodal Decomposition

"Spinodal Decomposition" is the mechanism of phase separation where small
perturbations in the composition of the single phase grow because this de-
creases the overall free energy. This happens inside the spinodal curve defined
previously. The microstructure is generally characterized by a well defined
wavelenth, as illustrated below.
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Figure H.9: Characteristic microstructures for phase separation by spinodal de-
compositon (left) and nucleation and growth (right).

Figure H.10: Phase diagrams in temperature space.

H.8 Phase Diagrams in Temperature Space

Actual values of χ for real systems are generally obtained by fitting the Flory
Huggins expression to the free energy of mixing to actual experimental data.
This procedure can give actual values of χ which either increase or decreaes
with increasing temperature. Smaller values of χ (where mixing is favored)
can therefore be obtained at either high or low temperatures, giving the fol-
lowing two types of phase diagrams:

5) Exercise: The following equation describes the temperature depen-
dence of χ for the PMMA/butanol polymer/solvent system:

χ = 1.45− 0.0115T (H.36)

Here T is expressed in ◦C. For what range of temperatures will high molecu-
lar weight PMMA completely dissolve in butanol?
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6) Solution: From the phase diagram, we see that the two components
are completely miscible for χ < χcrit. If the A phase is the solvent ( Na = 1)
we obtain the following for χcrit:

χcrit =
1 + Nb + 2

√
Nb

2Nb
(H.37)

As the polymer molecular weight becomes very large ( Nb→∞ ), χcrit → 0.5.
The temperature at which χ is equal to this critical value of 0.5 for polymer
solutions is called the theta temperature. It corresponds to the temperature
at a theoretical polymer with an infinite molecular weight is just beginning
to precipitate from solution. The general condition for complete miscibility
for a polymer/solvent system, for the case where the polymer has a very
high molecular weight, is given by the requirement that χ< 0.5. For the data
given for the PMMA/Butanol system, this occurs for T > 82.6 ◦C. Because χ
decreases with increasing temperature, this system exhibits an upper critical
solution temperature (UCST).

A cautionary note: Note that the polymer volume fraction at the critical point
is very low (i.e., φa,crit is very close to 1 for Nb>> Na). The detailed predictions
of the Flory Huggins theory will not be accurate in this regime, for reasons
that are discussed more fully in the section on dilute solution thermodynam-
ics.

H.9 Chemical Potentials

Recall that the Chemical Potentials of species A is determined by differentiat-
ing the extensive free energy with respect to the number of A molecules in the
system. The extensive free energy is obtained by multiplying the free energy
density, f, by the volume of the system, V. For a binary mixture of A and B
polymers we have:

∆ fmix =
RT
v0

{
φa ln φa

Na
+

φb ln φb
Nb

+ χφaφb

}
V (H.38)

Using the expressions for φa and φb (Eq. H.8) and V (Eq. H.7) we have:

∆Fmix
RT

= {na ln φa + nb ln φb + χnaNaφb} (H.39)
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We are now in a position to obtain expressions for the chemical potentials by
differentiating the extensive free energy of mixing. We make the usual as-
sumption that the chemical potentials of the pure components are equal to
zero (activities of the pure components equal to one):

µa =
∂∆Fmix

∂na
= RT

∂

∂na
(na ln φa + nb ln φb + χnaNaφb) (H.40)

In this way we obtain the following result:

µa

RT
= ln φa + φb

(
1− Na

Nb

)
+ χNaφ2

b (H.41)

When discussing polymer/solvent mixtures we replace the ’a’ and ’b’ sub-
scripts with ’p’ (for polymer) and ’s’ (for solvent). In addition, we take Ns
= 1. Formally, Np is the ratio of the polymer volume to the solvent volume.
With these substitutions, we obtain the following expression for µs, the sol-
vent chemical potential, which is valid for all concentrations:

µs

RT
= ln(1− φp) + φp

(
1− 1

Np

)
+ χφ2

p (H.42)

H.9.1 Limiting case for high molecular weight polymer

For Np → ∞ the solvent chemical potential reduces to µ∞
s :

µ∞
s

RT
= ln(1− φp) + φp + χφ2

p (H.43)

In addition the critical point from Eqs. H.33 and H.34 occurs at φp = 0 and
χ = 0.5. This means that for χ > 0.5 pure solvent will be in equilibrium with
a phase that contains both polymer and solvent. The polymer volume fraction
in this phase is determined from the requirement that the solvent chemical
potential must be zero. In other words, if a chunk of high molecular weight
polymer is immersed in a solvent, solvent diffuses into the polymer until φp
decreases to the point where µ∞

s = 0. In general, this solution must be solved
numerically. In Figure H.11 we plot the concentration dependence of µ∞

s for
χ = 0, χ = 0.5 and χ = 1.
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Figure H.11: Concentration dependence of the solvent chemical potential from
Eq.H.43.

H.9.2 Limiting case for dilute solutions

For small values of φp the log term can be expanded as follows:

ln(1− φp) = −φp −
φ2

p

2
− ... (H.44)

Retaining only the first two terms in the expansion gives the following for the
solvent chemical potential:

µs

RT
= −

φp

N
+ (χ− 1/2) φ2

p (H.45)

7) Exercise: What is the polymer volume fraction for a polymer solution
with a concentration of 0.05 g/cm 3? Assume the solvent has a density, ρs, of
0.85 g/cm 3 and the polymer has a density, ρp, of 1.1 g/cm 3 and there is no
volume change on mixing.

8) Solution: We just need to calculate the total weight of solution in a
volume of 1 cm3:

c = φpρp = 0.05(1.1 g/cm3) = 0.055g/cm3 (H.46)
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Figure H.12: Diagram demonstrating the principles of osmotic pressure.

Note: Actual solution concentrations are generally reported as weight of
polymer per total volume of solution - the quantity that we refer to as c.
From a theoretical standpoint, it is generally more convenient to use the poly-
mer volume fraction, fc. These quantities are linearly related to one another
through the polymer density, as illustrated here. The solvent density is not
needed for this calculation, although it is needed to determine the ratio of
polymer to solvent.

H.10 Osmotic Pressure

The concept of osmotic pressure can be illustrated by considering the opera-
tion of the membrane osmometer illustrated conceptually in Figure H.12. The
device consists of a polymer/solvent mixture that is separated from a bath of
pure solvent by a membrane that is permeable to solvent but impermeable to
the polymer. The chemical potential of the pure solvent is zero, by definition.
Because the solvent chemical potential in the polymer/solvent mixture is less
than zero, there is a driving force for solvent to move into this side of the mem-
brane from the pure solvent side. Solvent will continue to move into this side
of the device until the hydrostatic pressure generated by the increased depth
of the liquid layer provides counteracts the driving force associated with the
chemical potential balance. This pressure is the osmotic pressure, and is ob-
tained by dividing the chemical potential difference by the solvent volume:

Π = −µs/Vs (H.47)

One important aspect of an osmotic pressure measurement is that it can be
used to provide a direct measure of the number average molecular weight of
the polymer. Osmotic pressure effects are important in many other situations
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as well. For example, the osmotic pressure is the minimum pressure required
to purify a solution by forcing it through a membrane. The osmotic pressure of
aqueous solutions is also important in a wide variety of situations in biology.
The height of many trees is limited by the maximum osmotic pressure that can
be sustained in the leaves, since this is the driving force that draws water to the
upper reaches of the tree. Here we explore these phenomena in more detail,
and develop some quantitative descriptions of the osmotic pressure.

By combining the Flory-Huggins expression for the solvent chemical potential
(Eq. H.42) with the definition of the osmotic pressure (Eq. H.47), we obtain the
following expression for Π:

Π =
RT
Vs

(
− ln(1− φp)− φp

(
1− 1

Np

)
− χφ2

p

)
(H.48)

If Np is large the osmotic pressure depends only on the polymer concentration,
and not on the degree of polymerization. The following result is obtained for
Np >>1:

Π =
RT
Vs

(
− ln(1− φp)− φp − χφ2

p

)
(H.49)

H.10.1 Osmometry for Molecular Weight Determination

The number average molecular weight can be obtained by measuring the os-
motic pressure of a dilute polymer solution. Using the dilute solution form
of the Flory-Huggins expression for the solvent chemical potential (Eq. H.45)
gives the following for Π:

Π
RT

=
φp

NpVs
+ (1/2− χ)

φ2
p

Vs
(H.50)

The polymer volume fraction and overall solution volume (V) are given by the
following expressions:

φp =
npNpVs

V
(H.51)
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Use of this expression for φp gives the following for π:

Π
RT

=
np

V
+ (0.5− χ)N2

pVs

(np

V

)2
+ ... (H.52)

Here it is helpful to rewrite np/V in the following way:

np

V
=
(w

V

) (np

w

)
=

C
Mn

(H.53)

where c is simply the polymer concentration (kg/m 3 in SI units, g/cm 3 in the
units that are more commonly used) and Mn is the number average molecular
weight (kg/mole in SI units). The osmotic pressure is therefore related to the
number average molecular weight and concentration as follows:

Π
RT

=
C

Mn
+ (0.5− χ)N2

pVs

(
1

Mn

)2
C2 + ... (H.54)

This is expression is often written as a virial expansion in powers of the con-
centration:

Π
RT

=
C

Mn
+ A2C2 + A3C3 + ... (H.55)

A2 is the second virial coefficient, which describes effective two-body interac-
tions between polymer segments within the solvent. A2 = 0 for χ = 0.5, which
means that the polymer chain does not ’see’ itself under these conditions. For
χ = 0.5, the polymer chain behaves as a random walk, with chain dimen-
sions very similar to what is obtained for the pure, amorphous polymer in the
absence of solvent. For χ > 0.5, polymer/polymer contacts are more favor-
able than polymer/solvent contacts. Under these conditions, high molecular
weight polymers will not dissolve.

H.10.2 Scaling Theory of Osmotic Pressure

The previous derivation of the expressions for the osmotic pressure are useful,
but they are not packed with physical insight regarding the actual meaning
of osmotic pressure. Some simple physical arguments are more useful in this
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Figure H.13: Polymer solution at a concentration less than the overlap concentra-
tion, c∗. At c∗ the spheres overlap and completely fill the space.

sense. We can start by making an analogy to the ideal gas law, which must be
valid in the dilute regime. We start with the familiar ideal gas law:

PV = nRT (H.56)

If we replace the pressure, P, with the osmotic pressure, Π, and replace the
number of moles of gas molecules, n, with the number of polymer molecules
np. By equating np/V with C/Mn (Eq. H.53), we recover the leading term in
virial expansion for the osmotic pressure (Eq. H.55):

Π =
CRT
Mn

(H.57)

In the dilute regime, molecular collisions are rare, and the pressure and free
energy are dominated by the entropic penalty associated with confinement of
the molecules into a fixed volume. Virial coefficients quantify the deviations
from this ideal, dilute limit.

As the solution gets more and more concentrated, we eventually get to the
point where the individual polymer molecules overlap with one another. If
we treat the polymers as spheres with a volume equal to R3

0, the concentration
at which this happens, defined as the overlap concentration, c∗, is given by the
average concentration in one of these spheres:

C∗
(

g/cm3
)
=

M (g/mole)
R3

0 (cm3)Nav (mole−1)
(H.58)

Below the overlap concentration, we can specify the polymer concentration by
ξ, the average distance between polymer molecules in solution, as illustrated
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Figure H.14: Correlation length and dilute solutions

in Figure H.14. The concentration of polymer molecules (molecules per vol-
ume) is 1/ξ3 and the osmotic pressure is given by the following expression:

Π =
RT
ξ3 (H.59)

s

9) Exercise: What is the overlap concentration poly(methyl methacrylate)
with M = 100,000 g/mole in toluene?

10) Solution: We can combine Eq. H.58 for the overlap concentration
with Eq. F.18 for R0 to obtain the following:

C∗ =
M

R3
0Nav

=
M

a3
s N1.8Nav

=
M0

a3
s N0.8Nav

(H.60)

Note that we have used the self-avoiding walk expression for R0, which is
the relevant expression for good solvent conditions ( χ < 0.5). PMMA has
M0 = 100 g/mole, so N = 1000 for the polymer in our example. With these
values of N and M0, and an assumed value of 7 Å ( 7× 10−8 cm) for as, we
obtain c∗ = 1.9× 10−3 g/cm−3. The density of toluene is slightly less than 1
g/cm 3, so this corresponds to a polymer weight fraction of a couple tenths
of a percent.

The basic assumption of scaling theory of osmotic pressure is that Π is still
given by Eq. H.59 at concentrations above the overlap concentration, but that
ξ has a different meaning in this regime. The approach works in the ’semidi-
lute’ solution regime where the overall concentration is still low ( φp < 0.25),
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small

large small

large

Figure H.15: Change in correlation length with solution concentration.

but where there is substantial overlap between polymer molecules. Each over-
lap point represents a constraint that contributes an entropic contribution of ~
kBT to the free energy of the system. The osmotic pressure is therefore ~kBT
times the concentration of overlap points, or kBT/ξ3, where ξ is the correla-
tion length, or average distance between overlap points. As the solution gets
more concentrated, the average distance between polymer contacts decreases.,
as shown schematically in Figure H.15.

To get the concentration dependence of the correlation length, we can start
with the postulate that the corrections to the low-conentration form of the os-
motic pressure must depend only on c/c∗, so that the osmotic pressure has the
following form:

ΠM
CRT

= 1 + f (C/C∗) (H.61)

Here f (C/C∗) is some function that we still need to figure out. It’s easy to sort
out what this function must look like, because for C � C∗ we don’t expect that
the molecular weight of the polymer to matter any more. At these concentra-
tions the osmotic pressure is dominated by polymer/polymer contacts, and
the solution at this local level does not depend at all on the molecular weight.
The only way for the osmotic pressure to be independent of the concentration
for high concentrations is for f (C/C∗) /M to be independent of the M. Be-
cause C∗ ∝ M−4/5, this is only possible if f (C/C∗) ∝ (C/C∗)5/4. This means
that for C > C∗ we have Π ∝ C9/4, or equivalently, Π ∝ φ9/4

p . The correlation
length, which is related to the osmotic pressure through Eq. H.59, is then given
by the following expression for C > C∗:

ξ = a0φ−3/4
p (H.62)

Here a0 is a typical monomer size, comparable in magnitude to the cube root
of the molecular volume, or to the statistical segment length. This value for ξ
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Figure H.16: Concentration dependence of the Flory-Huggins form for the os-
motic pressure (Eq. H.49) with the semidilute scaling form (Eq. H.63), with
χ = 0.4 and a3

0 = 4vs.

can then be combined with Eq. H.59 to give the following expression for the
osmotic pressure in the semidilute concentration regime:

Π =
kBT
a3

0
φ9/4

p (H.63)

The full expression for the osmotic pressure for dilute and semidilute concen-
trations is obtained by using this value of ξ for C > C∗and adding the osmotic
pressure that dominates in the dilute limit:

Π =
CRT

M
+

kBT
a3

0
φ9/4

p (H.64)

While derived in completely different ways, Eqs. H.49 and H.63 actually be-
have similarly in the concentration regime where they both apply. This is illus-
trated in Figure H.16., where these two expressions are compared for a specific
combination of a0 and χ.
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H.10.3 Typical Magnitude of the Osmotic Pressure

The fundamental pressure scale for water is the thermal energy, RT divided by
the solvent molar volume, Vs. For water, we have (at 25 ºC):

Vs =
18 g
mole

10−6m3

1g
= 1.8x10−5 m3 = 18 cm3 (H.65)

RT
Vs

=
(8.314 J/mole−K)(298 K)

3.0× 10−29 m3 = 1.4× 108 Pa (H.66)

This pressure is relatively large. The actual osmotic pressure is obtained by
multiplying by a prefactor involving the Flory-Huggins interaction parameter
and the polymer volume fraction. Osmotic pressures of many atmospheres (1
atm = 105 Pa) can easily be obtained.

11) Exercise: What is the osmotic pressure of seawater?

12) Solution: The osmotic pressure arises from all of the dissolved salts
in seawater. Typical concentrations are tabulated below.[19] The total con-
centration of all dissolved salts is 1.12 moles/kg, which after multiplying by
the density of seawater (1025 kg/m 3) gives an overall salt concentration of
1150 moles/m 3. The osmotic pressure is obtained by multiplying this con-
centration by RT:

Π = (8.314 J/mol ·K) (300 K)
(

1150 mol/m3
)
= 2.8x106 Pa
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Species moles/kg
H2O 53.6
Cl− 0.546
Na+ 0.469

Mg2+ 0.0528
SO2−

4 0.0282
Ca2+ 0.0103
K+ 0.0102
Br− 0.000844
Sr2+ 0.000091
F− 0.000068

Total Ions 1.12

H.11 Equilibrium Swelling of a Neohookean Material

Suppose a crosslinked material is immersed in a solvent (or exposed to sol-
vent vapor) so that it swells isotropically, increasing it’s volume from an initial
volume of Vdry to a final volume of Vwet. The amount of swelling that we
get is determined by the concentration of network strands, which also deter-
mines the elastic modulus. So by measuring the swelling we can also obtain
a reasonably accurate estimation of the shear modulus of the dry, unswollen
polymer, which we refer to here as Gdry. The modulus of solvent-swollen ma-
terial, which we’ll call Gwet is also of interest in many applications. We’ll start
by assuming that the material was crosslinked at equilibrium, with the net-
work strands obeying random walk statistics, so that the strain energy density
is given by Eq. 6.10, with β = 1 and Gdry = kBTνel :

∆ fd =

(Vdry

Vwet

) Gdry

{
λ2

x + λ2
y + λ2

z − 3
}

2
(H.67)

The The factor of Vdry/Vwet accounts for the fact that as the volume of the
gel increases due to solvent swelling, the concentration of network strands
decreases accordingly. The extension ratios appearing in Eq. H.67 are refer-
enced to the undeformed, dry elastomer. To calculate the shear modulus of
the solvent-swollen elastomer we need to consider a deformation process that
occurs in two steps: istropic expansion of the gel to an equilibrium solvent-
swollen state and shear deformation of this isotropically deformed gel.

H.11.1 Equilibrium Swelling of the Gel

The geometry of an experiment used to measure the solvent swelling is shown
in Figure H.17. The polymer sample of interest is placed in a sealed container
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Figure H.17: Experimental geometry for obtaining the equilibrium swelling.

containing wither pure solvent (solvent activity, as,equal to 1), or a solvent
diluted with soluble polymer to give as < 1. When water is the solvent the
solvent activity is simply the relative humidity. Elasticity of the gel introduces
an elastic pressure, pel that limits the amount of solvent that is able to diffuse
into the gel. To calculate this pressure we begin with the deformation free
energy given in Eq. H.67, with the following values for the extension ratios
and relative volumes of the dry and wet states:

λx = λy = λz ≡ λs (H.68)

Vdry/Vwet = φp = λ−3
s (H.69)

Here φp is the volume fraction of polymer in the swollen gel.

A general expression for the equilibrium swelling is obtained by writing the
deformation free energy for the swelling (step 1 in the previous subsection) in
terms of the volume:

∆Fd = Vwet∆ fd =
3Vdry

2
Gdry


(

Vwet

Vdry

)2/3

− 1

 (H.70)

The elastic pressure obtained directly from this expression by differentiating
with respect to the sample volume:

pel =
∂∆Fd
∂Vwet

= Gdry

(Vdry

Vwet

)1/3

= Gdryφ1/3
p (H.71)

The equilibrium polymer volume fraction in the gel is obtained by equating
the solvent chemical potential in the solvent bath with the solvent chemical
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Figure H.18: Example swelling curves for a fixed value of χ and different values
of Nel (part a) and for a fixed value of Nel and different values of χ (part b).

potential inside the gel, accounting for the elastic pressure, pel . We illustrate
the point here by using the Flory-Huggins expression for the solvent chemical
potential, with Np = ∞, since the polymer is crosslinked (see Eq. H.43):

µs = RT ln as = RT
{

ln(1− φp) + φp + χφ2
p

}
+ pelVs (H.72)

The last term accounts for the fact that the pressure is larger inside the gel than
outside the gel. This term involves the shear modulus of the dry material,
equal to RT multiplied by the concentration of elastic strands in the network
(Eq. 6.15, where we take β = 1). This concentration can be expressed in terms
of the average molar volume of a network strand, Vel . We further define Nel ,
an effective degree of polymerization of an elastic strand, as the ratio of Vel to
Vs:

Gdry = νel RT =
RT
Vel

=
RT

NelVs
(H.73)

Now we can combine Eqs. H.71, H.72 and H.17 to obtain an expression relating
the solvent activity to φp:

ln as = ln(1− φp) + φp + χφ2
p +

φ1/3
p

Nel
(H.74)

This equation can be solved numerically to obtain φp (or its inverse, which
gives the swelling ratio Vwet/Vdry). Example curves of the swelling ratio ob-
tained in this way are shown in Figure H.18.
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H.11.2 Shear Deformation of the Swollen Elastomer

Suppose that we now apply a shear strain to the swollen gel. The , γ = λ1−λ2,
with λ1λ2 = 1 and λ3 = λs (see Section 6.1). For the swollen and sheared state
we have λx = λsλ1, λy = λsλ2 and λ3 = λs.

With these extension ratios we have the following expressions for volume ratio
the free energy change from state 1 (the isotropically swollen state) to state 2
(the swollen and subsequently sheared state):

∆ f1→2 =
Gdry

2λs

{
λ2

1 − λ2
2 + 2

}
=

Gdry

2λs

{
λ2

1 − λ2
2

}
=

Gdry

2λs
γ2 (H.75)

We differentiate twice with respect to γ (see Section 6.4) to obtain the shear
modulus of the swollen elastomer:

Gwet =
d2

dγ2 (∆ f1→2) =
Gdry

λs
= Gdryφ1/3

p (H.76)

Note that the elastic swelling pressure calculated from the previous section is
equal to the shear modulus of the solvent-swollen polymer.
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Nomenclature NOMENCLATURE

Nomenclature

δ Compressive displacement.
δt Tensile displacement.
G Energy release rate
ρc Crack tip radius of curvature
A Contact area
A0 Undeformed cross section
bc Minor axis of elliptical crack
C Compliance
C0 Flat punch compliance for a rigid punch with a circular cross section

in contact with an elastic half space.
d Diatance from crack tip.
Er Reduced modulus
f Reactive functionality - the number of times a given molecule can react

in a step growth polymerization.
G Shear modulus
h Thickness of the compliant layer
hp Plastic zone size
I Moment of intertia (Kg-m2)
Kb Bulk modulus
kB Boltzmann’s constant
Kt Torsional stiffness
P Compressive force.
p Enumerate Reaction
Pt Tensile force
Pt Tensile force.
W Work done on system
T Absolute temperature
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Activation volume, 163
Aromatic compounds, 191
Atactic, 210
Avogadro’s number, 60

Benzene, 191
Berkovich tip, 109
Birefringence, 244
Block copolymers, 224
Boltmann’s Constant, 6
Boltzmann superposition principle,

68
Bulk modulus, 32

Cauchy-Green deformation tensor, 28
Chain Folding, 240
Chain-Growth Polymerization, 202
Characteristic ratio, 231
Charpy impact test, 145
Chemical potential, 250
Chi parameter, 257
Classification scheme, 186
Considére construction, 130
Copolymers, 223
Correlation length, 272
Covalent Bonding, 189
Crack opening displacement, 142
Crazing, 140
Creep compliance function, 160
Critical Point, 261
Crosslinking, 211
crystal period, 241
Crystal Thickness, 240
crystal thickness, 241
Crystalline Unit Cells, 237

Dashpot, 77
Diblock copolymer, 224
Dienes, 208
differential scanning calorimetry, 92
Double cantilever beam geometry, 119
Dugdale Model, 142

Eigenvalues, 22
Elastomers, 187
Energy release rate, 98
Engineering stress, 8
Entanglements, 71
Epoxies, 193, 195
Equilibrium Swelling, 275
Extension ratios, 27
Extent of reaction, 193
Eyring model, 163

Fiber torsion, 39
Finger deformation tensor, 28
Flory-Huggins Free Energy of Mixing,

258
Fracture modes, 112
Free Volume, 88

Gauche configuration, 231
Gel fraction, 197
Gel point, 197
gelation, 197
Glass transition temperature, 88
Glassy Polymers, 187
Griffith model, 113

Helix Formation, 235
High impact polystyrene (HIPS), 142
hydrolysis, 194
Hydrostatic pressure, 23
hydrostatic pressure, 32
hyperbolic sine, 164

Irwin model, 113
Isotactic, 210
Izod impact test, 145

JKR equation, 109

Kelvin-Voigt model, 83
Kevlar, 220

lamellar crystallites, 241
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Laplace transforms, 79
Lewis Diagrams, 189
Living Polymerizations, 210
Loss modulus, 67
loss tangent, 67, 75

Maltese cross, 244
Maxwell model, 70, 78

generalized, 82
Maxwell model - Generalized, 71
Modulus

reduced, 96
Mohr circle construction, 17
Mohr’s circle

Strain, 30
Monomeric repeat unit, 234

Natural Rubber, 208
Neohookean model, 58
Neoprene, 216
Network, 197
Newman projection, 230
Non-Linear Step Growth Polymeriza-

tion, 197
Nylon 6, 219

Occupied volume, 88
Osmotic Pressure, 267
Overlap concentration, 270

Poisson’s ratio, 33
Poly(dimethyl siloxane), 222
Poly(ethylene oxide), 219
Poly(methyl acrylate), 215
Poly(methyl methacrylate), 215
Poly(phenylene oxide), 222
Poly(tetrafluoroethylene) (PTFE), 217
Poly(vinyl acetate), 218
Poly(vinyl chloride) PVC, 218
Poly(vinyl pyridine), 218
Polyamides, 193
Polybutene-1, 215
Polycaprolactam, 219
Polycaprolactone, 220
Polycarbonate, 221
Polychloroprene, 216

Polyesters, 193, 194
Polyethylene, 213
Polyethylene Terephthalate (PET), 221
Polyisobutylene, 216
Polypropylene, 214
Polystyrene, 217
prepolymer, 197

Random Walk in One Dimension, 46
Random Walk in Two Dimensions, 50
Reactive Functionality, 197
Reduced modulus, 96
Relaxation modulus, 65
Repeat units, 186
Rubber Elasticity, 54

Second virial coefficient, 269
Self avoiding Random Walks, 233
Shear modulus, 29
Shear viscosity, 63
Silicones, 222
Simple shear, 28
Sol fraction, 197
Sound velocity, 34
spherulite, 242
Spinodal curve, 260
Stability limit, 260
Stable Detachment, 100
standard linear solid, 82
Statistical copolymers, 224
Statistical segment length, 50
Step-Growth Polymerizations, 192
Storage modulus, 67
Strain, 24
Strains

Sample Displacements for Small
Strains, 25

stress, 8
Stress intensity factor, 114
Stress invariants, 23
Structural repeat unit, 234
Syndiotactic, 210

Tacticity, 210
Teflon, 217
tensor, 9

283



INDEX INDEX

Thermal expansion coefficient, 88
Theta temperature, 264
Tie molecules, 241
time-temperature equivalence, 84
Torsional Resonator, 75
Trans configuration, 231
Tresca yield criterion, 126
True strain, 27

Ultem Polyetherimide, 222
Undercooling, 245
Unit cell, 237
Unstable Detachment, 100

Vinyl polymers, 210
Virial expansion, 269
Viscoelasticity, 62
Vogel equation, 72
Von Mises stress, 127

Weibull distribution, 135
Weibull modulus, 135

Young’s modulus, 33

zero extension rate viscosity, 81
zero shear rate viscosity, 81
Zero shear viscosity, 70
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